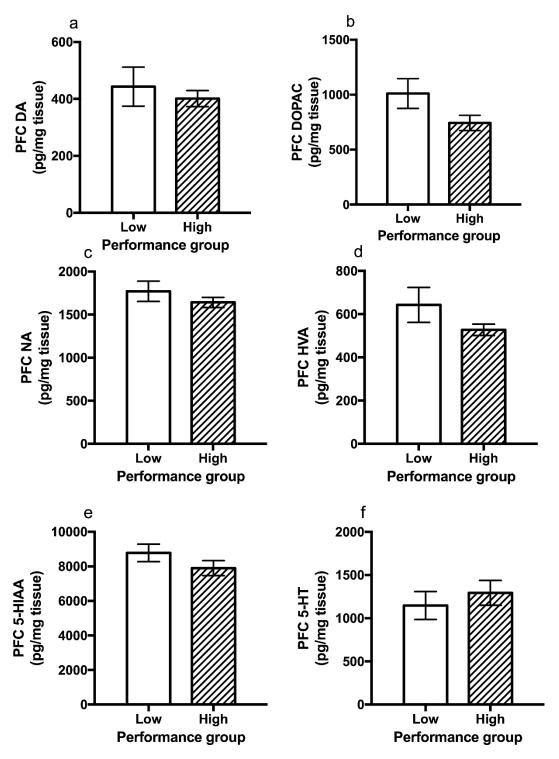
Baseline-dependent effects of amphetamine on attention are associated with striatal dopamine metabolism

Karly M. Turner¹, BSc (Hons), BA, PhD James Peak¹, BSc (Hons) Thomas H. J. Burne^{1,2*} BRurSc (Hons), PhD

- 1. Queensland Brain Institute, The University of Queensland, St Lucia, QLD 4072, Australia
- 2. Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Richlands, QLD 4077, Australia

*Address for correspondence

Assoc. Prof. Thomas Burne Queensland Brain Institute The University of Queensland, St Lucia, Qld 4072 Australia. Email: <u>t.burne@uq.edu.au</u> Fax: +61 7 3346 6301 Phone: + 61 7 3346 6371


Supplementary Files:

Supplementary Table 1: Relative ratios of selected monoamines in the PFC and CPU of low and high performing rats

Supplementary Figure 1: Catecholamine levels in the prefrontal cortex (PFC) of low and high performing rats

	PFC		СРИ	
	Low Performers	High Performers	Low Performers	High Performers
DOPAC/DA	2.47 +/- 0.33	1.91 +/-0.19	0.68 +/- 0.07	0.72 +/-0.10
HVA/DA	1.55+/- 0.18	1.42 +/-0.18	0.16 +/-0.01	0.15 +/-0.02
5-HIAA/5-HT	8.72 +/- 1.30	6.71 +/- 0.73	7.12 +/- 0.54	7.19 +/- 0.52

Supplementary Table 1. Relative ratios of selected monoamines in the PFC and CPU of low and high performing rats

Supplementary Figure 1. Catecholamine levels in the prefrontal cortex (PFC) of low and high performing rats. There were no significant differences between performance groups for (*a*) dopamine (DA), (*b*) dihydroxyphenyl acetic acid (DOPAC) or (*c*) noradrenaline (NA), (*d*) homovanillic acid (HVA), (*e*) 5-hydroxyindoleacetic acid (5-HIAA) or (*f*) serotonin (5-HT).