Supplementary Information: ## Inhibition of serum and glucocorticoid regulated kinase-1 as novel therapy for cardiac arrhythmia disorders Vassilios J. Bezzerides^{1,2}, Aifeng Zhang^{1,5}, Ling Xiao⁵, Bridget Simonson^{1,5}, Santosh A. Khedkar^{1,3}, Shiro Baba⁶, Filomena Ottaviano¹, Stacey Lynch⁴, Katherine Hessler¹, Alan C. Rigby^{1,4}, David Milan⁵, Saumya Das^{1,5*} and Anthony Rosenzweig^{1,5*}. - 1. Beth Israel Deaconess Medical Center, Boston, MA. - 2. Boston Children's Hospital, Department of Cardiology, Boston, MA. - 3. Current address: ChemBio Discovery Solutions, Lexington, MA. - 4. Warp Drive Bio Inc., Cambridge, MA. - 5. Massachusetts General Hospital, Boston, MA. - 6. Graduate School of Medicine Kyoto University, Kyoto City, Japan. ^{*:} These authors contributed equally to the work. Supplemental Figure 1: Inhibition of SGK1 activity by additional SGK1 inhibitor compound 6410136 in cardiomyocytes Supplemental Figure 2: Increase in hERG tail currents with SGK1 inhibitor. Representative traces from HEK cells expressing hERG either pre incubated for 5 minutes with $\bf A$. DMSO or $\bf B$. SGK1 inhibitor 5377051. $\bf C$. Combined tail current data from $\bf n$ = 3-4 cells per condition, using voltage protocol as shown in inset in $\bf A$ and measured as indicated.