Dual regulation of water retention and cell growth by a *stress-associated protein* (*SAP*) gene in *Prunus* A. Lloret, A. Conejero, C. Leida, C. Petri, F. Gil-Muñoz, L. Burgos, M.L. Badenes, and G. Ríos

Figure S1. *PsSAP1* gene expression in detached leaves and leaf discs under abiotic stresses. In a, detached leaves were desiccated for one (white bars), three (light grey bars) and seven days (dark grey bars). In b and c, leaf discs were treated for four (white bars) and 24 hours (grey bars). An expression value of one is assigned to the control. *LEA*-like gene (ppa008651m) expression is included as a positive control of stress response. An asterisk indicates significant difference with the control with a confidence level of 95 %.

ppa005503m

ppa009116m

ppa005507m

ppa007117m

Figure S2. Sequence of yeast two-hybrid clones.

35S::PpSAP1#1

35S::PpSAP1 #5

35S::PpSAP1 #6

Figure S3. Drought stressed plants for seven days. Two month old plants of WT and transgenic lines 35S::*PpSAP1* #1, #5 and #6 are shown; scale bar, 5 cm.

Figure S4. Expression of several genes assayed in transgenic plum overexpressing *PpSAP1*. An expression value of one is assigned to the WT. Data are means from three biological samples with two technical replicates each, with error bars representing standard deviation. Letters (a-b) indicate significant difference between samples.

 Table S1. Primers used in this study.

	Forward	Reverse	
qRT-PCR in peach			
PpSAP1	ACACAGGCTTCCTCTACTCCATCTTT	GAACCCTCATTCCGAGACATTTATCAG	
LEA-like	TCATCTTCCGCTGCCTTTGTAGCCT	GACACTGCCAAGAACACCAAGGACA	
Tubulin-like	CAGATGCCCAGTGATGCCTCAG	TGCTTGCCTGATCCAGTCTCAC	
AGL26-like	ACCACCTGAAGTCCTCCAAGATTG	GCTTCATACAAAGCAATGCCAACAC	
SAND-like	TCGTGGGTACCAGGAAAACGACAT	CCTGCTAGCTTGTGTTCATCTCCA	
Actin-like	CTTCTTACTGAGGCACCCCTGAAT	AGCATAGAGGGAGAGAACTGCTTG	
qRT-PCR in plum			
PpSAP1	TGATCTCAGAGGAGGACCTGCATAT	CAAGTCCTTGTGGCATTTGGAACAC	
Plum SAP1-like	ACACAGGCTTCCTCTACTCCATCTTT	GAACCCTCATTCCGAGACATTTATCAG	
<i>PpSAP1</i> + plum <i>SAP1</i> -like	AACGTGTTGGTCTAACCGGCTTCAAT	TTGTCCAGCTTTTCTGCCTTCACAAC	
CBLIPK-like	ACCCCAATGTGGTTCAGCTCTTTGA	AGTAATCAACAGCCCCAACCAACTG	
TIP-like	AGTTGTTGCTTGCTTGCTACTCAAG	GCACCAACAATCAAACCAATTGCGA	
GRF1-like	GGGGTTCTATCCATTTGGGATTCTC	TTTTTGGTCAGGAACGGCATCTCTC	
GRF5-like	GGAGGTGCAGAAGAACAGATGGTAA	TTGAACGGTTTCTGCCTCTGTGCAT	
RPA-like	GGGTTGCTAACAAGCAGTTTAAGAC	GGGACCTAACATATCAACTGGAACA	
AN-like	AAAGCCTGGTGAGCTGTTGAAGGAT	AGTATCTAGGAACCAACCACCACCT	
AN3-like	ATGTACCTGGCTGCCATTGCTGATT	GCTTGTTGCTGCATGTAATGTGCTC	
TOR-like	GCAGTACCAAAGAAGATTGGGCAGA	GCAAATAACTCGCGCCCAACAAAT	
ARL-like	TCGTCGAACACTATCACACGGTAG	CAACAGAGTCGCCGTGAGACATATA	
RPT2a-like	GTGGCAAACTCAACATCTGCAACT	GTGAGAGGTCATCAGCAACCCTAA	
AWPM19-like	CCCAGCCAATATGGCGAATATCAGAA	CATAGTGAGCAGCAGTAAGTTTGTGCT	
Dehydrin-like	GTACTCTCATGACACCCACAAAACTAC	CCCGGCCCCACCGTAAGCTCCAGTT	
AFP-like	TTCCGTTGGTGGTGGAGTGGATGCA	TTACTAGCAGGGCTTCTTGCTTCAC	
H1-3-like	AAACCGCTGCTCATCCTCCATACT	TGCTTCTCCTCCATGTACTTGGCT	
RD29B-like	ATCTGCTAAGAACGTCGTCGCTTC	GGCTTTGCTGTAACCTCCTGATGA	
ATCP1-like	AAGGTTATGGACAAGGACGGGGAT	CATGGCCTTGATGTCTTCATCAGTG	
GOLS2-like	TGACCACCTGTTTGACTACCCAGA	GCTGGCAGTACCCAATCTTGTACT	
Two-hybrid			

cloning

CCAGAATTCATGGAGCACAACGAGACAG

GCCGGATCCTCAGATTTTGTCCAGCTTTTC

pROK2 cloning

CAGTCTAGATGGAGGAGGAGCAGAAGCTGATCTC

GCCGGATCCTCAGATTTTGTCCAGCTTTTC

Name	Rice or <i>Arabidopsis</i> gene/protein	Peach putative ortholog	Protein similarity	Reference
CBLIPK-like	LOC_Os01g10890	ppa005365m	CBL-interacting protein kinase	(1)
TIP-like	LOC_Os01g74450	ppa010364m	Tonoplast intrinsic protein1-3	(1)
GRF1-like	LOC_Os03g51970	ppa019623m	Growth-regulating factor 1 (1)	
GRF5-like	LOC_Os02g53690	ppa017593m	Growth-regulating factor 5 (1)	
RPA-like	LOC_Os03g11540	ppa003038m	Replication protein A subunit B (1)	
AN-like	AT1G01510	ppa003091m	Angustifolia	(2)
AN3-like	AT5G28640	ppa011329m	Angustifolia3	(3)
TOR-like	AT1G50030	ppa000022m	Serine/threonine-protein kinase TOR	(4)
ARL-like	AT2G44080	ppa013582m	Argos-like	(5)
RPT2a-like	AT4G29040	Prupe.8G208900	26S proteasome regulatory subunit	(6)
LEA-like		ppa008651m	Late embryogenesis abundant	(7)
AWPM19- like		ppa012188m	AWPM19	(7)
Dehydrin-like		Prupe.7G161100	Dehydrin	(7)
AFP-like		ppa006974m	ABI5 binding protein	(7)
H1-3-like	AT2G18050	ppa011941m	Histone H1-3	(8)
RD29B-like	AT5G52300	ppa001989m	Responsive to desiccation 29B	(8)
ATCP1-like	AT5G49480	ppa012594m	NaCl-inducible calcium-binding protein	(9)
GOLS2-like	AT1G56600	ppa008294m	Galactinol synthase 2	(9)

Table S2. List of genes tested by qRT-PCR in transgenic plum and peach.

(1) Dansana, P. K., Kothari, K. S., Vij, S. & Tyagi, A. K. *OsiSAP1* overexpression improves water-deficit stress tolerance in transgenic rice by affecting expression of endogenous stress-related genes. *Plant Cell Rep.* **33**, 1425–1440 (2014).

(2) Kim, G. T. *et al.* The *ANGUSTIFOLIA* gene of *Arabidopsis*, a plant CtBP gene, regulates leaf-cell expansion, the arrangement of cortical microtubules in leaf cells and expression of a gene involved in cell-wall formation. *EMBO J.* **21**, 1267–1279 (2002).

(3) Kim, J. H. & Kende, H. A transcriptional coactivator, AtGIF1, is involved in regulating leaf growth and morphology in *Arabidopsis. Proc. Natl. Acad. Sci. U. S. A.* **101**, 13374–13379 (2004).

(4) Menand, B. *et al.* Expression and disruption of the *Arabidopsis TOR* (target of rapamycin) gene. *Proc. Natl. Acad. Sci. U. S. A.* **99**, 6422–6427 (2002).

(5) Hu, Y., Poh, H. M. & Chua, N. H. The Arabidopsis ARGOS-LIKE gene regulates cell expansion during organ growth. Plant J. 47, 1–9 (2006).

(6) Kurepa, J. *et al.* Loss of 26S proteasome function leads to increased cell size and decreased cell number in *Arabidopsis* shoot organs. *Plant Physiol.* **150**, 178–189 (2009).

(7) Leida, C. *et al.* Histone modifications and expression of *DAM6* gene in peach are modulated during bud dormancy release in a cultivardependent manner. *New Phytol.* **193**, 67–80 (2012).

(8) Giri, J. *et al.* Rice A20/AN1 zinc-finger containing stress-associated proteins (SAP1/11) and a receptor-like cytoplasmic kinase (OsRLCK253) interact via A20 zinc-finger and confer abiotic stress tolerance in transgenic *Arabidopsis* plants. *New Phytol.* **191**, 721–732 (2011).

(9) Kang, M. *et al.* Arabidopsis SAP5 functions as a positive regulator of stress responses and exhibits E3 ubiquitin ligase activity. *Plant Mol. Biol.* **75**, 451–466 (2011).

	NormFinder	BestKeeper	ΔCt				
Tissues							
Tubulin-like	0.29	1.48	0.91				
AGL26-like	0.41	1.91	1.17				
SAND-like	0.30	1.61	0.92				
Actin-like	0.37	1.39	1.02				
Reproductive buds							
Tubulin-like	0.19	1.51	0.52				
AGL26-like	0.33	1.73	0.64				
SAND-like	0.18	1.21	0.46				
Actin-like	0.28	1.15	0.58				
Stress assays							
Tubulin-like	0.45	1.69	1.07				
AGL26-like	0.25	1.25	0.75				
SAND-like	0.14	1.10	0.60				
Actin-like	0.29	1.23	0.76				

 Table S3. Stability index of reference genes for real-time experiments using three methods.