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ABSTRACT

In this supplementary file we provide additional information on the application of the schistosomiasis tranmission model to the

Senegal case study, including details on the evaluation of environmental heterogeneity. Moreover, we describe in full details the

elaborations performed on the mobile phone data and the related human mobility matrices, and discuss how control strategies

based on exposure and contamination reduction can be implemented in the model. Six additional figures are also included.



1 Details on model implementation

Administrative boundaries and population distribution

The territory of Senegal is currently divided into first-level administrative units (14 regions), each subdivided into second-level

units (45 departments overall), each of which is further divided into third-level units (123 arrondissements overall, as of 2013;

a revision is currently underway). In order to apply the model to study large-scale patterns of schistosomiasis dynamics in5

Senegal, human communities are identified with arrondissements. Note that arrondissements can actually include several human

settlements/villages, yet we refrain from choosing smaller units for the sake of computational feasibility and data availability.

Population size for each arrondissement (Ki, Fig. S2a) is obtained from a high-resolution population distribution map

(Fig. 1b in the main text) available from the AfriPop project, which is part of the WorldPop project (data available online

at GeoData Institute, University of Southampton, WorldPop: High resolution age-structured population distribution maps,10

http://www.worldpop.org.uk/; last last date of access: 03/02/2017). Data include 2014 estimates of population

distribution with a spatial resolution of 30 arcsec (approx 100 m at the equator), and national totals adjusted to match United

Nations estimates. The total number of people living in each arrondissement is thus computed by summing the 2014 population

estimates of the grid squares that fall within the relevant administrative boundaries. Population-weighted centroids are also

evaluated for each third-level administrative unit (see again Fig. S2a).15

Simplifying hypotheses for model application

By noting that the lifespan of the larval stages of the parasite is much shorter than those of the other biological agents involved

in the transmission cycle of the disease (up to a few days vs. months/years1), the concentrations of cercariae and miracidia can

be considered at their equilibrium values (as obtained by setting Ċi = 0 and Ṁi = 0). By also rescaling the state variables as
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the model described in the Methods section of the main text can be written as20
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The parameters βi and χi represent, respectively, aggregated exposure and contamination rates – the former of which also

accounts for the local abundance of the intermediate snail hosts. Although simplified, this formulation can indeed ease the
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application of the model to real case studies for which detailed information on the heterogeneity of transmission risk might not

be readily available.25

Spatial heterogenity of human exposure and contamination

The use of the model outlined above requires the specification of the parameters βi and χi, i.e. of the (possibly) site-specific

exposure and contamination rates. Both parameters are clearly related to rurality and availability of environmental freshwater.

Rural communities that lack access to piped drinking water and improved sanitation, and that have to resort to unsafe water

sources for their primary needs, are in fact both more prone and more conducive to schistosomiasis transmission2, 3. Conversely,30

the availability of adequate water provisioning and sanitation infrastructures may represent an effective protection against

schistosomiasis, as shown in a recent systematic review of available field data4. However, neither can safe water supplies

completely avert human contact with environmental freshwater, especially in water-rich regions, nor can the presence of

adequate sanitation guarantee per se its use5. Therefore, the causal pathway through which water and sanitation affect disease

transmission still remains elusive – even more so in developing countries where understanding exposure and mechanisms35

of spread would be most important6. Moreover, in the simplified formulation of the epidemiological model described

above, exposure risk also depends on local snail population abundances, which are also certainly influenced by rurality

and environmental freshwater availability. Malacological surveys suggest that occurrence of the snail species involved in

schistosomiasis transmission is widespread in Senegal7. However, the lack of quantitative data on an appropriate spatial scale

precludes the use of these observations to inform the model about the spatial distribution of snail populations. Habitat suitability40

for freshwater snails can be mapped via geostatistical methods8, 9, which however require a considerable amount of field

observations, currently not available for Senegal.

To parameterize the model, we assume that the synthetic exposure and contamination rates βi and χi increase with the

fraction of people living in rural areas, ρi, and the availability of environmental freshwater, ωi; more specifically, βi and χi

are assumed to increase with the product ρiωi, which may represent a simple (yet comprehensive) proxy for transmission45

risk heterogeneity linked to socioeconomic and environmental conditions. The rurality index ρi is available at the department

level through the Global Atlas of Helminth Infections (Fig.1c, data available online at GAHI, Maps and data, http://www.

thiswormyworld.org; last last date of access: 03/02/2017), based on mapping and spatial analysis of cross-sectional

survey data10. The freshwater abundance index ωi is computed by summing up the length of perennial and ephemeral rivers

encompassed in each department (see again Fig. 1c in the main text; data available from DIVA-GIS Development Team,50

DIVA-GIS, http://www.diva-gis.org/gdata; last last date of access: 03/02/2017); the resulting distribution is then

normalized by its maximum value, so that values of ωi are distributed in a 0–1 interval, and spatially downscaled [upscaled] by

assigning department data to the relevant arrondissements [regions]. The spatial distribution of the product ρiωi that is actually

assumed to drive the spatial distribution of the aggregated exposure and contamination rates is shown in Fig. S2b.

The four model set-ups tested in this work (see Methods in the main text) are characterized by two different levels of spatial55

granularity for the environmental heterogeneity informing transmission risk. Two sets of communities, endowed with either

low or high transmission risk, are identified for the set-ups with coarse-grained spatial heterogeneity (M1 and M2). Risk groups

are formed via k-means clustering (k = 2) of the arrondissement-level values of ρiωi (Fig. S2c). Exposure and contamination

rates in low-risk [high-risk] communities are respectively set to βlow and χlow [βhigh and χhigh]. Conversely, linear relationships
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between arrondissement-level values of ρiωi and the transmission parameters are established for the set-ups with fine-grained60

spatial heterogeneity (M3 and M4), i.e.

βi = β0(1+φρiωi) , χi = χ0(1+ξ ρiωi) ,

where

β0 = a
πC

µC
θ0N0 , χ0 =

b
2

πM

µM
θ
′
0

are the baseline values of the synthetic exposure and contamination rates, respectively, while φ and ξ are two coefficient

accounting for the combined effects of rurality and freshwater abundance on exposure and contamination11.

Model simulation and evaluation of epidemiological indicators65

As schistosomiasis is endemic in Senegal, model outputs are evaluated by running the epidemiological model up to convergence

to steady state starting from an initial condition in which human communities are set to be completely uninfected (h0
i = 1

and hp
i = 0 for 0 < p≤ P in all arrondissements), while the prevalence of infected snails is initially set to 5% (si = 0.95 and

yi = 0.05 in all arrondissements). Note that the model produces an estimate of the distribution of human hosts among infection

classes (and of the prevalence of susceptible/infected snails in each arrondissement). Comparing this output with prevalence70

data requires the definition of an infection threshold. According to commonly accepted epidemiological evidence17, a minimum

number of parasites within a human host is in fact required for pathogen reproduction to be effective and to lead to a positive

result during clinical screening. The infection threshold (T ) thus represents the minimum parasite burden above which human

hosts are considered to be infected. The prevalence uM
i of clinically infected human hosts in each arrondissement can be

evaluated from the model as the sum of the prevalences of the infection classes characterized by parasite burden larger than T ,75

i.e.

uM
i =

∑
P
p=T+1 hp

i
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P
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i
.

Infection prevalence can be upscaled to departmental/regional scales via weighted averaging (i.e. using arrondissement

population sizes as weights).

The model also allows to easily estimate the Average Parasite Burden (APB), a standard measure that is routinely used in

epidemiology to quantify the community-level intensity of infection, in addition to disease prevalence, and that closely relates80

to morbidity. APB can be defined as the mean number of parasites hosted in each resident of a human community (say i), i.e.

APBi =
∑

P
p=1 pH p

i

∑
P
p=0 H p

i
.

Therefore, in our framework, evaluation of APB is done ex-post – that is, APB can be seen as an output (rather than as a state

variable) of the model. Although APB represents the basis for the traditional approach to describe schistosomiasis transmission

dynamics18, it forcedly neglects the heterogeneity that typically characterizes the distribution of schistosomes among human

hosts within a community. Models based on a Stratified Worm Burden (SWB) approach17, like the one used in this work, can85
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be used to effectively overcome this limitation of purely APB-based models. SWB models have also been shown to better

reproduce the epidemiological dynamics actually observed in the field19, 20.

In the SWB approach, the analysis of APB can be usefully complemented with the evaluation of some indicators of the

heterogeneity of parasite distribution, such as the aggregation parameter ki, obtained by fitting a negative binomial distribution

to the simulated parasite loads in each community i, or the dispersion index Di, defined as the ratio between the sample90

variance of parasite distribution (σ2
i ) and the sample APBi within each community. A typical feature of SWB-based models

parameterized with realistic values of the mortality rates of human hosts and adult schistosomes is that they tend to produce

parasite distributions with relatively low aggregation. In fact, by using a simple SWB model applied to an isolated and stationary

host population subject to a constant force of infection, it has been shown19 that the equilibrium distribution of parasite

burden within human hosts is controlled by the ratio between the human and the schistosome mortality rates. Specifically, in95

absence of human demographic turnover (muH = 0 and α
p
H = 0) the distribution is strictly Poisson, well approximated by a

negative binomial otherwise. The highly aggregated distributions typically observed in egg-count data can be produced by more

complex SWB models accounting for a detailed description of in-host biology (including e.g. parasite mating, aggregation,

density-dependent fecundity and random egg-release)20.

Model calibration100

Some of the model parameters can be reliably estimated from the literature or from epidemiological/demographic records.

Specifically, the baseline mortality rates of human hosts, snails and parasites can be evaluated as the inverse of the average

lifetimes of people in Senegal (61 years21, hence µH = 4.5 · 10−5 days−1), snail intermediate hosts (about 1 year22, hence

µS = 2.7 ·10−3 days−1) and schistosomes (about 5 years22, hence µP = 5.5 ·10−4 days−1), respectively. From these figures

we have µH/µP = 0.082. Following a field study conducted in an endemic area of Sudan23, parasite-induced mortality in105

human hosts is set to αH = 1.1 ·10−7 days−1 parasite−1. The extra-mortality suffered by infected snails is set to αS = 1.4 ·10−2

days−1, according to the observation that the lifespan of infected snails is about two months22. As for parasite load in human

hosts, we consider a maximum burden of P = 150 parasites and a threshold for infection T = 10 parasites17. The human

population of each community is thus divided into P+1 classes, with classes T < p≤ P being considered as infected.

Conversely, numerical fitting is necessary to calibrate the parameters describing human exposure and contamination risk.110

Here we use the urogenital schistosomiasis prevalence data collected by the Senegalese Ministry of Health during the first

national survey carried out in 1996 and periodically updated since then (namely, in 2003, 2009, 2010, 2012 and 2013) in

the context of the Programme National de Lutte contre la Bilharziose operated by the Senegalese Ministry of Health since

19997. Epidemiological information is available at the health-district level (Fig. 1e in the main text). Raw data were collected

among children in selected schools from all 14 regions of Senegal through standard diagnostic techniques (for urogenital115

schistosomiasis: urine testing via reagent strips, followed by filtration and microscopic examination of samples positive for

haematuria). Despite relative small sample sizes (as an example, 5,000 children from 100 schools in 20 districts were tested

in the most recent campaign), which may lead to some uncertainty at fine spatial scales, this dataset is currently in use at the

Senegalese Ministry of Health as the most reliable and up-to-date picture of the spatial distribution of the disease in the country.

Calibration parameters vary among the four model set-ups: specifically, the parameters that need be calibrated are120

{βlow, χlow, βhigh, χhigh} or {β0, χ0, φ , ξ}, respectively for the set-ups with coarse-grained (M1 and M2) or fine-grained (M3
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and M4) environmental heterogeneity. Note that no parameters involving human mobility are calibrated in any of the model

set-ups (see below). Calibration is performed independently for each model set-up by minimizing the residual sum of squares

of reported (uD
r ) vs. modeled (uM

r ) values of schistosomiasis prevalence in each region r (Fig. S2d), i.e.

RSS = ∑
r
(uD

r −uM
r )2 .

Regional infection prevalences can be readily upscaled from the epidemiological dataset at the health-district level via weighted125

averaging (i.e. using health-district population sizes as weights; each health-district value is assigned to the region where the

health-district lies). Numerical fitting is performed with the Nelder-Mead simplex method24.

Because all the model set-ups have the same number of calibration parameters, performance comparison can simply be

performed by evaluating the coefficient of determination

R2 = 1− RSS
T SS

,

where130

T SS = ∑
r

(
uD

r −
〈
uD

r
〉)2

is the total sum of squares and
〈
uD

r
〉

is the mean of the regional prevalence values. Note that R2 can also be negative, namely if

RSS > T SS.

2 Human mobility

Inference of human mobility from mobile phone traces

Mobility is estimated from the anonymized movement routes of Sonatel mobile phone users collected for one year, from135

January 1 to December 31, 2013. Sonatel is the main telecommunications provider of Senegal, with more than 9 million

subscribers in the country. The 2013 mobile phone dataset contains more than 15 billion CDRs. Each record includes an

anomynous identifier for the user making the call, as well as information about when (time stamp) and where (antenna tower)

the call was initiated. Matrix Q = [Qi j] is defined in this work as the probability that people usually living in community

(arrondissement) i come in contact with freshwater in community (arrondissement) j ( j = 1 . . .123, including i). We assume140

that this probability is proportional to the time spent in arrondissement j, and that the number of phone calls made by a user

while being in arrondissement j is also proportional to the time spent in that arrondissement. Therefore, the entries Qi j of

matrix Q are assumed to be proportional to the number of phone calls made by users usually living in arrondissement i while

being in arrondissement j.

To characterize human mobility patterns, first we upscale antenna-level data to the spatial scale of arrondissements, namely145

by assigning the traces originated at each antenna to the relevant arrondissement based on the geographical position of the

antenna. Then, we use CDRs to identify the ‘home’ (residential) arrondissement for each anonymous user. Following a

definition often used in the context of CDR analysis and related epidemiological applications12, we define home as the site

(arrondissement) where most calls are made by a user during night hours (from 7pm to 7am) over the whole dataset (i.e. over a
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timespan of one year). If several arrondissements match this criterion, home is randomly selected among the arrondissements150

that host most of the night calls made by the user. Afterwards, for each arrondissement i, the number of calls made in

arrondissement j by users whose home site has been identified with i is extracted from the dataset. This number, properly

divided by the total number of calls made by users usually living in arrondissement i (independently of the location where the

call originates from), represents an estimate of the entries of the mobility matrix (graphically shown in Fig. 1d in the main text).

The mobility matrix Q so derived is used in the model set-ups where human movement is accounted for (M2 and M4), and can155

be made available upon request for replication purposes.

A useful indicator of mobility is the community-level fraction of the population of each arrondissement that leaves its home

site at least once during the time window of interest (e.g. one year in Fig. 1d in the main text), i.e. mi = 1−Qii. Yearly values

of mi estimated from CDRs fall in the range 0.15–0.44 for the different arrondissements, with a country-wide weighted average

〈m〉= ∑i miKi

∑i Ki
= 0.26 .

Artificial manipulation of human mobility patterns160

To elucidate the role of human movement on schistosomiasis transmission, it may be useful to analyze some scenarios in which

mobility is different from CDR-based estimates. To that end, the mobility matrix estimated from CDRs has to be artificially

manipulated. Given an average country-wide mobility 〈m∗〉, the local values of m∗i can be obtained by redistributing the

total number 〈m∗〉∑i Ki of mobile people proportionally to the contribution miKi of each arrondissement i to the total number

〈m〉∑i Ki of mobile people in the reference case, so that165

m∗i =
〈m∗〉
〈m〉

mi .

The diagonal elements Q∗ii of the modified mobility matrix Q∗ can thus be obtained as Q∗ii = 1−m∗i , while the off-diagonal

entries Q∗i j are assumed to be proportional to the contribution of each destination site j to overall mobility from site i as

estimated from CDRs, i.e.

Q∗i j =
〈m∗〉
〈m〉

Qi j .

Matrix Q∗ so obtained can then be fed to the model set-ups originally calibrated with Q estimated from CDRs (set-ups M2

and M4). Clearly, 〈m∗〉= 0 (or, equivalently, Q∗ = I, with I being the identity matrix) corresponds to a no-mobility scenario170

(set-ups M1 and M3).

As a word of caution, we acknowledge that changes in human mobility could actually produce effects on the resulting

mobility matrix that are far more complex than the simple manipulations described above. In that case, human mobility models

– such as the so-called gravity13 or radiation14 models, which can be calibrated against movement patterns extracted from

CDRs15 – could be used to better analyze different mobility scenarios. Note, however, that recent studies have shown that175

standard mobility models may perform poorly in the sub-Saharan context, thus warranting extra-care in their use16.
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3 The fight against schistosomiasis in Senegal: analysis of intervention strategies based

on exposure/contamination reduction

WAter, Sanitation and Hygiene (WASH) interventions

The effect of WASH actions aimed at increasing access to safe drinking water and improved sanitation3 can be seen as equivalent,180

in our simplified formulation of the spatially heterogeneous exposure and contamination rates, to decreasing the fraction ρi of

residents of community i living in rural conditions, at least as far as water and sanitation are concerned. These actions can be

either targeted (e.g. implemented only in selected rural communities) or untargeted (implemented in all communities), and are

obviously constrained by the available budget.

Let τ and η be the planned extent of the interventions (evaluated as the number of potentially benefited people, τ ≤ ∑i ρiKi)185

and their potential efficiency (i.e. the probability of success per effort unit). Untargeted actions can be described in the model as

ρ
′
i = ρi

(
1− ητ

∑ j ρ jK j

)
,

where ρ ′i represents the fraction of people in community i with no access to safe water supplies and improved sanitation after

action implementation.

Targeted interventions can be formulated in the model by sorting communities (according to some suitable criterion),

selecting the first U ones so that ∑
U
i=1 ρiKi ≤ τ and setting190

ρ
′
i = 1−η

therein. Natural ranking criteria in our framework include the quantity ρiωi, which quantifies transmission risk based on the

rurality of living conditions and the abundance of environmental freshwater where snail populations can thrive, or the regional

values of schistosomiasis prevalence. Other options (like e.g. prioritizing rural or water-rich regions, or communities with large

inbound/outbound mobility fluxes) are obviously possible.

Information, Education and Communication (IEC) campaigns195

The effect of IEC campaigns aimed at promoting hygiene and increasing awareness about disease transmission pathways2 can

be modeled as a decrease of the baseline exposure/contamination rates. Like in the case of WASH interventions, IEC campaigns

can be either targeted or untargeted, and are subject to budget constraints.

Let τ and η be again the planned extent of the interventions (τ ≤ ∑i Ki) and their supposed efficiency, respectively.

Untargeted interventions can be modeled as200

β
′
0 = β0

(
1− ητ

∑i Ki

)
, χ

′
0 = χ0

(
1− ητ

∑i Ki

)

in the case of the fine-grained model set-ups M3 and M4 (similar relationships can be worked out for the coarse-grained

set-ups M1 and M2).

The implementation of targeted interventions requires sorting the communities (again, according to some suitable criterion),
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selecting the first U ones so that ∑
U
i=1 Ki ≤ τ , and setting

β
′
0 = 1−η , χ

′
0 = 1−η

therein. The previous equations refer again to model set-ups M3 and M4, but similar relationships can be obtained for205

set-ups M1 and M2 as well. Like in the case of WASH interventions, ranking criteria can prioritize high-risk or high-prevalence

communities, but other indicators describing access to safe water sources or sanitation facilities (available online through GAHI,

Maps and data, http://www.thiswormyworld.org; last last date of access: 03/02/2017) could be used as well.
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Supplementary figures

Figure S1. Schematic representation of the schistosomiasis transmission model. Rectangles represent the human components
of three sample communities (say i, j and k, identified by different colors), stratified by infection class (H p

i are hosts burdened
with 0≤ p≤ P parasites in community i). Rounded rectangles represent the freshwater components of the three communities,
including (say, for community i) susceptible (Si) and infected (Ii) snails, and the larval stages of the parasite (miracidia, Mi, and
cercariae, Ci). Circles, squares and hexagons indicate the force of infection for the different human communities, the human
contribution to freshwater infestation and mobility-related processes, respectively. See Fig. 1a in the main text for a graphical
depiction of the transmission cycle of the disease, the Methods section in the main text for a complete description of the model
and Table 1 in the main text for a description of the variables and parameters used in the model.
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Figure S2. Data for model simulation and calibration. (a) Distribution of population abundance in third-level administrative
units [thousands of inhabitants]. (b) Spatial distribution of the product between the rurality score ρi and the freshwater
availability index ωi (model set-ups with fine-grained environmental heterogeneity, M3 and M4). (c) Identification of high-risk
vs. low-risk transmission communities based on the clustering of ρiωi scores (model set-ups with coarse-grained environmental
heterogeneity, M1 and M2). (d) Regional prevalence of urogenital schistosomiasis [% of infected people] according to the
current estimates of the Senegalese Ministry of Health. Maps have been created with QGIS 2.4 (QGIS Development Team,
QGIS: A free and open source geographic information system, http://www.qgis.org/; last last date of access:
03/02/2017) and MATLAB R2015b (MathWorks, MATLAB, http://www.mathworks.com/products/matlab/;
last last date of access: 03/02/2017).
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Figure S3. Calibration of the four model set-ups. Best-fit parameter values: for M1, βlow = 4.7 ·10−3 [days−1],
χlow = 6.7 ·10−4 [days−1 parasites−1], βhigh = 6.8 ·10−3 [days−1], χhigh = 1.1 ·10−1 [days−1 parasites−1]; for M2,
βlow = 4.6 ·10−3 [days−1], χlow = 8.3 ·10−5 [days−1 parasites−1], βhigh = 7.1 ·10−3 [days−1], χhigh = 7.3 ·10−2 [days−1

parasites−1]; for M3, β0 = 5.0 ·10−3 [days−1], χ0 = 2.7 ·10−3 [days−1 parasites−1], φ = 5.2 ·10−1, ξ = 1.3 ·102; for M4,
β0 = 5.5 ·10−3 [days−1], χ0 = 2.2 ·10−3 [days−1 parasites−1], φ = 4.3 ·10−1, ξ = 1.1 ·102. The model set-up accounting for
fine-grained spatial heterogeneity and human mobility (M4) has better overall explanatory power than the others (R2 = 0.76)
and is thus retained as reference model.
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Figure S4. Sensitivity analysis of model projections with respect to parameter variations. In each panel, results are shown for
simulations performed with the reference model and the best-fit parameter set (see Fig. 2 in the main text) except for the value
of one parameter (label) that has instead been allowed to vary in a ±100% range with respect to its reference value. Shown are
the effects of parameter variations on the country-averaged (blue) and the maximum regional (green) values of schistosomiasis
prevalence. Blue/green numbers within each panel indicate deviations from the reference simulation for ±50% parameter
variations.
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Figure S5. Within-host parasite distribution as simulated by the reference model. (a) Spatial distribution of the APB [number
of parasites per person] in each arrondissement. (b) Frequency distribution of APBi (arrondissement level). (c) Parasite
distributions within the human population of two exemplificative arrondissements. σ2

i indicates the sample variance of the
parasite distribution within a community (i = {A,B}), Di = σ2

i /APBi is the dispersion index and ki is the aggregation
parameter of a negative binomial fitted to the simulated parasite distribution via maximum likelihood estimation (ranges are
95% confidence intervals). The values of ki and Di indicate relatively low parasite aggregation in both communities
(aggregation being larger in the arrondissement marked as B, green, because kB < kA and DB > DA). (d) Relationships between
APBi and two indicators of parasite aggregation, namely the aggregation parameter ki (black, left axis) and the dispersion
index Di (dark gray, right axis), evaluated for each arrondissement i. The area shaded in light gray is the 95% confidence
interval for the estimated values of ki. The green and the blue points indicate the arrondissements for which individual-level
parasite distributions are shown in panel c. The map in panel a has been created with QGIS 2.4 (QGIS Development Team,
QGIS: A free and open source geographic information system, http://www.qgis.org/; last last date of access:
03/02/2017) and MATLAB R2015b (MathWorks, MATLAB, http://www.mathworks.com/products/matlab/;
last last date of access: 03/02/2017).
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Figure S6. Examples of daily human mobility patterns in Senegal. (a) Overall mobility from each arrondissement i = 1...123.
Region labels (r = 1...14) are shown for easier visual reference and are the same as in Fig. 1b in the main text. (b) Mobility
fluxes to Touba (Ndame arrondissement, Diourbel region), evaluated as ∑i KiQi,Ndame, i = 1...123. Peaks of incoming mobility
correspond to the most important religious gatherings held in Touba during 2013. (c) Mobility fluxes from Saint-Louis
region (8), evaluated as ∑i KiQi, j with i ∈ Saint-Louis, j = 1...123. Highlighted are religious gatherings that generate peaks of
outgoing mobility fluxes (Grand Magal de Touba, GMdT; Gamou de Tivaouane; Kazu Rajab) and within-region mobility.
Overall, remarkable mobility fluxes are also directed towards the most ‘attractive’ and well connected region of Dakar, or to
those closest in distance to Saint-Loius (Louga, 5, and Matam, 14), which show the ‘gravitational’ nature of human mobility.
Daily mobility patterns are defined by looking at the spatial patterns of the calls made by each user over one day (instead of one
year like in Fig. 1d).
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