Transcriptome and functional analysis reveals hybrid vigor for oil biosynthesis in oil palm

Jingjing Jin^{1,2,3,6,#}, Yanwei Sun^{4,#}, Jing Qu¹, Rahmadsyah⁵, Chin-Huat Lim⁵, Yuzer Alfiko⁵, NurEstyaBte Rahman⁵, Antonius Suwanto⁵, Genhua Yue¹, Limsoon Wong³, Nam-Hai Chua² and Jian Ye^{1,4*}

¹Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, 117604 Singapore;

²Laboratory of Plant Molecular Biology, Rockefeller University, 1230 York Avenue, New York, NY 10021, USA;

³School of Computing, National University of Singapore, 117417 Singapore;

⁴State Key laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China;

⁵R & D Department, Wilmar International Plantation, Palembang, Indonesia Biotech Lab, Wilmar International, Jakarta, Indonesia;

⁶China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, Henan, 450001, China;

[#] These authors contributed equally.

* Corresponding author

E-mail: jianye@im.ac.cn; Telephone: 86-10-64807363; Fax: 86-10-64858245

Supplementalry Figure S1: Microscopy observation of mesocarp (A and B) endosperm (C and D) and of developing oil palm fruits.

Mesocarp of *Dura* (A) and *Tenera* (B) at the same developing stage (4.5 Months After fertilization) were analysed. Broken cycle line indicates the vascular-like structure. Oil droplets (ODs) were more obvious in mesocarp of *Tenera* compared with the *Dura* mesocarp of the same developing stage. Endosperm of *Dura* in 3.5 Months After fertilization (C) and 5.5 Months After fertilization (D) were analysed. The secondary cell wall were enhanced in later stage (C) compared with early stage (D). Bar: 20µm.

Supplementary Figure S2: Transcripts patterns for enzymes involved in glysolysis reactions for Pisifera and Tenera. Values in red indicate the fold increase in reads of mesocarp of Tenera to that of Pisifera at 3.5 MAF. Values in blue indicate the fold increase in reads of endosperm of Tenera to that of Pisifera at 2.5/4.5 MAF. Samples collected from different tissues for Dura, Pisifera and Tenera (#53) were used for transcriptome analysis.

Supplementary Figure S3: Transcripts patterns for enzymes involved in plastidial and extraplasidial reactions for Pisifera and Tenera. Values in red indicate the fold increase in reads of mesocarp of Tenera to that of Pisifera at 3.5 MAF. Values in blue indicate the fold increase in reads of endosperm of Tenera to that of Pisifera at 2.5/4.5 MAF. Reads for enzymes

PC pool

6.1 | 2.1

1.1 | 3.7

FAD2

FAD3

18:3-PC

18:2-PC

Supplementary Figure S4: Transcriptome level ratio between Tenera and Dura for PC-Related enzymes. ACBP: acyl-CoA binding protein; CCT: CTP: choline-phosphate cytidylyltransferase; CK: choline kinase; DGAT: diacylglycerol acyltransferase; LACS: long-chain acyl-CoA synthase; PDCT: phosphatidylcholine: diacylglycerol cytidylyltransferase; PEAMT: phosphoethanolamine methyl transferase; PLAT, phospholipid acyl transferase-like;

Supplementary Figure S5: Fatty Acid (FA) composition was analysed for Col-0 and two *EgWRI1-3* expression lines in WT background.

Α

В

Supplementary Figure S6: Portion of allele specific genes in each group.

(A): Portion of allele specific genes based on whole gene list. (B): Portion of allele specific genes based on fatty acid gene list. KD represents endosperm of *Dura*, KP represents endosperm of *Pisifera*, KT represents endosperm of *Tenera*, MD represents mesocarp for *Dura*, MP represents mesocarp of *Pisifera*, MT represents mesocarp of *Tenera*.

Supplementary Figure S7: Functional characterization of *EgDGAT1* and *EgDGAT2* in Arabidopsis.

The expression level of oil palm DAGT paralog is similar in these transgenic lines.

(A): Oil content analysis for *EgDGAT1* and *EgDGAT2* expression lines in Arabidopsis.

(B): Fatty Acid (FA) composition was analysed for Col-0, *EgDGAT1* and *EgDAGT2* expression lines in WT background.

С

Supplementary Figure S8: Functional characterization of *EgFATB1* and *EgFATB2* in Arabidopsis.

Col-0 35S:EgFATB1 #2

(A and B): Phenotypes of EgFATB1 expression in Arabidopsis. Size bar:10mm.

(C): Fatty Acid (FA) composition was analysed for Col-0, *EgFATB1* and *EgFATB2* expression lines in WT background. The expression level of oil palm *FATB* paralog is similar in these transgenic lines.

#Term	Database	ID	P-Value
colanic acid building blocks biosynthesis	ВіоСус	COLANSYN-PWY	0.002560546
choline biosynthesis I	ВіоСус	PWY-3385	0.003959964
DNA replication	KEGG PATHWAY	ath03030	0.007049678
Mannose metabolism	PANTHER	P02752	0.007566702
Fatty acid metabolism	KEGG PATHWAY	ath01212	0.009768289
phospholipid biosynthesis II	BioCyc	PHOSLIPSYN2-PWY	0.011253982
xylan biosynthesis	BioCyc	PWY-5800	0.012080739
Amino sugar and nucleotide sugar metabolism	KEGG PATHWAY	ath00520	0.015341161
phosphatidylethanolamine biosynthesis II	BioCyc	PWY4FS-6	0.017648576
superpathway of choline biosynthesis	BioCyc	PWY-4762	0.01874096
Fatty acid biosynthesis	KEGG PATHWAY	ath00061	0.018867899
Fructose and mannose metabolism	KEGG PATHWAY	ath00051	0.023247125
Protein export	KEGG PATHWAY	ath03060	0.025432248
Phagosome	KEGG PATHWAY	ath04145	0.026473654
superpathway of fatty acid biosynthesis II (plant)	BioCyc	PWY-5156	0.027667005
GDP-mannose biosynthesis	BioCyc	PWY-5659	0.02965234
fatty acid biosynthesis initiation I	BioCyc	PWY-4381	0.02965234
sphingolipid biosynthesis (plants)	BioCyc	PWY-5129	0.031534486
cellulose biosynthesis	BioCyc	PWY-1001	0.036814426
GDP-glucose biosynthesis	BioCyc	PWY-5661	0.036814426
UDP-glucose biosynthesis (from glucose 6-phosphate)	BioCyc	PWYQT-4437	0.04498809
Protein processing in endoplasmic reticulum	KEGG PATHWAY	ath04141	0.045155965
Glycerophospholipid metabolism	KEGG PATHWAY	ath00564	0.045665184
fatty acid beta-oxidation II (peroxisome)	BioCyc	PWY-5136	0.046299876
Purine metabolism	KEGG PATHWAY	ath00230	0.047628854

Supplementary Table S1: Enriched pathway by gene set in class 5 and 6 of Table 1 for endosperm.

#Term	Database	ID	P-Value
superpathway of carotenoid biosynthesis	BioCyc	CAROTENOID-PWY	0.0001227
cytokinins-O-glucoside biosynthesis	ВіоСус	PWY-2902	0.0071702
Carotenoid biosynthesis	KEGG PATHWAY	ath00906	0.0103129
methionine biosynthesis II	ВіоСус	PWY-702	0.0115112
Photosynthesis	KEGG PATHWAY	ath00195	0.019201
lutein biosynthesis	BioCyc	PWY-5947	0.0263469
salvianin biosynthesis	ВіоСус	PWY-5268	0.0263469
trans-lycopene biosynthesis II (plants)	BioCyc	PWY-6475	0.0263469
shisonin biosynthesis	ВіоСус	PWY-5284	0.0263469
Pentose phosphate pathway	KEGG PATHWAY	ath00030	0.0309417
pelargonidin conjugates biosynthesis	ВіоСус	PWY-5139	0.0342649
Metabolic pathways	KEGG PATHWAY	ath01100	0.0392
Selenocompound metabolism	KEGG PATHWAY	ath00450	0.0484728

Supplementary Table S2: Enriched pathway by gene set in class 5 and 6 of Table 1 for mesocarp.

		Dura	Pisifera	Tenera
1.5 MAF	C14:0	0±0	0±0	0±0
	C16:0	41.8±2.0	46.2±0.6*	42.8±5.7
	C18:0	9.4±0.5	10.4±0.4*	7.3±1.4*
	C18:1	13.1±0.5	13.4±2.5	12.1±1.3
	C18:2	27.1±1.5	26.5±2.2	33.2±3.0*
	C18:3	7.0±0.3	3.6±0.5*	4.6±1.2*
	others	1.5±0.2	0±0*	0±0*
	C14:0	1.3±0.9	0.5±0*	2.1±0.2
2.5	C16:0	42.0±1.0	47.2±0.1*	39.1±2.0
MAF	C18:0	9.7±0.5	7.0±0.5*	8.2±1.3
	C18:1	21.4±1.1	32.7±0.8*	19.0±0.8*
	C18:2	19.9±1.2	23.1±0.1*	24.2±0.5*
	C18:3	5.3±0.5	3.6±0.2*	6.4±0.3*
	others	0.3±0.1	0±0*	1.1±0.6*
	C14:0	0.9±0.1	0.6±0.1*	1.50±0.2*
3.5 MAF	C16:0	42.6±2.3	44.8±0.6	38.3±1.0*
	C18:0	6.5±0.3	4.7±0.2*	5.4±0.1*
	C18:1	35.4±3.2	32.7±0.8	34.5±0.6
	C18:2	12.5±1.1	17.1±0.4*	16.7±0.9*
	C18:3	0.4±0	0.3±0.1	2.1±0.1*
	others	0.3±0	0±0*	1.5±0.6*
	C14:0	1.1±0.1	1.2±0	1.7±0*
4.5	C16:0	43.7±3.2	45.3±0.6	54.3±1.8*
MAF	C18:0	4.0±0.2	5.1±0.1*	3.6±0.4
	C18:1	43.3±2.1	30.8±2.1*	33.4±2.7*
	C18:2	7.7±1.2	17.4±0.6*	7.0±0
	C18:3	0.3±0	0.3±0	0.2±0*
	others	0±0	0±0	0±0
	C14:0	1.3±0.1	0.6±0.1*	2.0±0.0*
5.5	C16:0	42.9±1.2	41.3±1.1	45.6±0.5*
MAF	C18:0	5.8±0.2	4.8±0.7*	4.3±0.1*
	C18:1	40.2±0.6	38.6±0.8*	38.0±0.1*
	C18:2	9.6±1.6	14.7±1.8*	9.5±0.3
	C18:3	0.2±0.1	0.2±0	0.3±0
	others	0±0	0±0	0±0

Supplementary Table S3: Fatty acid composition (mol%) of the developing endosperm of oil palm (months after fertilization, MAF). Data was presented as average of 3 fruit repeats \pm SD. The significance of the effect of the varieties was tested by t-Test (P values, *, P<0.05) when compared between *Dura* with either *Pisifera* or *Tenera*.

	IA	Dura	risijera	Ienera
15	C8:0	0±0	nd	0±0
1.5	C10:0	0±00	nd	0±0
MAF	C12:0	0.9±0.2	nd	0.1±0*
	C14:0	0.6 ± 0.1	nd	1.6±0.6*
	C16:0	34.6±3.6	nd	38.2±5.2
	C18:0	6.3±0.6	nd	4.3±0.9*
	C18:1	45.8±5.3	nd	41.9±6.2
	C18:2	11.4±1.6	nd	13.6±0.6
	C18:3	0.3±0.1	nd	0.3±0.1
25	C8:0	0.2±0.1	0±0*	0.3±0.1
2.5	C10:0	2.3 ± 0.2	3.9±0.2*	3.0±0.6
MAF	C12:0	30.2 ± 2.0	55.9±3.6*	32.1±2.8
	C14:0	12.3±1.9	20.0±1.4*	10.6±1.3
	C16:0	14.3±0.8	7.8±0.3*	13.7±0.5
	C18:0	2.5 ± 0.6	2.6 ± 0.6	3.2±0.3
	C18:1	30.9±1.2	7.7±1.2*	30.3±3.5
	C18:2	7.0±0.2	1.8±0.4*	6.6±0.6
	C18:3	0.3±0.1	0.2 ± 0.1	0.2±0.1
	C8:0	0.3±0.1	0±0*	0.6±0.5*
3.5	C10:0	5.1±0.8	3.0±0.6*	4.5±0.7
MAF	C12:0	58.2±4.8	50.2±5.1	50.9±6.3
	C14:0	15.7±1.1	16.9±2.1	18.8±1.5
	C16:0	6.7±1.2	8.5±0.8	8.0±1.6
	C18:0	1.6±0.3	2.2 ± 0.3	1.3±0.3
	C18:1	10.6±2.6	15.8±1.3*	12.8±3.1
	C18:2	2.0±0.5	3.5±0.4*	2.8±0.7
	C18:3	0.1±0	0.2±0*	0.2±0.1
	C8:0	0.2±0	0±0	1.1±0.6*
4.5	C10:0	4.7±0	2.4±0.5*	5.0±0.4
MAF	C12:0	57.3±0.3	50.7±3.1*	56.1±2.1
	C14:0	16.5±0.3	19.3±1.6*	17.7±0.3*
	C16:0	6.9±0.1	9.8±0.4*	6.5±0.5
	C18:0	1.6±0	1.3±0.2*	1.3±0.1
	C18:1	11.3±0.1	13.5±0.6*	10.6±0.9
	C18:2	1.7±0	2.7±0.1*	1.5±0*
	C18:3	0.1±0	0.2±0.1	0.2±0*
	C8:0	0.2±0	0.9±0.2*	0±0*
5.5	C10:0	4.4±0.1	4.4 ± 0.7	4.1±0.2
MAF	C12:0	51.9±0.2	57.2±1.4*	50.0±2.0
	C14:0	18.1±0.1	17.5±0.8*	18.6±0.9
	C16:0	8.4±0.1	6.2±0.8*	8.2±0.9
	C18:0	1.8±0	1.1±0.1*	1.7±0.1
	C18:1	13.0±0.1	11.1±0.6*	13.7±0.4
	C18:2	2.4±0	1.3±0*	2.5±0.2
	C18:3	0.1±0	0.3±0.1*	0.1±0

Digitar

Supplementary Table S4: Fatty acid composition (mol%) of the developing mesocarp (months after fertilization, MAF). Data was presented as average of at least 3 fruit repeats \pm SD. The significance of the effect of the varieties was tested by t-Test (P values, *, P<0.05) when compared between *Dura* with either *Pisifera* or *Tenera*.

Tenera VS Dura	Total No. (UP: Down), Ratio of UP/Down in Endosperm	Total No. (UP: Down), Ratio of UP/Down in Mesocarp
Whole transcriptome	59078 (3364:2789), 1.2	59078 (8300:616), 13.5
Total in FA pathway	338(36: 20), 1.8	338 (51: 1), 51
Plastidial Fatty Acid Synthesis	57 (10: 1), 10	57 (7: 1), 7
TAG Synthesis	22 (1: 1), 1	22 (0: 0)
Extra Plastidial Phospholipid Synthesis	52 (11: 1), 11	52 (8: 0)
Other Fatty Acid and TAG Synthesis Related Genes	20 (0: 2), 0	20 (3: 0)
Plastid Polar Lipids	33 (0: 2), 0	33 (12:0)
Mitochondrial Lipid Synthesis	23 (1: 2), 0.5	23 (4:0)
Sphingolipid Synthesis	42 (6:1), 6	42 (4:0)
oleosin	4 (0: 1), 0	4 (0: 0)
Lipase	55 (5:5), 1	55 (10:0)
β-Oxidation	42 (2:4), 0.5	42 (5: 0)
Glycolysis	131 (17:13), 1.3	131 (20:2), 10
Glycolysis (plastid)	55(5:5), 1	55 (7:2), 3.5

Supplementary Table S5: Summary of up- or down-regulated genes when compared the expression level of *Tenera* against *Dura*. Assumed at least 2 folds change as up- or down-regulated genes.

Gene	Sequence (5'-3')	Purpose
EgWRI1-1	AATAAGTCGACATGAAGAACTCTCCTCCTCTACT	Plant expression
	TTAATTCTAGACTAGGCACCTTTGCTTGCACTGAAACCA	Plant expression
EgWRI1-3	AATAAGTCGACATGAAGAAATCTCCTCCTCCTCC	Plant expression
	TTAATTCTAGACTAAGAGCATATACTAATCTGAAGGGGGT	Plant expression
EgDGAT1	AACAAGTCGACATGGCGGTCTCGAAGAATCCAGAAA	Plant expression
	GATCTGGATCCCTCTGTTCCCACTTTTCTGTTCAT	Plant expression
EgDGAT2	AGCGCGTCGACATGGGGGCAGAATTCTGTCTCTCTCT	Plant expression
	AGTCTGGATCCTAAAACTCTCAAACGAAAAT	Plant expression
EgFATB1	AGACAGTCGACATGGTTGCTTCGATTGTCGCTTGGGCCTTTTT	Plant expression
	TTATTCTAGATCAAGCACTTCCAGCTGAAGTGGGA	Plant expression
EgFATB2	AGATGTCGACATGGTTGCTTCAATTGCCGCCT	Plant expression
	TTATTCTAGATCATGCACTACCACCTGGAGTTGG	Plant expression
EgFATB3	AATACAGTCGACATGGTCGCCTCCGTTGCTGCCTC	Plant expression
	TTATTTCTAGAT _T ATCATTTAGTCTCAGTTGGGAGCA	Plant expression
EgWRI1-1-F	GTCTACAAGCATCGCCTACAG	qRT-PCR
EgWRI1-1-R	CAGGTCGTAATTTGGCATGGT	qRT-PCR
EgWRI1-2-F	ACCTTCGACAAGGACCATGA	qRT-PCR
EgWRI1-2-R	TGTCCTGTCCATGGCAGCCTG	qRT-PCR
EgWRI1-3-F	GGACACCAGGAGTTTAGCCCA	qRT-PCR
EgWRI1-3-R	ATTCTTCCATGCTAATGATAC	qRT-PCR
EgEF1F	CCTGTGCTTGATTGCCAC	qRT-PCR
EgEF1R	GTCTCAACCACCATAGGC	qRT-PCR

Supplementary Table S6: List of primers used in this study.