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1 Supplementary Materials and Methods
1.1 Cognitive systems

In the main text we used a multi-layer community detection algorithm to uncover brain network
modules across layers (windows). In addition to these detected modules, each brain region was
also assigned to a brain system based on a previous study (/). That study identified, in total, 13
systems: cingulo-opercular (CO), default mode (DMN), dorsal attention (DAN), fronto-parietal
1 (FP1), fronto-parietal 2 (FP2), medial-parietal (MedPar), parietal-occipital (ParOcc), salience
(SAL), somatomotor (SMN), ventral attention (VAN), primary visual (VIS1), and peripheral
visual (VIS2). In addition to the previously-defined systems (/) we also included two other
systems: (i) a subcortical (SUB) system comprised of bilateral thalamus, caudate, putamen,
pallidum, hippocampus, amygdala, and accumbens, and (ii) a category reserved for brain re-
gions with no clear assignment (NONE) (See Fig. S1).

In the main text we sometimes found it advantageous to describe certain measures (e.g.
mean and standard deviation of flexibility; correlation of regional flexibility with positivity and
surprise indices) at the intermediate level of cognitive systems rather than at the level of indi-
vidual brain regions or at the level of the whole brain. Such system-level measurements were
obtained by averaging the measure-in-question across each system’s constituent regions. How-
ever, because such measures may be biased by system size (i.e. number of regions assigned to
that system), we compared the observed measures against the distribution of similar measure-
ments obtained from a permutation null model, wherein the total number of regions assigned
to each system remained constant but where assignments were, otherwise, made at random.
Specifically, we calculated the mean, 4, and standard deviation, 0,5, system-level measure-
ments based on 10000 iterations of the permutation null model and expressed the observed

measure, Ysys, as a Z-SCore:



2ys = S0, (1)
sys

We corrected for multiple comparisons by controlling the false discovery rate (FDR) using
the linear step-up procedure (2). In each case, we calculated an adjusted critical value, p,q;, by
fixing the maximum FDR at d = 0.001.

It should be noted that we rely on a particular definition of cognitive systems based on a
previously published study (7). While this same set of systems has been exploited in other stud-
ies (3, 4), it is worth noting that there are alternative methods for defining such systems, which
could produce somewhat different results. For example, in the present study, each subcortical
region is represented by a single network node and all subcortical regions are grouped together
to form a cohesive cognitive system. While this definition is well-suited for the exploratory
nature of the study, future work could investigate, in more detail, the nuanced connectivity pat-
terns of sub-cortical structures (e.g., hippocampus), and further sub-divide these regions based
on those patterns. Investigations of this type, however, require specialized analysis tools and

therefore we leave this for future work.

1.2 Robustness to choice in resolution parameters

The multi-layer modularity maximization equation included two free parameters: v and w.
Together with the structure of the multi-layer network, itself, these parameter determine the
composition of the communities detected by maximizing modularity (5). Though inexact, we
can think of + as controlling the number and size of communities and w as controlling the
consistency of communities across layers. Depsite the importance of these parameters, they are
often fixed at the de facto values of v = w = 1 (6). Though a complete exploration of both
parameters is beyond the scope of most studies, it is considered good practice to demonstrate

that one’s results are robust to reasonable variations in the parameters’ values (6-9).



Accordingly, we sought to replicate the principal results from the main text, i.e. the corre-
lation of flexibility with positivity and surprise indices, across variations in the two resolution
parameters. To this end, we varied both v and w over the range [0.95, 0.975, 1.00, 1.025,
1.05] and maximized multi-layer modularity for all pairs of parameter values. This procedure
generated 25 estimates of 7(PI, F') (24 new estimates, including a repetition of the case where
v = w = 1, which was already investigated in the main text). In general, these results supported
the hypothesis that 7(PI, F') > 0 (Fig. S2A) and 7#(S1, F') < 0 (Fig. S2B.

Exploring the parameter landscape facilitated an investigation into the properties of the de-
tected communities that were responsible for driving the relationships of positivity and surprise
with flexibility. We focused, in particular, on the total number of communities present across
all layers and the average number of communities present in any given layer. We calculated
the mean values of these variables across all detected communities and compared these values
to the behavior-flexibility correlation magnitudes at different values of v and w (Fig. S2C-F).
We found that correlation magnitude varied systematically with both variables, with 7( P, F')
exhibiting a peak between 3—4 communities and 7(S1, F') peaking around 4-5 communities.
This finding suggests that the observed behavior-flexibility correlations depend upon the scale
at which we interrogate the network’s community structure. Moreover, it further reinforces the
hypothesis that the brain is a multi-scale organ that demands appropriate multi-scale tools for

characterizing its organization and relationship to cognition and behavior (/0).

1.3 “Leave one out” analyses

Pearson’s correlation coefficient, which we used to assess the relationship of flexibility with
positivity and surprise indices, can be driven by outlying data points. Therefore we wanted to
test whether the reported correlations could be driven by either a single data collection session

or PANAS-X category. To test whether this was the case, we performed a series of “leave one



out” analyses, wherein we iteratively removed either PANAS-X categories or data collection
sessions, performed PCA on the limited dataset, and then calculated the correlation of flexibility
with the new estimates of the positivity and surprise indices. These supplemental analyses
supported the hypotheses that #(PI, F') > 0 (Fig. S3A,B) and 7(SI, F') < 0 (Fig. S3C,D).
These results indicate that our results are unlikely to be biased by single data collection sessions

or PANAS-X categories.

1.4 Permutation tests for confidence intervals

In the main text we presented evidence suggesting that specific brain regions drive the corre-
lation of PI and ST with flexibility, namely regions associated with somatomotor cortex. We
arrived at this conclusion based on the observation that the regional flexibility of somatomotor
regions were highly correlated with both P and SI. Given two sets of observations, even ran-
dom orderings can sometimes produce large correlation coefficients. Therefore, we wished to
test the hypothesis that the observed correlation magnitude of P and SI with flexibility could
arise simply by chance. To do so, we randomly permuted the order of both global and regional
flexibility scores, and recalculated the Pearson’s correlation of the reordered flexibilities with
PI and SI. We repeated this procedure 10000 times in order to obtain null distributions for the
correlation coefficients #(P1, F') and 7(SI, F') and also for the correlation coefficients of each
regional flexibility with P and SI (p = 0.014 and p = 0.0001 for P and S1, respectively)
(Fig. S4A,B).

We performed a similar test at the level of brain regions, standardizing observed correla-
tion coefficients against the null distribution and representing them as z-scores. In general,
patterns of z-score coefficients closely resembled those shown in the main text (Fig. S4C,D).
Moreover, when aggregated by cognitive systems, the z-score coefficients were greatest for the

somatomotor system, also in agreement with the results presented in the main text (Fig. S4E,F).



Collectively, the results of this section demonstrate that the observed correlation of P/ and ST
with flexibility are not likely to have been driven by random orderings of the flexibility scores

and that, once again, these correlations are strongest in the somatomotor system.

1.5 Correlation of individual PANAS-X scores with flexibility

The results presented in the main text showed that global flexibility was positively correlated
with the positivity index and negatively correlated with the surprise index. Both indices were
derived from a PCA of PANAS-X terms. While our analyses in the main text focused on these
components, we thought that it would be illuminating to present the reader with plots showing
the relationship of individual PANAS-X terms with global flexibility. In Fig. S5 we show the
PANAS-X terms according to the magnitude of their loadings onto the positivity and suprise
indices. In the top row of Fig. S5 (panels A-C), we show the top three terms: happy, enthusiastic,
and confident. The bottom three terms are shown in the middle row (Fig. S5D-E): irritable,
downhearted, and blue. As expected, the terms in the top row with strong positive loadings on
the positivity index also tended to be positively correlated with flexibility. Similarly, the terms
in the middle row with negative loadings tended to be negatively correlated with flexibility. In
the bottom row (Fig. SSF-H) we show the top three components that load onto the suprise index:
amazed, surprised, and astonished. Predictably, there terms tended to be positively correlated
with global flexibility. In the case of the surprise index, no terms exhibited strong negative

loading.

1.6 PANAS-X affect scores

The PANAS-X includes p = 60 terms (we studied a subset of 57 of these terms). In the
main text we used a PCA to distill these terms into positivity and surprise indices. There

are, however, other means of combing PANAS-X terms into composite indices. One stan-



dard grouping involves combining terms into the following twelve affect classes: ‘“negative
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affect”, “positive affect”, “fear”, “hostility”, “guilt”, “sadness”, “joviality”, “self-assurance”,
“attentiveness”, “fatigue”, “serenity”, and “surprise” (/7) (we show the class to which each
term is assigned in Supplementary Table S2). Oftentimes an additional class, “shyness,” is in-
cluded; the terms comprising this class were omitted from this study. We tested whether global
flexibility was correlated with affect classes. Indeed, a number exhibited statistically signifi-
cant correlations with flexibility (p < 0.05; uncorrected). We observed that “positive affect”
(7 = 0.278,p = 0.017), “guilt” (& = —0.268,p = 0.022), “joviality” (+ = 0.255,p = 0.029),
“attentiveness” (7 = 0.324,p = 0.051), “surprise” (& = —0.260,p = 0.026), and “fatigue”
(r = —0.455,p = 0.001) were all correlated with flexibility (Fig. S6). In general, these re-
sults agree with those obtained from our PCA analysis, with “positive affect”, “joviality”, and
“attentiveness” (which capture positive emotions, broadly) all exhibiting positive correlations
with flexibility. Interestingly, the PANAS-X terms that comprise the “surprise” class were iden-
tical to those with the strongest loadings onto the fourth principal component, which we termed
the surprise index, and exhibited a statistically significant positive correlation (& = —0.26,
p = 0.026) (Fig. S6L).

The affect class “fatigue” exhibited the greatest magnitude correlation with global flexibil-
ity. Accordingly, we investigated its correlation with regional flexibility scores to determine its
topographic distribution and its mapping onto brain systems. Like the positivity and surprise
indices, “fatigue” was strongly anti-correlated with the regional flexibility of somatomotor cor-
tex (zgyn = —10.110, psyy < 1071%) (Fig. S7). Also as before, a number of other systems
were also implicated, including cingulo-opercular (CO), fronto-parietal (FP1), and peripheral

visual (VIS2) (zco = 4.469, zpp; = 4.481, zy 150 = 3.002; all p < 0.001), which were more

positively correlated with fatigue than expected by chance.



1.7 Regressing out nuisance variables

To this point, we have demonstrated the robustness of the correlation between positivity (P1)
and surprise (S7) indices with global flexibility, '. Another concern is that this relationship is
mediated by a third, nuisance variable that we fail to account for. To determine whether this was
the case, we investigated the relationship of F' with head motion and other psychophysiological

variables collected as part of the MyConnectome Project.
1.7.1 Relationship of global flexibility and head motion

Recent work has demonstrated that subject head motion within the scanner can introduce sys-
tematic biases in functional connectivity patterns (/2). It is therefore possible that global flexi-
bility, rather than tracking the reconfiguration of network communities over time, is driven by
head motion. To test whether this was the case, we asked whether global flexibility was corre-
lated with average frame-wise displacement, which represents an estimate of the amplitude with
which a subject’s head moves relative to a reference frame. Our analysis revealed no correlation
between motion and global flexibility (7#(motion, F') = 0.013, p = 0.912).

We also performed two additional tests. First, we regressed motion from PI and S/ and re-
calculated the correlation of the residuals with global flexibility (Fig. S8A,B) (7(PI\motion, F')
0.284, p = 0.015; #(ST\motion, F) = 0.407, p < 1073). Second, we regressed motion from
the global flexibility scores and calculated the correlation of those residuals with the original
PI and ST (Fig. S8C,D) (7(PI, F'\motion) = 0.283, p = 0.015; #(SI, F\motion) = 0.406,
p < 1073). In both cases, accounting for motion had little effect on our reported results. This
suggests that the relationships between flexibility and neuropsychological variables are unlikely

to be driven by head motion.



1.7.2  Other psychophysiological measurements

In addition to PANAS-X terms, the MyConnectome Project made a number of other psy-
chophysiological measures. For example, on certain recording sessions, blood was drawn and
measures such as platelet and red blood cell counts made. Other measures included subjective
rates of sleep quality, whether the subject drank alcohol the previous evening, and whether there
was precipitation on the day of the scan (See TableS3 for a complete list). As with head mo-
tion, it was possible that fluctuations of these additional variables could explain the quotidian
variability in flexibility.

As with the motion control section, we regressed each psychophysiological variable from
F’, and calculated the correlation of the residuals with P/ and SI. Many of the psychophysio-
logical measurements were not performed in every scan session. For such cases, we performed
the regression analysis on the subset of sessions for which those variables were measured. In
general, even after controlling for other psychophysiological variables, we still observed a pos-
itive correlation between Pl and F' (Fig. S9A) and a negative correlation between SI and F'
(Fig. S9B). In fact, regressing out most variables lead to little change in the overall correla-
tions of both indices with flexibility. There are two notable cases, however, that deviate from
this trend. First, after controlling for variables based on bloodwork (in Fig. S9C they are pre-
ceded with the label “blood:”) we observed a large increase in the magnitude of #(P1I, F)
and a corresponding decrease in 7#(S1, F'). However, bloodwork was performed on only 16 of
the 73 analyzed recording sessions; such a small sample does not permit us to make strong
quantitative statements. The second notable case concerned the variable “how much did tinni-
tus bother you today?”. Controlling for this variable decreased 7(PI, F') to ~ 0.1. Like the
bloodwork, this variable was measured during a small fraction of the recording sessions (22
of 73). Again, with such a small sample size we are not in a position to make strong quanti-

tative statements about the relationship of the subject’s tinnitus with flexibility. Limiting our-

10



selves to variables that were measured during at least 50% of the analyzed recording sessions,
we found that the median correlation after regressing out each nuisance variable from F' was
comparable to the correlation magnitudes reported in the main text (#(PI, F')edian = 0.276;
7(PI, F)min = 0.208; 7(PI, F) oz = 0.418; (ST, F)median = 0.407; #(S1, F')pin = —0.441;
7(SI, F)mae = —0.351). While not conclusive, these results suggest that the psychophysiolog-
ical measurements collected in addition to the PANAS-X scores did not, on their own, account
for the strength of the correlation of flexibility with the positivity and surprise indices.

Another possible concern is related to the manner in which we measured the “fatigue” affect
class, which we suggested might mediate the relationship between positivity and flexibility but
not surprise and flexibility. The fatigue index that we analyzed was a composite score based
on select PANAS-X categories (/7). Accordingly, the fatigue index is not a direct measure
of the subject’s physiological state. Despite this, it has been shown to be reliable in that it
tends to correlate with other psychological and physiological measurements of fatigue (/3).
Nonetheless, we felt that exploring alternative measures of fatigue was worthwhile.

In particular, we focused on the Zeo sleep data (Zeo, Inc., Boston, Massachusetts), which
were collected using a single-channel EEG-like apparatus and generates data categories such
as: “time in deep sleep”, “time in light”, “time in REM”, “total sleep time”, and “sleep quality”.
While the Zeo apparatus has been shown to do a reasonable job classifying sleep stage (14, 15),
the veracity of these data in measuring physiological fatigue is unclear. Nonetheless, we can
assess whether these data are related to the PANAS-X fatigue measure and also assess whether
regressing sleep data from the positivity (or surprise) index weakens the correlation magnitude
of either index with flexibility.

In general, we found that the sleep data were (i) not strongly correlated with the fatigue
affect class, (i1) not strongly correlated with either the positivity or surprise indices, (iii) not

strongly correlated with flexibility, and (iv) regressing the sleep data from those indices and
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recomputing the correlation of the residuals with flexibility did not weaken the strength of the
behavior-flexibility correlation. Specifically, the strongest correlation of sleep data and fatigue
involved sleep quality 7(fatigue, “quality”) = —0.12, p = 0.43; the strongest correlation of
sleep data and either the positivity or surprise indices was 7( P, “time in light”) = 0.11,p =
0.44; the strongest correlation of sleep data with fatigue was 7 (fatigue, “sleep quality”) =
—0.12, p = 0.43; the weakest correlations after regressing sleep data from positivity or surprise
were 7(F, PI\“time in deep sleep”) = 0.35, p = 0.018 and 7(F, ST\"“total sleep time”) =
—0.40, p = 0.004.

Collectively, these results indicate that the observed correlations of the positivity and sur-
prise with flexibility are not likely mediated by the Zeo sleep scores. In general, we feel that
these results should be viewed as complementary to those presented in the main text. While
the fatigue index obtained from the PANAS-X data may not serve as a direct measure of phys-
iological fatigue, it can represent fatigue induced by non-sleep factors. In contrast, the indices
computed from the Zeo sleep data are collected using an EEG-like apparatus worn during sleep
but do not account the subject’s blood metabolic and chemical profiles. Furthermore, the Zeo
sleep data was collected less frequently than the PANAS-X data, which weakens the strength of
conclusions drawn from analyses using those data. In short, the PANAS-X data is a convenient,

well-known, and reasonably reliable measure for assessing self-reported fatigue.

1.8 Analysis of low-frequency versus high-frequency fMRI BOLD signal

In the main text, we described correlative relationships between regional and global flexibility
scores with two behavioral indices: a “positivity index” and a “surprise index.” These relation-
ships were documented in fMRI BOLD signal sampled every 1.16 s and wavelet filtered into a
high-frequency band (0.125-0.25 Hz). Analysis of high-frequency fMRI data is made possible

with the faster-than-normal sampling rate. However, we also wished to stay consistent with past
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work (16, 17), and so in parallel we pursued an identical analysis on data filtered using the more
traditional frequency band of 0.0625-0.125 Hz. We performed the same procedures as those

described in the main text:

1. Reconstructed dynamic functional connectivity matrices for each scan session.
2. Maximized a multi-layer modularity quality function to uncover community structure.

3. Calculated regional and global flexibility metrics from the community structure.

Broadly, these results corroborate those described in the main text. First, we calculated the
similarity (Pearson correlation coefficient) of dynamic connectivity matrices in the low and high
frequency bands. We observed a correlation of 7(FChjgn, F'Cley) = 0.80 £ 0.01, suggesting
that connections in one frequency band were similar to those in the other (Fig. S10A). Next,
we performed multi-layer modularity maximization on the low-frequency connectivity matri-
ces using precisely the same techniges as described in the main text. Using the community
estimates we then calculated global and regional flexibility. Again, we observed a close corre-
spondence between the flexibility scores estimated in high and low frequency bands. Specifi-
cally, we observed a correlation of #(Fjign, Flow) = 0.85, p < 107 for global flexibility and
7(fhighs fiow) = 0.67 £ 0.08 for local flexibility across scan sessions, suggesting that flexibility
scores were similar irrespective of which frequency band we studied (Fig. S10B,C). Finally, to
demonstrate that we observe in the low frequency band the same behavior-flexibility relation-
ships reported in the high frequency, we calculated the correlation of low frequency regional
and global flexibility with the positivity and surprise indices. As in the main text, we ob-
served statistically significant correlations: p(F, PC;) = 0.20 and p(F, PCy) = —0.42, both
p < 0.05 (Fig. S1I0D-G). Moreover, and again in agreement the main text, if we regress fatigue
from the positivity and surprise indices and recompute the correlations, we find that the cor-

relation of flexibility with positivity is attenuated and no longer statistically significant while
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the correlation of flexibility with suprise remains statistically significant using corrected data
(p(F, PCy\ fatigue) = 0.02, p = 0.86 and p(F, PC,\ fatigue) = 0.31, p = 0.007). Finally,
in order to demonstrate that the relationship between global flexibility and behavior was driven
predominantly by the regional flexibility of the somatomotor network, we calculated the cor-
relation of regional flexibility with both the positivity and surprise indices. In both cases, we
found that the mean correlation of somatomotor regions’ flexibility scores with the behavioral
indices was much greater than chance: zgyny = 7.71,p < 107 and zgp;ny = —8.22,p < 10715
(Fig. S10H-K).

In general, these results support the hypothesis that global network flexibility is correlated
with both the positivity and surprise indices. The correlation with positivity is, in part, mediated
by fatigue. These relationships also appear to be driven predominantly, but not exclusively, by

flexibility of the somatomotor network.

1.9 Robustness with respect to variation in window length

In the main text we analyzed the time-varying properties of functional brain networks. In order
to do so, we estimated the network at different time points by dividing the scan session into
14 equal-sized windows containing 37 samples each. In general, varyinging the number and
duration of windows allows us to interrogate the network at different temporal resolutions (/0);
shorter or longer windows facilitate the investigation of correspondingly faster or slower dy-
namics.

Accordingly, we wished to assess whether variation in these parameters might influence
the results presented in the main text. A full exploration of all window sizes is, unfortunately,
not practical. Instead, we simply doubled our window length (from 37 TRs to 74 TRs) and
halved the number of windows (14 windows to 7 windows). With these new data, we repeated

the analysis procedure outlined in the main text. Briefly, this entailed generating time-varying
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estimates of functional connectivity, performing community detection, calculating regional and
global flexibility, and computing the correlation of those flexibility scores with the positivity
and surprise indices.

Interestingly, we observed that the correlation of regional flexibility with both indices was,
once again, driven strongly by the somatomotor network (Fig. S11B-F). At the global level,
however, flexibility was still strongly correlated with the surprise index (#(SI, F') = —0.35,
p = 0.0025) (Fig. S11B) but not correlated with positivity (Fig. S11A) (#(PI,F) = 0.01,
p = 0.94).

These results can be interpreted in a number of ways. Principally, it demonstrates the ro-
bustness of the relationship between global and regional flexibility with the surprise index. It
also suggests that, while robust to other types of variation, the flexibility-positivity correlation
is sensitive to the temporal resolution at which we investigate our network.

Nonetheless, these results should be interepreted with some caution. Flexibility (both re-
gional and global) is calculated by averaging changes in community structure over time. With
a greater number of time points, these estimates become more stable, i.e. sampling variability
becomes small; with fewer time points sampling variability will be proportionally greater. In
doubling our window length from 37 TRs to 74 TRs, we halve the number of time points, re-
sulting in a corresponding increase in uncertainty surrounding the flexibility measures and the
correlation of those measures with behavioral indices.

In general, there exists a complicated relationship between window size and the uncertainty
surrounding network estimation and measurements derived from those networks. With long
windows, we get a clearer picture of the network’s organization but have few samples with
which to characterize its time-varying properties; with shorter windows, the networks we es-
timate are likely biased by sampling variability (/&) but may provide more stable estimates

of the networks’ time varying properites. Mapping out this relationship more precisely, while
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important, falls beyond the scope of the present study.
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active, afraid, alert, alone, amazed, angry, angry-at-self, ashamed, as-
tonished, at-ease, attentive, bashful, blameworthy, blue, bold, calm,
cheerful, concentrating, confident, daring, delighted, determined, dis-
gusted, disgusted-with-self, dissatisfied-with-self, distressed, down-
hearted, drowsy, energetic, enthusiastic, excited, fearless, frightened,
guilty, happy, hostile, inspired, interested, irritable, jittery, joyful, lively,
loathing, lonely, nervous, proud, relaxed, sad, scared, scornful, shaky,
sheepish, shy, sleepy, sluggish, strong, surprised, timid, tired, upset

Table S1: PANAS-X terms. Complete list of PANAS-X terms.
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| PANAS-X Class | PANAS-X Category

negative affect

afraid, scared, nervous, jittery, irritable, hostile, guilty, ashamed, upset,
distressed

positive affect

active, alert, attentive, determined, enthusiastic, excited, inspired,
interested, proud, strong

fear afraid, scared, frightened, nervous, jittery, shaky

hostility angry, hostile, irritable, scornful, disgusted, loathing

guilt guilty, ashamed, blameworthy, angry at self, disgusted with self,
dissatisfied with self

sadness sad, blue, downhearted, alone, lonely

joviality happy, joyful, delighted, cheerful, excited, enthusiastic, lively,

energetic

self-assurance

proud, strong, confident, bold, daring, fearless

attentiveness alert, attentive, concentrating, determined
fatigue sleepy, tired, sluggish, drowsy

serenity calm, relaxed, at ease

surprise amazed, surprised, astonished

Table S2: PANAS-X class assignments. The first column displays the name of each affect
class and the second column displays the PANAS-X scores assigned to that class.
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Variable class Variable name

N/A: subcode, date

after scan anxiety during scan, diastolic, pulse, systolic

blood ba, eo, hgb, ly, mch, mchc, mcv, mo, mpv, ne, plt, rbc, wbc
date of week date of week

email LIWC-CDI, LIWC-negemo, LIWC-posemo

morning pulse, sleep quality, soreness, diastolic, systolic

previous evening | alcohol, gut health, how much did tinnitus bother you today, psoriasis
severity, stress, time spent outdoors

rna rin

same evening alcohol, gut health, how much did tinnitus bother you today, psoriasis
severity, stress, time spent outdoors

scan has breath hold, has dots, has dti, has faceloc, has grid, has n-back, has
resting, has superloc, has TIW, has T2W, noise cancel

weather precip, temp hi, temp lo

weight weight

Zeo time in deep, time in light, time in REM, total Z, zq

Table S3: Psychophysiological variables The first column displays the broad class to which
each variable was assigned. The second column lists the specific variable names.
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Cingulo-opercular
Default mode
Dorsal attention
Fronto-parietal 2
Fronto-parietal 1
. Medial-parietal
Parieto-occipital
Salience
Somatomotor
Ventral Attention
Visual 1

Visual 2

None
Subcortical

Figure S1: Cognitive systems. Topographic distribution of the 12 cortical brain systems (the
subcortical system is not shown in this figure).
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Figure S2: Variation of resolution parameters. We varied the resolution parameters, v and
w, over the range 0.95-1.05 in increments of 0.025. For each pair of parameters, we performed
multi-layer community detection as described in the main text. From the detected communities
we calculated flexibility scores and the correlation of scores with positivity and suprise indices.
Here we show the measured correlation coefficients as a function of v, w for the positivity index
(A) and the suprise index (B).
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Figure S3: Results of “Leave one out” analyses. Correlation coefficients of flexibility with
positivity and surprise indices based on limited observations. (A) Distribution of correlation
coefficients, #(P1, I'), excluding individual data collection sessions. (B) Distribution of corre-
lation coefficients, 7(PI, F'), excluding individual PANAS-X terms. (C) Distribution of corre-
lation coefficients, 7(S1, F'), excluding individual data collection sessions. (D) Distribution of
correlation coefficients, 7(S1, F'), excluding individual PANAS-X terms.
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Figure S4: Results of permutation tests for estimating correlation confidence intervals. (A)
Null distribution for the correlation?(PI, F'). (B) Null distribution for the correlation?(S1, F').
(C) Z-scores of correlation PI with regional flexibility. (D) Z-scores of correlation S with re-

gional flexibility. (E,F) Region-level correlations from panels C and D aggregated by cognitive
system and expressed as z-scores.
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Figure S5: Individual PANAS-X categories. (A, B,C) Scatterplots of top three PANAS-X com-
ponents (in terms of their magnitude loading onto PI) versus global flexibility. (D,E,F) Scat-
terplots of bottom three PANAS-X components (in terms of their magnitude loading onto PI)
versus global flexibility. (G,H,I) Scatterplots of top three PANAS-X components (in terms of
their magnitude loading onto ST) versus global flexibility.
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Figure S6: Correlations of flexibility with affect classes. Each panel shows the correlation of
global flexibility with a different affect class. The aggregate score for each affect class is based
on a sum of responses to specific PANAS-X terms.
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Figure S7: Correlation of fatigue with flexibility. (A) Topographic distribution of regional

flexibility with fatigue. (B) Region-level correlations aggregated by cognitive system and ex-
pressed as z-scores. (C) Scatterplot of 7( fatigue, F') versus 7(PI, F') and 7(S1I, F).
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Figure S8: Accounting for in-scanner head motion. (A) Correlation of positivity index (after
regressing out motion) with global flexibility. (B) Correlation of surprise index (after regressing
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Figure S9: Accounting for other psychophysiological measurements. We regressed 64 psy-
chophysiological variables from global flexibility and calculated the correlation of the residuals
with both positivity and surprise indices. (A) Results after applying these methods to the pos-
itivity index. Each bar represents the correlation magnitude of residuals with positivity. The
dark red line represents the correlation magnitude without accounting for any psychophysio-
logical measurements. (B) Results after applying these methods to the surprise index. Each bar
represents the correlation magnitude of residuals with surprise. The dark orange line represents
the correlation magnitude without accounting for any psychophysiological measurements. (C)
The number of data collection sessions for wAfich a given psychophysiological variable was
collected.
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Figure S10: Corroboration of low-frequency and high-frequency fMRI BOLD signal anal-
ysis. We compared network organization, flexibility metrics, and flexibility/behavior correla-
tions for the high-frequency data described in the main text (12.5 - 25 Hz) and low-frequency
data analyzed in a more traditional frequency band (0.0625 - 12.5 Hz). (A) Scatter plot de-
picting the edge-wise relationships of dynamic functional connectivity of low-frequency and
high-frequency data (plot depicts data from only one of the 73 scan sessions). (B) Scatterplot
depicting relationship of global flexibility for low- and high-frequency data. (C) Scatterplot
depicting relationship of regional flexibility for low- and high-frequency data. D Scatterplot
showing correlation of positivity index with global flexibility. E Scatterplot showing correla-
tion of surprise index with global flexibility. F,G We assessed the statistical significance of
these correlations using permutation testing to generate null distribution of correlations; both
positivity and surprise indices exhibited statistically significant magnitudes, p < 0.05. H,I
System-level correlations of regional flexibility with positivity and surprise indices. As in the
main text, flexibility of the somatomotor network was highly correlated with behavioral indices.
J,K Topographic distribution of regional flexibility scores with behavioral indices. Again, these
plots highlight the contributions of the somatomotor network’s flexibility to the overall flexibil-
ity/behavior relationships.
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Figure S11: Effect of changing window size from 37 TRs to 74 TRs. Scatterplot showing
relationship of positivity (A) and surprise indices (B) with global flexibility calculated from 74
TR windows. We also show the topographic distribution of the correlation of regional flexibil-
ity with positivity (C) and surprise indices (D). As in the main text, regional correlations are
strongest in the somatomotor network for both indices (E,F).
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