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Figure S1. Related to Figure 1-2. Average DT correlations between all possible genealogical relationships 

across the whole dataset. The mother and daughter DT measurements from all 41 experiments were first 

transformed to within-distribution z-score values. In this way, cells growing faster than the average have 

negative z-scores, and vice versa.  

(A) Genealogical relationships of mother and daughter cells which were tracked within microcolonies 

using time-lapse microscopy. The DTs which were scored are indicated by accolades, and the 

annotations are the same as in Figure 1A. Within one lineage (microcolony) starting from one single 

cell, two consecutive mother DTs, and two daughter DTs are scored. Note that the first cell can start out 

either as a mother or a daughter cell, but is a mother cell (by definition) when its first DT is scored. 

(B-G) The DT z-scores were then grouped per category (mDT1,mDT2,dDT1,dDT2) without accounting 

for the different number of DTs scored between the different experiments, and correlations between all 

possible genealogical relationships were plotted. First, scatter plots of DT z-scores of a mother and her 

most recently born daughter are shown ((B) 𝑑𝐷𝑇1,𝑧𝑠𝑐𝑜𝑟𝑒  vs. 𝑚𝐷𝑇1,𝑧𝑠𝑐𝑜𝑟𝑒  and (C) 𝑑𝐷𝑇2,𝑧𝑠𝑐𝑜𝑟𝑒  vs. 

𝑚𝐷𝑇2,𝑧𝑠𝑐𝑜𝑟𝑒). Note that these data were combined to produce Figure 2D. Next, the scatter plot of z-

scores of consecutive mother DTs is shown in (D). Finally, the remaining correlations are plotted: (E) 

𝑑𝐷𝑇1,𝑧𝑠𝑐𝑜𝑟𝑒  vs. 𝑑𝐷𝑇2,𝑧𝑠𝑐𝑜𝑟𝑒, (F) 𝑚𝐷𝑇1,𝑧𝑠𝑐𝑜𝑟𝑒  vs. 𝑑𝐷𝑇2,𝑧𝑠𝑐𝑜𝑟𝑒  and (G) 𝑚𝐷𝑇2,𝑧𝑠𝑐𝑜𝑟𝑒  vs. 𝑑𝐷𝑇1,𝑧𝑠𝑐𝑜𝑟𝑒. The 

number of data points (N) is respectively 1408, 1282, 1362, 1279, 1299 and 1338 pairs of DTs. 

(H) Histogram of all mother DT z-scores represented in Figure 2D (N=2690). 

(I) Histogram of all daughter DT z-scores represented in Figure 2D (N=2690).  

(J) The data points shown in Figure 2D were binned on the x-axis (𝑚𝐷𝑇1/2,𝑧𝑠𝑐𝑜𝑟𝑒) in 19 equally sized 

bins, and normal distributions were fitted to the resulting y-axis values in each bin (𝑑𝐷𝑇1/2,𝑧𝑠𝑐𝑜𝑟𝑒). (left) 

Mean and (right) SD of these fitted distributions were plotted against the mid of each bin.  
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Figure S2. Related to Figure 3. The stochastic growth model takes into account epigenetic DT inheritance.  

(A) Three characteristic scenarios that describe how different extents of correlation (R²) can arise between 

two normally distributed DT distributions. This figure gives a visual representation of how new DT are 

chosen (in)dependent on previously assigned DTs in the stochastic model. In these examples, we start 

out with an initial set of standard normally distributed values, defined as the input distribution. For each 

of these values, a new value is chosen individually using a transfer function. In the end, this should 

result in a new set of standard normally distributed values, defined as the output distribution. (A) No 

correlation between input and output distributions. (B) An imperfect correlation between input and 

output distribution, with an R² between 0 and 1. (C) A perfect correlation between input and output 

distribution. 

(B) The limiting condition that we impose on the transfer function, is that when provided with a series of 

normally distributed input DTs, it should return a series of output DTs matching the experimentally 

observed DT distribution (also see (A)). These plots represent the results of stochastic simulations that 

show that our transfer function follows these requirements under certain parameter combinations. 

Furthermore, it allows us to quantitatively determine how combinations of our parameters 𝜎𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 and 

𝐴 lead to different extents of correlation (R²) between the input and output distributions. For each data 

point represented in the heat maps, a set of 10 000 𝐷𝑇𝑖𝑛𝑝𝑢𝑡,𝑧𝑠𝑐𝑜𝑟𝑒 sampled from a standard normal 

distribution were used as an input to acquire respectively 10 000 𝐷𝑇𝑜𝑢𝑡𝑝𝑢𝑡,𝑧𝑠𝑐𝑜𝑟𝑒 using the Supplemental 

equations 11-13. The values for 𝜎𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟  and 𝐴 were systematically varied (from 0 to 1.1 in steps of 

0.01) and the outcome evaluated by calculating (i) the mean, (ii) SD and (iii) normality (p-value using 

Kolmogorov Smirnov-test) of the resulting 𝐷𝑇𝑜𝑢𝑡𝑝𝑢𝑡,𝑧𝑠𝑐𝑜𝑟𝑒  distributions. Finally, the correlation (R²) of 

the 𝐷𝑇𝑜𝑢𝑡𝑝𝑢𝑡,𝑧𝑠𝑐𝑜𝑟𝑒’s against their respective 𝐷𝑇𝑖𝑛𝑝𝑢𝑡,𝑧𝑠𝑐𝑜𝑟𝑒’s is shown in (iv). These four parameters 

were plotted as heat maps, with the vertical and horizontal axes representing the parameters 𝜎𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟  

and 𝐴 respectively. The black circles in each panel represent the simulations which led to a mean of 0 

(+-0.03) and SD of 1 (+-0.005) in the resulting 𝐷𝑇𝑜𝑢𝑡𝑝𝑢𝑡,𝑧𝑠𝑐𝑜𝑟𝑒  distributions. 

(C) The epigenetic DT relationships that are incorporated in our model are visualized. The left panel shows 

the situation of a mother cell dividing, and the right panel of a daughter cell dividing. The black striped 

arrows show how the z-score of a new DT is chosen. From each newly assigned z-score, the DT is 

calculated based on the parameters of the normal distributions which were experimentally determined 

using time-lapse microscopy (Figure 1 and Dataset S2). The parameters 𝜎𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟  and 𝐴 were 

determined for the correlations (R²) shown in Figure 2D and Figure S1D using Supplemental equations 

14 and 15. The specific values of these parameters shown here thus correspond to the average DT 

correlations across all experiments. 
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Figure S3. Related to Figure 3. The model’s predictions closely match experimental measures of 

population growth rate. 

(A) The predicted population growth rates are analyzed for their ability to predict the measured population 

growth rates. Growth rates were predicted using the three variants of the model (modeldeterm, 

modelstoch,no-epig and modelstoch,epig), and measured on solid media (by tracking either the area or cell 

count increase) and in liquid medium (using colony counting). The correlation was calculated using the 

Pearson correlation coefficient (R) and the inaccuracy was calculated using the mean squared error. 

(B) Modeled population growth rates (modelstoch,no-epig) are correlated with growth rates measured on solid 

media in two different ways. The blue open circles show the same data as in Figure 3B, and represent 

the correlation with the growth rates measured by tracking the increase in cell count within the 

microcolonies. The filled grey circles show the correlation with growth rates measured by tracking the 

increase in microcolony area.  

(C) This panel shows how the increase of area and cell count within the same microcolonies for one specific 

experiment, namely BY/S288c growing in maltose 20%. 
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Figure S4. Related to Figure 4. The validity of the use of normal distributions in the model and the 

legitimacy of our approach to measure its parameters. 

(A) DT variance increases population growth rate in simulations of growth driven by (left) the empirical DT 

distribution, (middle) Gamma DT distributions and (right) Pearson system DT distributions. Similar to 

Figure 4A, the ratio of predicted population growth rates of modelstoch,no-epig over the deterministic model 

is plotted against the daughter DT CoV for all experiments in the dataset. In contrast to Figure 4A, 

simulations were performed using sampling distributions that differ from normal distributions. Error 

bars represent bootstrapped SDs (Supplemental Experimental Procedures).  

(B) Skewness and kurtosis in the model-sampling distribution can affect the population growth rate 

predictions. The effect of skewness and kurtosis was modeled using Pearson system distributions. This 

is a family of probability distributions that allow the construction of distributions given a combination 

of the mean, variance, skewness and kurtosis. All simulation were performed using mother DT mean = 

daughter DT mean = 4, and mother DT SD = daughter DT SD = 2. The black diamonds represent the 

skewness and kurtosis values that were observed in our dataset (Dataset S1). Normal distributions have 

skewness = 0 and kurtosis =3.   

(C) Population growth rates were simulated for all experiments in the dataset with the deterministic model 

using a range of different averages (the median and the arithmetic, geometric, harmonic, quadratic and 

cubic mean). These averages were taken directly on the DT measurements, or after converting them to 

‘growth rate’-values [using growth rate = ln(2)/DT] followed by conversion of the average back to a 

DT-value. We assessed which mean would best predict population growth, by calculating the mean 

squared error (left) and mean error (right) compared to the stochastic model. Importantly, the arithmetic 

mean of the ‘growth rate’-values of the sampling distribution overestimates the population growth rate, 

since the steady-state distribution is enriched with slowly-growing cells (see Results and Supplemental 

Experimental Procedures). This analysis also indicates that the geometric mean of the single-cell DTs or 

ln(2)/DT’s are good predictors of population growth rate under a deterministic model. 

(D) and (E) The legitimacy of using our experimentally measured DT parameters as the model’s 

parameters. Three different DT distributions can be described in the stochastic model: the 

(model
_
)sampling, the steady-state and the experimental distribution (see Supplemental Experimental 

Procedures for definitions). All simulations were performed using the experimentally measured 

parameters from BY/S288c growing in palatinose 2%. (D) The three cumulative DT distributions under 

our model without epigenetics (modelstoch,no-epig). The experimental and the model-sampling distribution 

are equal by definition, since the model explicitly assumes that all newly-assigned DTs are independent 

of the previously assigned DTs. The steady-state distribution is enriched for cells that have been 

assigned a long DT. (E) The three cumulative DT distributions under the model including epigenetics 

(modelstoch,epig). When taking into account epigenetic inheritance, the steady-state and model-sampling 

distributions become more similar to each other. In contrast to the model without epigenetics, there is a 

slight difference between the model-sampling and the experimental distributions. 
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Figure S5. Related to Figure 5. Epigenetic inheritance and single-cell DT variability both increase 

population growth rate predictions when epigenetic effects are modeled. 

(A-B) Predicted population growth rates using the model with average epigenetic DT inheritance across 

all experiments. The R² of the DT correlations used in these simulations were average correlations 

across all experiments (Figure 2D and Figure S1). (A) Fractional growth rate compared to the 

deterministic model is plotted against variability in daughter DT distributions, for 1) the model without 

epigenetics (purple circles; as reference) and 2) the model with epigenetics (orange triangles). (B) The 

fractional growth rate increase when epigenetic effects are considered is plotted against variability in 

mother (blue) and daughter (red) DT distributions. 

(C-D) Predicted population growth rates using the model with individual (per experiment) epigenetic 

DT inheritance. The R² of the DT correlations used in these simulations were calculated for each 

experiment individually (Figure 5A). (C) Fractional growth rate compared to the deterministic model is 

plotted against variability in daughter DT distributions, for 1) the model without epigenetics (purple 

circles; as reference) and 2) the model with epigenetics (orange triangles). (D) The fractional growth 

rate increase when epigenetics effects are considered is plotted against 1) the correlation between 

consecutive mother DTs (red) and 2) the correlation between a mother and its most recently born 

daughter (blue). 
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Figure S6. Related to Figure 3. Modeling microcolony growth rate variability: incorporating cell-cycle 

dependent single-cell growth into the model.  

(A-B) The stochastic model accurately predicts microcolony growth rate variability at small population 

sizes. All the model’s predictions were done using the individual (per-experiment) epigenetic DT 

inheritance. (A) Predicted vs. experimentally determined microcolony growth rate variability (as 

coefficient of variation; CoV) using the model (with or without epigenetics). (B) When epigenetic DT 

inheritance is high, the model’s predictions are more accurate when epigenetic effects are modeled. 

Shown are boxplots for the experimental conditions with the lowest and highest mother-daughter DT 

correlations. Each data point is the Anderson-Darling (AD) statistic of a comparison between the 

empirically observed microcolony growth rate distribution compared to the purely stochastic model’s 

prediction minus the same test performed against the stochastic-epigenetic model’s predictions (all 

growth rates normalized to the median growth rate within the distribution). Note that positive values of 

ADstoch,no-epig-ADstoch,epig indicate a better fit when epigenetic effects are considered in the model. 

(C-D) To model microcolony growth rate variability in (A), the model was extended to also take into 

account cell-cycle dependent single-cell growth (see Supplemental Experimental Procedures). The 

following empirical relationships were used to stochastically model the length of the unbudded and 

budded period in each single cell. (C) The mean and (D) SD of the unbudded period is plotted as 

function of the total DT for mother (blue) and daughter (red) cells. Mean and SD were calculated using 

a sliding window of 50 observations, after sorting the data points from smallest to largest DT. The 

number of observations for mother and daughter cells was respectively 693 and 2547.  



Supplemental Experimental Procedures 

1 Yeast strains and growth media 

1.1  Yeast strains and growth media used (extended) 
The specific strain and media combinations used for the 41 experiments in our dataset can be found in Dataset 

S1. Several experiments were performed using BY/S288c-derived strains [S1]. These include the strains AN148 

and AN296, both of which were derived from a specially engineered maltose-prototrophic S288c strain, in which 

a functional MAL regulator allele was introduced in place of MAL13 on chromosome VII starting from the 

strain BY4741 [S2]. Furthermore, in these strains, the high petite frequency that occurs after extended growth on 

glucose, which is characteristic to S288c, was reduced by rescuing a frameshift mutation in SAL1 [S3]. And 

finally, a constitutive YeCitrine marker was introduced into AN296; and fusion constructs of MAL11-YeCitrine 

(encoding a maltose transporter) and MAL12- mCherry (encoding a maltase) were introduced into AN148. 

Another strain used in our experiments, AN146, was constructed by crossing a low-petite frequency S288c-strain 

(made low-petite frequency as described above) with a maltose-prototrophic (made maltose-prototrophic as 

described above) derivate strain of UCC8363 [S3]. 

The strains AN148 and AN296 were used as progenitor strains in separate experimental evolution experiments in 

[S4], resulting in a series of isolates with altered growth characteristics Some of these isolates were included in 

our experimental dataset (Dataset S1). The progenitor AN296 gave rise to an isolate called AN296_1 (evolved 

isolate 1 in Figure 3 of [S4]). The progenitor AN148 gave rise to the isolate AN148_pop6r6 (evolved isolate 5 in 

Figure 3 of [S4]) and a series of isolates coming from 12 independently evolving populations. The latter were 

termed AN148_x.y with x representing the population and y representing the first, second or third isolate from 

this population [S4]. 

1.2  Strain construction details 
For the flow cytometry analysis shown in Figure 6B, the following strains were constructed. The wild-type (WT) 

strain BY4741 [S1], was used to construct the fluorescently tagged strain KP30, which contains fusion constructs 

of MAL11-mCherry and IMA1-yECitrine. Similarly, the WT strain was used to construct KP4, a strain which 

contains the same fusion constructs, but also an extra copy of MAL11 expressed from a GPD promoter that was 

introduced in a neutral locus in the genome (chromosome XIII in between ATG16 and YMR158C-A; coordinates: 

574155-573795). For the experiments shown in Figure 6C, the WT strain was compared with a strain (KP198) 

only bearing the MAL11 overexpression, without the fluorescent protein fusions. 

Strain list for strains used in Figure 6. Primers and plasmids used for construction of the strains are listed. 

Strain 

Number 

Parental 

Strain 

Genotype 

difference 

with 

parent 

Forward 

Primer for 

Amplification 

Reverse 

Primer for 

Amplification 

Template Check 

Primer 1 

Check 

Primer 

2 

Selection 

Marker 

BX1 BY4741 IMA1-

yECitrine 

KP6 KP7 pKT139 

(Euroscarf) 

KP1 KP8 HIS5 

KP30 BX1 MAL11-

mCherry 

AN14 AN15 pSR101 

[S2] 

KV1203 KV69 URA3 

KP198 BY4741 pGPD-

MAL11 

KP85 KP86 gDNA 

AN104 

[S4] 

KP17 KV69 KAN 

BX20 KP198 IMA1-

yECitrine 

KP6 KP7 pKT139 

(Euroscarf) 

KP1 KP8 HIS5 

KP4 BX20 MAL11-

mCherry 

AN14 AN15 pSR101 

[S2] 

KV1203 KV69 URA3 

 

Sequences of primers used for strains used in Figure 6. 

Primer 

Name 

Sequence 

KP6 gaggtagatgcctcttccagaacattgaagccatgggaaggaagaatatatatcagcgaaATCGGTGACGGTGCTGGTT  

 



KP7 ctaaaacatcacttttgtagggtttcttcgcacattatcattattattctttgagaatacGAATTCGAGCTCGTTTAAACTGG    

KP8 attcatcgttcaagttagagtttgg 

KP1 taagtagcatcaccttcaccttc 

AN14 gagagtatcagtcagtcctcaagcataaaacagcgagaattaaatgcagctgataaatgtATCGGTGACGGTGCTGGTTT 

AN15 tttgggagcagtcaaagggattccttatttcttccaaaaaaaaaaaaacaacccttttacgcATAGGCCACTAGTGGATCTG 

 

KV1203 ggcttgagggacatacagaga 

 

KV69 gcacgtcaagactgtcaagg 

KP85 ccactcacgccaatatactaaccaattgaaatgctcataaccagaatgaacaggccgcatgcattc 

CGTACGCTGCAGGTCGAC 

KP86 gtatcttgagagaaactcaatagtaataactggatgcataaagaaaatttcatatgaatcactac 

GTTGTTCGAATCAATATCCAGGCAC 

KP17 tcagcgagaggatcagcaac 

 

2 Time-lapse microscopy: movie acquisition and analysis 

2.1 Acquisition of time-lapse movies (extended) 
The acquisition of the movies was done automatically using the NIS-Elements software (version 3.2) in 

combination with a Nikon Eclipse Ti microscope equipped with a DL-604M-#VP camera (Andor
TM

 technology) 

placed in a temperature-controlled incubator (30°C). All movies were captured using a 60x 1.4 NA oil 

immersion lens, and proper focus of the images was controlled using the microscope’s automated Z-plane 

focusing. The time interval with which pictures were taken was based on the population growth rate of the 

examined strains, and ranged from 3 (very fast growth) to 20 (very slow growth) minutes. 

2.2 Analysis of single-cell DTs (extended) 
Within one microcolony starting from a single cell, we were generally able to measure two mother DTs and two 

daughter DTs, before the cells within the microcolony became too dense to be scored (Figure 1A). All DTs were 

measured by scoring the time period between cell divisions (a cell division causes the bud to become physically 

separated from its mother leading to a sudden shift in its position). In addition, we also scored unbudded and 

budded periods for daughter cells, by scoring the time of first bud appearance. This allows a division of the DT 

into an unbudded and a budded period (Figure 1A). The extent to which human error introduces noise is limited, 

as separate investigators independently replicated results of preliminary analyses. 

Per experiment, we have calculated mean, SD, CoV, skewness and kurtosis for mother and daughter DT 

distributions using a bootstrapping (resampling) approach. Raw DT data were resampled 1000 times with 

replacement using an N that equals the total number of DT observations in each specific experiment. For each 

resampled population of DTs, a Normal distribution was fitted in MATLAB using the fitdist() function, and 

mean, SD and CoV were extracted. The skewness and kurtosis were calculated in MATLAB using the functions 

skewness() and kurtosis(), in both cases correcting for sample bias by setting flag=0. For each parameter, the 

‘bootstrapped mean’ and ‘bootstrapped SD’ were calculated. These ‘bootstrapped SD’-values were used to 

generate error bars in Figures 2A,C and Figures 4A and S4A. 

For 21 out of 41 experiments, we have scored the unbudded period of mother cells (not shown in Figure 1A) in a 

similar fashion, by scoring the bud appearance in the 1
st
 and 2

nd
 daughter cell after its first cell division. At this 

point, these cells have already undergone one cell division, and have thus effectively become a mother cell. 

All the above raw data and statistics calculated can be found in Dataset S1 for all 41 strain/condition 

combinations used in our dataset, and the results shown exclusively in Figure 6C.   

2.3 Fitting distributions to DT data and testing goodness-of-fit 
To develop a single-cell-based model for population-level growth that is capable of incorporating the effect of 

single-cell heterogeneity, we examined how to best mathematically approximate the measured DT distributions.  

First, different probability distributions were fitted to the DT data. All mother and daughter DT measurements 

were grouped per experiment, and Normal, Gamma, Weibull, Log-logistic, Log-normal and Exponential 

distributions were fitted to them using a bootstrapping (resampling) approach. In short, the DT data were 



resampled 1000 times with replacement at full population size and distributions were fit using the fitdist() 

function in MATLAB (Dataset S2A). 

Next, the goodness-of-fit was examined for the different fitted distributions (Normal, Gamma, Weibull, Log-

logistic, Log-normal and Exponential). For each bootstrapped set of DTs, Anderson-Darling Tests for goodness-

of-fit of the different fitted distributions (see above) were performed using the function adtest() in MATLAB. As 

the DT data was resampled 1000 times per experiment, this led to 1000 p-values per experiment per type of 

distribution. To assess whether a certain distribution gave a good fit with our experimental data, an average p-

value was calculated as the mean of these 1000 ‘bootstrapped p-values’ (Dataset S2B). 

We found that for the vast majority of strain/condition combinations, a Normal distribution provides a good fit 

(Bonferroni corrected p-value>0.05 for 39 of 41 mother DT distributions, and 41 of 41 daughter DT 

distributions). Only the Gamma distribution provides a marginally better fit (Bonferroni corrected p-value>0.05 

for 40 of 41 mother DT distributions, and 41 of 41 daughter DT distributions; Dataset S2B). 

Since the Normal distribution is a probability distribution with very intuitive parameters, we decided to model 

population growth using the stochastic models under the assumption that the DT distributions are well described 

using Normal distributions. However, since Gamma distributions fit our experimental data marginally better than 

Normal distributions, and some of the DT distributions show a clear positive skew (Figure S4B), we investigated 

how deviations for normality influenced the population growth rate predictions (see Results section and Figure 

S4A-B). 

3 Empirically measuring population growth rates 

3.1 Measuring population growth rates on solid media 
Populations growth rates on solid media were measured as the increase of cell count (Figure 3B) or microcolony 

area (Figure S3B) over time. Per time-lapse movie, microcolonies were analyzed by measuring the cell count (or 

area) at three evenly spaced time-points throughout the movie, in such a way that the total area of the 

microcolonies increased between 2-18 fold from the first timepoint to the last (Dataset S3,5). Next, the cell count 

(or area) of all the microcolonies at each timepoint was summed and the microcolony growth rate was calculated 

as the slope of a linear model fitted to the ln-transformed summed cell count (or area) plotted against time 

(Dataset S3). We measured the microcolony area by fitting regions of interests around the microcolonies using 

the NIS-Elements software. The number of cells (each visible cell shape, including buds) within the 

microcolonies was scored manually.  

3.2 Measuring population growth rates in liquid media 
Growth rates in liquid culture (Figure 3C) were measured using colony counting. Strains were inoculated into 

glass tubes containing 3mL of the appropriate medium and grown overnight to turbidity in a spinning wheel at 

30°C. The next day, a dilution series was made from the overnight cultures into a microplate and incubated on a 

plate shaker at 30°C. After 6 hours of adaptation to diluted growth conditons, dilutions within the OD600 range of 

0.1 to 0.3 were taken and inoculated into a falcon tube containing 3mL of medium so that they would still be 

dilute the next day. Colony forming units were used to determine population sizes. These colony forming units 

were obtained immediately after dilution into the falcon, and finally after 16-24 hours of growth. Growth rates 

were calculated as 
(ln〈𝑝𝑜𝑝.𝑠𝑖𝑧𝑒𝑓𝑖𝑛𝑎𝑙 𝑝𝑜𝑝.𝑠𝑖𝑧𝑒𝑖𝑛𝑖𝑡𝑖𝑎𝑙⁄ 〉)

(𝑡𝑓𝑖𝑛𝑎𝑙−𝑡𝑖𝑛𝑖𝑡𝑖𝑎𝑙)
 . 

4 Predicting population growth rates 

4.1 Predicting population growth rates using the stochastic model (extended) 
The model keeps track of mother and daughter cells in two matrices, with each row containing one cell and each 

column keeping track of a single-cell parameter. At birth or after the completion of a bud, each cell is assigned a 

new DT which is dependent on the experimentally measured DT variance and DT correlations within lineages 

(see Results, Figure 3A and below). The first parameter that the model keeps track of is the time tau remaining 

for completion of the cell’s bud. The second parameter is the last DT that was assigned to that cell. The model 

iterates with respect to time (in steps of 0.001h), subtracting the elapsed time t from each cell’s tau value. When 

a cell’s tau equals zero, a new daughter is born, which then enters into the daughter compartment with a tau 

equaling the newly assigned DT. After producing a new daughter, daughter cells enter the mother matrix 

whereas mother cells simply remain within this compartment. Simultaneously, these cells are assigned a tau 

equaling the newly assigned DT. 



In order to simulate exponential population growth, we grow the cells (in silico) in the following way. First, a 

population of 10,000 cells is grown starting from 1 mother and 1 daughter cell. Next, we randomly pick 100 cells 

from this population and grow them to a size of 100,000. In this way, we reach a steady-state at the end of the 

simulation, independent of the initial starting population. We then calculate instantaneous growth rates across the 

whole growth curve by calculating the growth rates over windows of 10 min. Finally, the population growth rate 

is calculated by averaging the instantaneous growth rates measurements acquired during the last hour of growth 

before the population reaches 100,000. The script for the stochastic model(s) is written in the MATLAB 

language (MATLAB version 8.1.0). 

In some cases, the simulations have difficulties converging to a stable steady-state when starting from an initial 

population containing 1 mother and 1 daughter cell. This occurs when the DT variability is not large enough to 

‘desynchronize’ growth within the population, leading to staggered or synchronized growth patterns. This 

phenomenon occurs when the simulations are performed using the empirical DT distributions (Figure S4A), or 

when the CoV in both the mother and daughter DT distributions is lower than 10% (Figure 4B). Therefore, in 

these specific cases, we have started the simulations using initial population consisting of 100 mother and 100 

daughter cells, which are given initial tau’s ranging from 0 until the mean DT in equal steps of (mean DT)/100. 

This approach allows the simulations to reach a steady-state growth rate, when the DT variability is too low. 

All growth rate predictions of the stochastic model were obtained using a bootstrapping (resampling) approach. 

The raw DT measurements were resampled with replacement at their full size and Normal distributions were 

fitted to them using fitdist() in MATLAB. The means and SDs of these distributions were then used as 

parameters for the simulations, and growth rates were obtained as explained above (as the average of 3 repeated 

simulations). For each experiment, resampling was repeated 100 times, leading to means and SDs for the 

simulated growth rates. These ‘bootstrapped SD’-values were used to generate error bars in Figures 3B-C, 4A, 

S3B and S4A. 

The simulations using other distributions than the Normal distribution (Figure S4A) were obtained using the 

same bootstrapping approach. However, when using Gamma distributions, the fitdist() function was used to 

extract the shape and scale parameters. When using Pearson system distributions, the first four statistical 

moments were calculated using the mean(), var(), skewness() and kurtosis() functions, with corrections for 

sample bias by setting flag=0 in the case of skewness and kurtosis. Finally, when using the empirical DT 

distributions, we did not fit statistical distributions, but sampled directly from these distributions during the 

simulations. 

4.2 Predicting population growth rates using the deterministic model 

(extended) 
Population growth rate predictions using the deterministic model were calculated in parallel using the same 

bootstrapping approach as used for the stochastic model (see above), using the same resampled DT distributions. 

4.3 Simulations of selection for mutants with altered DT characteristics using 

the stochastic model. 
We have used the stochastic model (without epigenetics) to test if cells that acquire a mutation leading to a 

higher fitness (predicted growth rate) can rise in frequency in the population due to selection. Specifically, we 

tested if the efficacy of selection is dependent on whether the fitness increase occurs through changes in the DT 

mean or DT noise. Three hypothetical strains were used in these simulations: 1) The wild-type strain (WT), or 

the background population in which spontaneous mutants can arise, 2) The “variable-mutant” genotype 

(VarMut), which has increased fitness compared to the WT, due to increased DT noise, while keeping the mean 

DTs unchanged, and 3) The “homogeneous-mutant” genotype (HomMut), which has similarly increased fitness 

compared to the WT, due to shorter mean DTs, while keeping the noise (CoV) constant.  

The DT parameters used for the WT are mother DT ~ N(2,0.1) and daughter DT ~ N(4,0.1). The DT parameters 

used for the VarMut are mother DT ~ N(2,0.3) and daughter DT ~ N(4,0.3). The DT parameters used for the 

HomMut are mother DT ~ N(1.937,0.1) and daughter DT ~ N(3.874,0.1). The predicted population growth rates 

of the three strains are respectively 0.241±0.001, 0.249±0.001 and 0.249±0.001 for the WT, VarMut and 

HomMut. Note that the single-cell parameters of the VarMut and the HomMut were picked in such a way that 

they exhibit the same fitness increase compared to the WT (fitness[VarMut]=fitness[HomMut]=1.032). 

Using these mutants, we examined the probability of fixation and extinction of spontaneously arising mutant 

cells in a population of wild-type cells. Specifically, we simulated growth of a population of WT cells seeded 



with 1 mutant cell. Initially, we started with exponentially growing populations of 1000 WT cells seeded with 1 

mutant cell. Each time the total population reached 2000 cells, it was diluted again by random sampling to 1000 

cells. The simulations were stopped either when the mutant genotype reached 10% fixation, when the mutant 

genotype became lost from the population, or after 1000h of growth when none of the two previous events 

occurred. All strains from were competed against the WT for 10 000 repeated simulations (WT vs. WT, VarMut 

vs. WT, HomMut vs. WT). Under these conditions, we find that the “variable-mutant” genotype and the 

“homogeneous-mutant” genotype have very similar chances of becoming fixated in the population. More 

specifically, the VarMut and the HomMut respectively have a chance of 7.53% and 7.94% to become fixated in 

the population, and a chance of 92.5% and 92.1% to become extinct. None of the simulations were undecided 

after 1000h of growth. As a control, we also seeded WT cells to see what is the chance to become fixated in the 

population by chance (drift). For WT cells, 0.89% of the simulations lead to fixation, 98.9% leads to extinction 

and 0.23% is undecided after 1000h of growth. 

4.4 Modeling growth rate variability at small population sizes 
For the predictions of microcolony growth rate variability, an extended version of the growth model was used, 

which also takes into account growth of single cells as they progress through the cell cycle (section 8). Growth 

simulations were carried out in a similar fashion as described in section 4.1. First, a steady-state population of 

100,000 cells was grown starting from 1 mother and 1 daughter cell. Next, in each simulation 1000 random cells 

were sampled individually from this population and allowed to grow for 1.5-12h, mimicking the lengths of time 

of growth for the empirical microcolony area growth rate measurements (Dataset S5). Then, total growth rates 

were calculated using Supplemental equations 23 and 24.  

5 Statistical analyses 

5.1 Population growth rates measured by tracking microcolony areas 

consistently underestimate population growth rates 
We have measured population growth rates for the strain/medium combinations used in our dataset (Dataset S1). 

These growth rates were measured both on solid medium (Figure 3B and S3B-C) and in liquid medium (Figure 

3C). Moreover, the growth rates on solid medium were measured by analyzing the time-lapse movies in two 

different ways: either by tracking the increase in microcolony area, or by tracking the increase in cell count 

within the microcolonies (section 3). While we find that these two measures are highly correlated (R² = 0.9709; 

Dataset S3), we also find a consistent discrepancy between them (Figure S3B). When using microcolony area 

growth rates, the resulting population growth rate is on average 13.5% lower (ranging between 30.91% lower 

and 5.4% higher) compared to the microcolony cell count growth rates. Indeed, when we compare the increase in 

area and cell count within the exact same microcolonies, we find that the area increases more slowly than the cell 

count (Figure S3C). 

We reason that growth rates measured using microcolony area increases consistently give lower growth rate 

estimates, since adhesive forces on agar could restrict the outwards expansion of these microcolonies. Cells 

growing in microcolonies would then be pressed together, leading to overlapping of the cell’s surfaces. This 

would lead to a slower increase of the microcolony areas, and thus an underestimation of population growth 

rates. 

In Figure S3A, we compared the predictions of our model (run under the different assumptions shown in Figure 

3A) with the population growth rate measurements. While we find that the model’s predictions show a strong 

correlation with both the area and cell count population growth rates, the model more accurately predicts the cell 

count growth rates (Figure S3A,B). Similarly, the model also accurately predicts the growth rate measured in 

liquid (Figure 3C and S3A). Together, this again indicates that population growth rates measured by tracking 

microcolony areas consistently underestimate population growth. 

5.2 Statistical analysis of the ability to predict microcolony growth rate 

variability 
In Figure S6, modeled microcolony growth rate variability was compared to empirical variability (microcolony 

area growth rates). In total, N=78 empirical distributions were compared with the modeled distributions from 

simulations using modelstoch and modelstoch,epig. These empirical distributions correspond to 40 unique 

strain/condition combinations, with maximum 2 population sizes per strain/condition (1-13 cells, median 3.3 

cells; see Dataset S5) 



The modeled microcolony growth rate distributions were compared to the empirical distributions using the 

Anderson-Darling (AD) Test. In order to allow comparison of these distributions, all microcolony area growth 

rates were normalized to within-distribution median values. This is necessary since microcolony area growth 

rates are consistently underestimating actual growth rates (Figure S3). Of course, in this way we are only testing 

if microcolony variability is accurately predicted by the models. However, this approach is justified since we 

have already shown that the model can accurately predict average population growth rates (Figure 3 and S3). Per 

AD test, there were between 19 and 62 (median 32) empirically measured microcolony area growth rates 

compared to a set of 1000 simulated microcolony growth rates. Each test results returns a p-value and an AD-

statistic which reflects the extent to which the two distributions are different from one another (Dataset S5). To 

test which model was more accurate, we used a linear regression model in R using the formula lm(difference ~ 

MDR2) where ‘MDR2 equals the vector of correlations for each strain and condition’s mother-daughter DT 

correlation and ‘difference’ is the vector of values equal to the AD-statistics of the empirical vs. modelstoch,no-epig 

tests minus the AD statistics of the empirical vs. modelstoch,epig tests. Note that positive value of this ‘difference’ 

indicate a better fit of the modelstoch,epig to the empirical data compared to the modelstoch. We tested other models 

that included population size and mixed effects of strain (S288c binary variable) and repeated measures and 

found similar significant results for MDR2. In Figure S6B, the test results were binned according to the mother-

daughter DT correlation (0<R²<0.349 and 0.35<R²<0.37), and ‘difference’ was plotted per bin using boxplots. A 

KS-test of the two distributions in these bins indicates that the these two ‘difference’ distributions are 

significantly different from each other (D = 0.45, p< 0.0009). 

5.3 Statistical analysis of the relationship between single-cell and population-

level statistics and simulations 
The data in Dataset S4 containing bootstrapped means for single-cell and population-level statistics and 

simulations were used to explain how life-history traits (DT-related statistics) could predict population-level 

behavior. Linear regression using R’s lm() function was used for all modeling. One key model included which 

variables best predicted population-level growth rates. Over all statistical moments of mother and daughter DTs, 

variation in mean DT was sufficient to explain most measured population-level variation. Another key model 

was to look at the fold increase in predicted growth rate of stochastic models over determinstic models. This 

fold-increse number was best predicted in a linear model by a model with mother and daughter COVs as 

explanatory variables. Mother- and daughter-cell COV has a slight dependency on mean variation in DTs, and 

therefore this analysis was repeated by using residuals of in lm(COV~mean) model in a new linear model to 

predict the predicted fold-increase in growth rate. 

6 Flow cytometry to measure gene expression noise 
For each trace shown in Figure 6B, a total of 50,000 single-cell events were acquired by a BD Biosciences Influx 

flow cytometer. For mCherry signal detection, a 561 nm laser coupled to a 610/20 nm detector was used. For 

yECitrine signal detection, a 488 nm laser coupled to a 530/40 nm detector was used. R’s flowCore package was 

used to first filter out ~20-30% of events using a filter (curv2Filt) that selected the highest-density regions in 

side- and forward-scatter dimensions. Each trace shown in Figure 6B shows only these filtered events. mCherry 

and yECitrine events for each filtered sample were normalized to by FSC-median-normalized FSC signal, that is, 

for each i-th event, signal_normalized_i = signal_raw_i / (FSC_raw_i/median_FSC_signal) [S5]. These FSC-

normalized values were stored as binned fluorescent measurements and summary statistics. 

7 Constructing a stochastic model which takes into account epigenetic 

DT inheritance (modelstoch,epig) 
In the following sections, we will first show correlations between the DTs of closely related cells within lineages 

(section 7.1 and 7.2). This analysis will be done across the full dataset, combining all single-cell measurements 

in these correlations (Dataset S1). Next, we will construct a stochastic model that takes into account (some of) 

these correlations. In contrast to a purely stochastic model (modelstoch,no-epig), the choice of new DTs will be 

dependent on previously assigned DTs of closely related cells. This should then lead to correlations between the 

DTs of these cells. First, we will derive the necessary mathematical equations to do this (section 7.3). Then, this 

set of equations is built into our stochastic model (section 7.4). And finally, population growth rates are 

predicted using this complete model which incorporates experimentally observed epigenetic DT inheritance 

(section 7.5). 



7.1  Correlations between DTs within cell lineages reveal epigenetic DT 

inheritance 
During analysis of the time-lapse growth records, we scored DTs of mother and daughter cells within small 

microcolonies. Within each microcolony, we have tracked mother cells for two consecutive DTs, and scored the 

DTs of two daughter cells that it produced (Figure 1A and Figure S1A). Using these relationships, we 

investigated if DTs of related cells within lineages are correlated (epigenetic DT inheritance, see Result section). 

In an initial approach, we checked for correlations between the measured DTs across the whole dataset (n=41 

experiments; Dataset S1). In this approach, all single-cell measurements were combined and no corrections were 

made for the differences in number of DTs scored between the different experiments. This leads to some sort of 

average degree of epigenetic DT inheritance across the whole dataset. However, we do note here that there are 

large differences in epigenetic DT inheritance between different experiments (see Figure 5A).  

In order to be able to compare across the whole dataset, we first transformed all measured DTs to z-scores 

(equations 1 and 2). For each DT, z-scores were calculated relative to the fitted normal distributions that were 

determined for mother and daughter cells within each specific experiment (Dataset S2). In this way, an 

observation with a z-score higher than 0 always shows a DT which is longer than the average DT within the 

mother or daughter fraction, while z-scores lower than 0 indicate DTs shorter than the average.  

𝑚𝐷𝑇𝑖,𝑧𝑠𝑐𝑜𝑟𝑒 =
(𝑚𝐷𝑇𝑖 − 𝑚𝐷𝑇𝑚𝑒𝑎𝑛) 

𝑚𝐷𝑇𝑠𝑡𝑑𝑒𝑣

  

𝑚𝐷𝑇𝑖 =  𝑖𝑡ℎ 𝑚𝑜𝑡ℎ𝑒𝑟 𝐷𝑇 (𝑖 𝜖 [1,2,3, . . , 𝑛] 𝑤𝑖𝑡ℎ 𝑛 = 𝑡𝑜𝑡𝑎𝑙 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠)  

𝑚𝐷𝑇𝑖,𝑧𝑠𝑐𝑜𝑟𝑒 = 𝑧-𝑠𝑐𝑜𝑟𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑡ℎ 𝑚𝑜𝑡ℎ𝑒𝑟 𝐷𝑇     

𝑚𝐷𝑇𝑚𝑒𝑎𝑛 =  𝑚𝑒𝑎𝑛 𝑜𝑓 𝑓𝑖𝑡𝑡𝑒𝑑 𝑚𝑜𝑡ℎ𝑒𝑟 𝐷𝑇 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛  

𝑚𝐷𝑇𝑠𝑡𝑑𝑒𝑣 =  𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑓𝑖𝑡𝑡𝑒𝑑 𝑚𝑜𝑡ℎ𝑒𝑟 𝐷𝑇 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛                      (1) 

𝑑𝐷𝑇𝑖,𝑧𝑠𝑐𝑜𝑟𝑒 =
(𝑑𝐷𝑇𝑖 − 𝑑𝐷𝑇𝑚𝑒𝑎𝑛) 

𝑑𝐷𝑇𝑠𝑡𝑑𝑒𝑣

  

𝑑𝐷𝑇𝑖 =  𝑖𝑡ℎ 𝑑𝑎𝑢𝑔ℎ𝑡𝑒𝑟 𝐷𝑇 (𝑖 𝜖 [1,2,3, . . , 𝑛] 𝑤𝑖𝑡ℎ 𝑛 = 𝑡𝑜𝑡𝑎𝑙 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠)  

𝑑𝐷𝑇𝑖,𝑧𝑠𝑐𝑜𝑟𝑒 = 𝑧-𝑠𝑐𝑜𝑟𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑡ℎ 𝑑𝑎𝑢𝑔ℎ𝑡𝑒𝑟 𝐷𝑇     

𝑑𝐷𝑇𝑚𝑒𝑎𝑛 =  𝑚𝑒𝑎𝑛 𝑜𝑓 𝑓𝑖𝑡𝑡𝑒𝑑 𝑑𝑎𝑢𝑔ℎ𝑡𝑒𝑟 𝐷𝑇 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛  

𝑑𝐷𝑇𝑠𝑡𝑑𝑒𝑣 =  𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑓𝑖𝑡𝑡𝑒𝑑 𝑑𝑎𝑢𝑔ℎ𝑡𝑒𝑟 𝐷𝑇 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛                       (2) 

We then correlated these z-scores for all possible genealogical relationships within our lineages (Figures S1B-

G). We find the strongest (average) correlation for 𝑑𝐷𝑇1,𝑧𝑠𝑐𝑜𝑟𝑒  vs. 𝑚𝐷𝑇1,𝑧𝑠𝑐𝑜𝑟𝑒  (R²=0.2627) and 𝑑𝐷𝑇2,𝑧𝑠𝑐𝑜𝑟𝑒  vs. 

𝑚𝐷𝑇2,𝑧𝑠𝑐𝑜𝑟𝑒  (R²=0.1497). Note that both these correlations represent the DTs of a mother and her most recently 

born daughter (Figure S1A). The remaining correlations are shown in Figure S1D-G, for which the R²-values 

range from 0.0030 to 0.0652. For consecutive mother DTs, we find an (average) correlation of R²=0.0153 

(Figure S1D). 

7.2 Analysis of the DT correlation between a mother and her most recently 

born daughter 
We decided to explore the DT correlations shown in Figures S1B-C more thoroughly, since these gave the 

highest R²-values. Note that both panels in this figure show the DT correlation between a mother and her most 

recently born daughter. Since these data essentially show the same genealogical relationship, we decided to 

combine them for further analysis. This combined correlation (𝑑𝐷𝑇1/2,𝑧𝑠𝑐𝑜𝑟𝑒  vs. 𝑚𝐷𝑇1/2,𝑧𝑠𝑐𝑜𝑟𝑒) is shown in 

Figure 2d, and has an R²-value of 0.2517. In order to get a clear view on the density of observations in this 

scatter plot, the histograms of the 𝑚𝐷𝑇1/2 and 𝑑𝐷𝑇1/2 z-scores are shown in Figure S1H-I.  

To further characterize the relationship shown in Figure 2d, we have binned the data on the x-axis 

(𝑚𝐷𝑇1/2,𝑧𝑠𝑐𝑜𝑟𝑒) in 19 equally sized bins, and fitted normal distributions to the resulting y-axis values in each bin 



(𝑑𝐷𝑇1/2,𝑧𝑠𝑐𝑜𝑟𝑒). In Figure S1J, the means and SDs of these fitted distributions were plotted against the mid of 

each bin.  

The most straightforward approach to build this DT correlation into our stochastic model, would be to sample all 

daughter DTs from normal distributions for which the parameters depend on the mother DTs as shown in Figure 

S1J. As in the purely stochastic model, the mother DTs would still be sampled randomly from the experimentally 

determined mother DT distributions. From the histograms shown in Figure S1H-I, it becomes clear that the 

average DT distribution has a small right-handed tail (positive skewness). This asymmetry is reflected in the 

higher observed means and SDs of the fitted 𝑑𝐷𝑇1/2,𝑧𝑠𝑐𝑜𝑟𝑒  distributions for positive 𝑚𝐷𝑇1/2,𝑧𝑠𝑐𝑜𝑟𝑒 values (see 

Figure S1J). However, in our stochastic growth model, we approximated the DT distributions with normal 

distributions (see Result section). Therefore, we cannot simply use the relationships shown in Figure S1J to 

incorporate this DT correlation into our purely stochastic growth model. Instead, in what follows we will derive 

these relationships for the idealized situation in which mother and daughter DT are normally distributed. 

7.3  A mathematical framework to model two correlated normal distributions  
As explained above, we cannot directly use the relationships shown in Figure S1J, since these apply to the 

observed 𝐷𝑇𝑧𝑠𝑐𝑜𝑟𝑒  distributions which have a slight right-hand tail (positive skewness). Moreover, we would like 

to be able to build in different strengths of correlation (0<R²<1) between DTs. Therefore, in the following 

sections, we will work out a general mathematical framework which allows us to model specific strengths of 

correlations (R²) between two normal distributions of 𝐷𝑇𝑧𝑠𝑐𝑜𝑟𝑒’s which can have any given genealogical 

relationship. First, we will explain the general approach to achieve this, without elaborating on the mathematics 

behind it (section 7.3.1). Next, we will derive the necessary mathematical expressions, first using an exact 

mathematical approach (section 7.3.2), and second using a trial-and-error simulation approach (section 7.3.3).  

7.3.1 General concept 

During in silico growth in our model, new DTs need to be assigned every time a cell is born or completes its 

doubling. Let’s imagine a population of cells which has 𝐷𝑇𝑧𝑠𝑐𝑜𝑟𝑒-values following a standard normal 

distribution. For each of these cells, a new 𝐷𝑇𝑧𝑠𝑐𝑜𝑟𝑒-value has to be picked when their DT has finished. When 

this is done for all cells, we should again end up with a standard normal distribution of 𝐷𝑇𝑧𝑠𝑐𝑜𝑟𝑒-values. This is a 

necessary prerequisite for incorporation of epigenetic effects into our purely stochastic model, and the only 

condition that we impose on the set of equations that will be used to determine the new DTs. In what follows, 

these initial and final 𝐷𝑇𝑧𝑠𝑐𝑜𝑟𝑒  distribution will be referred to as respectively the input and output distribution. 

The function which is then used to determine the new 𝐷𝑇𝑧𝑠𝑐𝑜𝑟𝑒  for each cell individually will be called the 

transfer function. 

In theory, we can now distinguish three situations, which are represented in Figure S2A. The first situation (left 

panel) is simulated in the purely stochastic model. Here, the new 𝐷𝑇𝑧𝑠𝑐𝑜𝑟𝑒’s are sampled independently of the 

previous DTs. The transfer function (used to determine a new 𝐷𝑇𝑧𝑠𝑐𝑜𝑟𝑒  for each cell individually) in this case is 

simply the standard normal distribution N(0,1). There will be no correlation between the input and output 

distributions, leading to a model which does not incorporate epigenetic DT inheritance. When this is done for all 

DTs in the initial distribution, we evidently end up with an output distribution which is a standard normal 

distribution.  

In the other two situations (middle and right panel in Figure S2A), the choice of the new 𝐷𝑇𝑧𝑠𝑐𝑜𝑟𝑒  is based on the 

previous 𝐷𝑇𝑧𝑠𝑐𝑜𝑟𝑒’s. As discussed above, this will give rise to a correlation between the input and output 

distribution. 

In the most extreme case, both 𝐷𝑇𝑧𝑠𝑐𝑜𝑟𝑒  distributions are perfectly correlated (right panel in Figure S2A). Each 

new  𝐷𝑇𝑧𝑠𝑐𝑜𝑟𝑒  will now be the same as the previous 𝐷𝑇𝑧𝑠𝑐𝑜𝑟𝑒 . Here, analogous to the transfer function in the left 

panel of Figure S2A, the transfer function can now be seen as a normal distribution with a mean equal to the 

previous 𝐷𝑇𝑧𝑠𝑐𝑜𝑟𝑒  and an infinitely small variance.  

Between these two boundary conditions (left and right panel in Figure S2A), we find a range of scenarios where 

the correlation between the input and output distributions is not perfect, but still higher than zero (0<R²<1; 

middle panel in Figure S2A). In this case, it is less trivial what the transfer function should be. It is however 

clear that it should be intermediate to the two extremes represented in the left and right panel of Figure S2A. The 

transfer function will thus be a normal distribution with a mean which is dependent on the initial 𝐷𝑇𝑧𝑠𝑐𝑜𝑟𝑒  (one 

parameter will determine how close this mean is to the initial 𝐷𝑇𝑧𝑠𝑐𝑜𝑟𝑒), and a SD between 0 and 1. Note that the 

closer the mean of the transfer function is set to 0, the higher the SD of the transfer function will need to be. This 

is necessary to ensure that the output distribution has a variance of 1 (as is the case for a standard normal 



distribution). Of course, the higher the SD of the transfer, the lower the R² of the correlation will be. By tuning 

these two parameters, we can thus model all degrees of correlation (R²) between the two distributions. 

7.3.2 Exact mathematical solution 

Mathematically, the problem shown in Figure S2A, can be described as follows. First, we start with a standard 

normal input distribution. 

𝑓𝑖𝑛𝑝𝑢𝑡(𝑥) ∼ 𝒩(µ𝑖𝑛𝑝𝑢𝑡  , 𝜎𝑖𝑛𝑝𝑢𝑡
2 )    

𝑤𝑖𝑡ℎ µ𝑖𝑛𝑝𝑢𝑡 = 0; 𝜎𝑖𝑛𝑝𝑢𝑡
2 = 1                                                     (3) 

Next, the input distribution needs to be transformed by multiplying each value in this distribution with A ϵ [0, 1]. 
This is analogous to the effect of the blue arrows in Figure S2A. Consequently, the variance will scale down as 

described in equation 4, and a new normal distribution (input-prime) will be generated. 

𝑓𝑖𝑛𝑝𝑢𝑡′(𝑥) ∼ 𝒩(µ𝑖𝑛𝑝𝑢𝑡′ , 𝜎𝑖𝑛𝑝𝑢𝑡′
2 )    

𝑤𝑖𝑡ℎ µ𝑖𝑛𝑝𝑢𝑡′ = µ𝑖𝑛𝑝𝑢𝑡 = 0;  𝜎𝑖𝑛𝑝𝑢𝑡′
2 = (𝐴 × 𝜎𝑖𝑛𝑝𝑢𝑡)² 𝑤𝑖𝑡ℎ A ϵ [0, 1]                    (4) 

The transfer function is defined as a normal distribution with a mean of 0 and a given SD (equation 5).  

𝑓𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟(𝑥) ∼ 𝒩(µ𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟  , 𝜎𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟
2 )   

𝑤𝑖𝑡ℎ µ𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 = 0                                        (5) 

We can now generate an output distribution, by taking the convolution product of the input-prime distribution 

and the transfer function (equation 6). This is mathematically equivalent to the scheme shown in Figure S2A, 

where the transfer function is applied individually to each value in the input distribution, hereby generating a 

distribution of output values. Since the initial distribution and the transfer function are both normal distributions 

with a given mean and variance, the convolution of the two functions will again give rise to a normal 

distribution. The mean and variance of this resulting distribution are the sum of respectively the means and 

variances of the convolved functions [S6]. This is represented in equation 6 and 7. 

𝑓𝑜𝑢𝑡𝑝𝑢𝑡(𝑥) = 𝑓𝑖𝑛𝑝𝑢𝑡′(𝑥) ∗ 𝑓𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟(𝑥) = ∫ 𝑓𝑖𝑛𝑝𝑢𝑡′(𝜏)
∞

−∞
× 𝑓𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟(𝑥 − 𝜏) × 𝑑𝜏                       (6) 

𝑓𝑜𝑢𝑡𝑝𝑢𝑡(𝑥) ∼ 𝒩(µ𝑜𝑢𝑡𝑝𝑢𝑡  , 𝜎𝑜𝑢𝑡𝑝𝑢𝑡
2 )        

 𝑤𝑖𝑡ℎ µ𝑜𝑢𝑡𝑝𝑢𝑡 = µ𝑖𝑛𝑝𝑢𝑡′ + µ𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟  ;  𝜎𝑜𝑢𝑡𝑝𝑢𝑡
2 = 𝜎𝑖𝑛𝑝𝑢𝑡′

2 +  𝜎𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟
2                                       (7) 

As mentioned earlier, the output distribution needs to be a standard normal distribution, which means that 

µ𝑜𝑢𝑡𝑝𝑢𝑡 = 0 and 𝜎𝑜𝑢𝑡𝑝𝑢𝑡
2 = 1 . Using equations 4-7, we can now calculate the equation relating our two unknown 

parameters 𝐴 and 𝜎𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟  . 

𝜎𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟
2 = 𝜎𝑜𝑢𝑡𝑝𝑢𝑡

2 − 𝜎𝑖𝑛𝑝𝑢𝑡
2 × 𝐴2 = 1 − 𝐴2                                     (8) 

Note the similarity to the different scenarios represented in Figure S2A. In the left panel, all values in the input 

distribution are first set to 0 (𝐴 = 0), and new values are then picked using a transfer function with 𝜎𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 =

1. In the right panel, the new output values are simply the same as the input distribution values (𝐴 =
1; 𝜎𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 = 0). And finally, in the middle panel, the intermediate scenario is shown. The variance of the input 

distribution is first scaled down by multiplying each value with 0 < 𝐴 < 1, and then new output values are 

chosen based on a 𝜎𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟  which depends on 𝐴 (see equation 8). 

7.3.3 Trial-and-error-based solution 

In the previous section, we have described the mathematical relationships necessary to build DT correlations into 

our model. We will now test if these relationships still hold, when we move from idealized infinitely large 

distributions to distributions holding a finite number of 𝐷𝑇𝑧𝑠𝑐𝑜𝑟𝑒’s (as in our simulations). Moreover, in this 

section we will deduce how different combinations of 𝜎𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟  and 𝐴 lead to different degrees of correlation 

(R²) between the input and output distributions. 



In the following set of simulations, we started with a total of 𝑁 = 10 000 𝐷𝑇𝑖𝑛𝑝𝑢𝑡,𝑧𝑠𝑐𝑜𝑟𝑒’s sampled from a 

standardized normal distribution.  

𝐷𝑇𝑖𝑛𝑝𝑢𝑡,𝑧𝑠𝑐𝑜𝑟𝑒 = ∑ 𝐷𝑇𝑖,𝑖𝑛𝑝𝑢𝑡,𝑧𝑠𝑐𝑜𝑟𝑒
𝑁
𝑖=1                (9) 

𝐷𝑇𝑖𝑛𝑝𝑢𝑡,𝑧𝑠𝑐𝑜𝑟𝑒 ∼ 𝒩(0, 1)                                                                                                (10) 

Each of these values was then used as an input to generate corresponding 𝐷𝑇𝑜𝑢𝑡𝑝𝑢𝑡,𝑧𝑠𝑐𝑜𝑟𝑒  values using the 

following functions (which are mathematically equivalent to the equations 4-6 shown in section 7.3.2).  

𝐷𝑇𝑖,𝑜𝑢𝑡𝑝𝑢𝑡,𝑧𝑠𝑐𝑜𝑟𝑒 ∼ 𝒩(µ𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 , 𝜎𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟
2 )                                                                 (11) 

µ𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 = 𝐴 × 𝐷𝑇𝑖,𝑖𝑛𝑝𝑢𝑡,𝑧𝑠𝑐𝑜𝑟𝑒                                                                               (12) 

This results in a new set of 𝑁 = 10 000 𝐷𝑇𝑜𝑢𝑡𝑝𝑢𝑡,𝑧𝑠𝑐𝑜𝑟𝑒  values. 

𝐷𝑇𝑜𝑢𝑡𝑝𝑢𝑡,𝑧𝑠𝑐𝑜𝑟𝑒 = ∑ 𝐷𝑇𝑖,𝑜𝑢𝑡𝑝𝑢𝑡,𝑧𝑠𝑐𝑜𝑟𝑒
𝑁
𝑖=1                                                                                    (13) 

We then explored the parameter space for 𝜎𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟  and 𝐴 by varying them independently from 0 to 1.1 in steps 

of 0.01. The outcome of these simulations was evaluated by considering the mean, SD and the normality of the 

resulting 𝐷𝑇𝑜𝑢𝑡𝑝𝑢𝑡,𝑧𝑠𝑐𝑜𝑟𝑒 distributions. Finally, we also kept track of the correlation between the 𝐷𝑇𝑖𝑛𝑝𝑢𝑡,𝑧𝑠𝑐𝑜𝑟𝑒  

and 𝐷𝑇𝑜𝑢𝑡𝑝𝑢𝑡,𝑧𝑠𝑐𝑜𝑟𝑒  values (R²). The results of these simulations are shown in Figure S2B. 

The first prerequisite for finding the desired relationship between 𝜎𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟  and 𝐴, is that the resulting 

𝐷𝑇𝑜𝑢𝑡𝑝𝑢𝑡,𝑧𝑠𝑐𝑜𝑟𝑒  distributions have a mean of 0 and a SD of 1 (as standard normal distributions). When we make a 

scatter plot of the parameters leading to a mean of 0 (±0.03) and a SD of 1 (±0.005), we can see a quarter 

circular line appearing (Figure S2B). Inspired by equation 8, we can now fit the following function relating 

𝜎𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟  and 𝐴. 

 𝜎𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟
2 = 1 − 𝐴²                 (14) 

As expected from our exact mathematical solution, equation 14 describes the relationship between 𝐴 and 

𝜎𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟  well (R²=0.9901). As can be seen from Figure S2B (panel iii), the resulting 

𝐷𝑇𝑜𝑢𝑡𝑝𝑢𝑡,𝑧𝑠𝑐𝑜𝑟𝑒  distributions only lead to a normal distribution across a narrow range in the parameter space. 

Fortunately, this range coincides with the isoline representing a mean of 0 and a SD of 1 in the 𝐷𝑇𝑜𝑢𝑡𝑝𝑢𝑡,𝑧𝑠𝑐𝑜𝑟𝑒  

distributions. Specifically, we find that the gross majority (>94%) of the distributions can be considered as 

normal (p>0.05 using Kolmogorov-Smirnov test for normality). Finally, the relationship between the R²-values 

and the parameter 𝐴 could be derived from Figure S2B (panel iv). The relationship was found to be linear on a 

log-log plot and could thus be approximated using the following function (R²=0.9979). 

log(𝑅²) = 2.038 × log (𝐴)            (15) 

Our defined functions (equations 11-12,14), thus allow us to incorporate the whole spectrum of DT correlations 

(0<R²<1) into our stochastic model.  

7.4 Incorporating the mathematical framework into our stochastic model 
Now that we have acquired mathematical functions which allow us to model the DT relationships that we have 

observed (Figure S1B-G), we can incorporate these into our growth model. In order to do this, it is important that 

we keep track of the DT that was last assigned to each cell (or the corresponding z-score of this DT). This DT (or 

rather, its z-score) can then be used to assign new DTs to the cells within each lineage, based on the equations 

described above. 

Figure S2C shows which DT relationships are considered in our model. First, we have observed that consecutive 

mother DTs are on average slightly correlated (Figure S1D; R²=0.0153). Second, we have found a much stronger 

DT correlation between the mother and her most recently born daughter (Figure 2d; R²=0.2517). Using the 

equations 14 and 15, we calculated the parameters 𝜎𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟  and 𝐴 which were used in equations 11 and 12 to 

derive the z-score of the next DT to be assigned. Note that our dataset does not allow us to investigate DT 

correlations between the DT of a cell when it is still a daughter and its DT when it has become a mother. 

Therefore, we conservatively assume that there is no correlation between both (Figure S2C).  



7.5  Population growth rate predictions using the stochastic model which 

takes into account epigenetic DT inheritance 
Now that we have constructed a stochastic model which takes into account the observed DT correlations, we can 

use it to predict population growth rates. This will allow us to investigate the effect of epigenetic DT inheritance 

on population growth rates. The model can be run using two sets of parameters. First, the average DT 

correlations can be used to calculate the parameters for the model. In this case, all experiments will have the 

same average level of epigenetic DT inheritance (Figure S5A). Second, the DT correlations can be calculated 

individually per experiment, leading to different parameters for the model for each experiment (Figure S5C). 

These two approaches are expected to lead to different outcomes, as the strength of the DT correlations can 

differ widely across different conditions (Figure 5A). 

In the first approach, using the average epigenetic DT inheritance, we find a modest increase in population 

growth rates compared the purely stochastic model (Figure S5A). Furthermore, this increase is positively 

correlated to the variability present in the single-cell DT distributions (R² of growth rate increase vs. mother 

CoV= 0.8829; R² of growth rate increase vs. daughter CoV=0.6912; Figure S5B).  

In the second approach, using the per-experiment individual epigenetic DT inheritance, we find on average that 

stronger increase in population growth rates compared to the purely stochastic model (Figure S5C). As expected, 

this increase is positively correlated to the strength of the DT correlations in each experiment (R² of growth rate 

increase vs. consecutive mother DT correlation = 0.3735; R² of growth rate increase vs. mother-daughter DT 

correlation=0.2570; Figure S5D).  

8 Constructing a model which takes into account cell-cycle dependent 

single-cell growth 
This study focuses on the effect of single-cell DT variability and epigenetic DT inheritance on the population 

growth rate. However, we also set out to investigate how these factors contribute to growth rate variability 

between different populations, more specifically at small population sizes when the variability in single-cell DTs 

might not yet be averaged out (Figure S6). For this purpose, we need to extend the model to take into account the 

volume increase during progression through the cell cycle. Indeed, at large population sizes, growth within 

single cells is unlikely to affect variability in population growth rates, since it is averaged out by the large 

number of cells present in the population. However, at small population sizes, growth within single cells is 

expected to play an important role in determining the population growth rate variability. Therefore, in the 

following section, we will extend the model to take into account single-cell growth as the cell progresses through 

the cell cycle. 

Single-cell growth during progression through the cell cycle can be divided into two clearly distinct phases: (1) 

the Unbudded Period (UP), when the cell is not budded yet, and (2) the Budded Period (BP), from bud 

emergence until cell division. Using our collection of time-lapse growth records, we have measured these 

periods, by scoring the time of bud appearance in mother and daughter cells. For daughter cells, this was 

measured as shown in Figure 1A, and the results of these measurements are presented in Figure 2B. 

Additionally, we have scored the appearance of a bud in mother cells (not shown in Figure 1A) in a similar 

fashion, by scoring the bud appearance in the 1
st
 and 2

nd
 daughter cell after its first cell division (section 2.2 and 

Dataset S1). At this point, these cells have already undergone one cell division, and have thus effectively become 

a mother cell.   

In Figure S6C-D, the mean and SD of the length of the UP are plotted against the total DT of both mother and 

daughter cells. Functions were fitted to these correlations and these were used in the growth simulations to 

determine the length of the mother Unbudded Period (𝑚𝑈𝑃) and daughter Unbudded Period (𝑑𝑈𝑃) for each cell. 

The relationships are shown in equation 16-21. 

𝑚𝑈𝑃 = 𝒩(𝑚𝑈𝑃mean, 𝑚𝑈𝑃st.dev.)                                         (16) 

𝑚𝑈𝑃mean = −0.1415 × 𝑚𝐷𝑇2 + 0.7879 × 𝑚𝐷𝑇 − 0.5397                                    (17) 

𝑚𝑈𝑃st.dev. = 0.6711 × 𝑚𝐷𝑇 − 0.6738                                   (18) 

𝑑𝑈𝑃 = 𝒩(𝑑𝑈𝑃mean, 𝑑𝑈𝑃st.dev.)                                         (19) 

𝑑𝑈𝑃mean = 0.1686 × 𝑑𝐷𝑇 − 0.0268                                                        (20) 



𝑑𝑈𝑃st.dev. = 0.2155 × ln(𝑑𝐷𝑇) + 0.0545                                      (21) 

We need to simulate how much each bud has grown, and this will depend on the following three parameters: the 

length of the total DT, the length of the UP, and ‘the time remaining for completion bud’. Therefore, during 

these simulations, we need to keep track of all these single-cell variables. 

We decided to use a simple approximation of single-cell growth during the cell cycle. The assumption is that 

cells do not grow during their UP, and that growth proceeds in an exponential fashion during the BP. The 

mathematical function describing this is described by equation 22. 

𝑓𝑜𝑟 "𝑇𝑖𝑚𝑒 𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝐹𝑜𝑟 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 𝐵𝑢𝑑" >  𝐷𝑇 − 𝑈𝑃 

"𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑂𝑓 𝐵𝑢𝑑 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑" = 0     

𝑓𝑜𝑟 "𝑇𝑖𝑚𝑒 𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝐹𝑜𝑟 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 𝐵𝑢𝑑" <  𝐷𝑇 − 𝑈𝑃 

"𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑂𝑓 𝐵𝑢𝑑 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑" = 2 × 𝑒(
𝐷𝑇−𝑈𝑃−"𝑇𝑖𝑚𝑒 𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝐹𝑜𝑟 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 𝐵𝑢𝑑"

𝐷𝑇−𝑈𝑃
) − 1     (22) 

The size of the population is now expressed as the sum of all cells including the fractions of the bud which are 

already formed (equation 23). All microcolony growth rates in this study are total (not instantaneous) growth 

rates, as in equation 24. 

 𝑝𝑜𝑝. 𝑠𝑖𝑧𝑒 = ∑ (1 + "𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑂𝑓 𝐵𝑢𝑑 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑"𝑖)
𝑁
𝑖=1                              (23) 

 𝑚𝑖𝑐𝑟𝑜𝑐𝑜𝑙𝑜𝑛𝑦 𝑔𝑟𝑜𝑤𝑡ℎ 𝑟𝑎𝑡𝑒 (𝑡𝑓𝑖𝑛𝑎𝑙) =
𝑙𝑛(𝑝𝑜𝑝.𝑠𝑖𝑧𝑒𝑡.𝑓𝑖𝑛𝑎𝑙)−𝑙𝑛(𝑝𝑜𝑝.𝑠𝑖𝑧𝑒𝑡.𝑖𝑛𝑖𝑡𝑖𝑎𝑙)

𝑡𝑓𝑖𝑛𝑎𝑙
                                            (24)                       

As mentioned above, we are specifically interested in using this extension of the model to predict small 

population (microcolony) growth rate variability. To do this, we first grow (in silico) a large population of cells 

to steady-state (>100 000). Then we repeatedly sample single cells from this population which we allow to grow 

for a fixed amount of time. Finally, we calculate microcolony growth rates using equations 23 and 24 (for more 

details see section 4.4). 

 

Since the purpose of this extended model is to investigate the effect of single-cell DT variability and epigenetic 

DT inheritance on the population growth rate variability, we decided to compare the predictions of our model 

with empirical measures of microcolony growth rate variability. We have measured population growth rates by 

tracking the area increase of N=19-62 microcolonies at three time points per experiment (Dataset S5; section 

3.1). Therefore, from this data, we can extract two measures of microcolony growth rate variability per 

experiment. Next, this variability was simulated using the extended version of the model discussed here (with or 

without epigenetics). For each strain and condition, we drew the growth rates of 1000 random microcolonies 

from our simulation to predict variability (Dataset S5). In Figure S6A, the modeled microcolony growth rate 

variability was plotted against the empirical variability (both expressed as coefficient of variation). When 

running the model without epigenetic effects, the variability predictions correspond well to the empirical 

variability for most observations. However, when the empirical variability is high (>0.30), the model (with or 

without epigenetics) tends to strongly underestimate it.  

Next, we used the Anderson-Darling (AD) test, a non-parametric test like the Kolmogorov-Smirnov Test, to 

check whether including epigenetic inheritance in the model improves the predictions of microcolony growth 

rate variability. Since microcolony growth rate are consistently underestimating actual growth rates (see above 

and Figure S3), all microcolony growth rates were normalized to within-distribution medians, to allow 

comparison of the variability. For most our experiments, the AD test cannot detect a significant difference when 

epigenetic inheritance in included in the model (Bonferroni corrected p-value>0.05; Dataset S5). Further analysis 

shows that for strain/condition combinations that display little epigenetic DT inheritance (mother-daughter DT 

correlation R² < 0.35), the model comparably matched the empirical data, independent of whether or not 

epigenetic effects were included (Figure S6B). However, for strains and conditions that demonstrate a high 

degree of epigenetic DT inheritance (mother-daughter DT correlation > 0.35), including epigenetics in the model 

made its predictions more closely matches the empirical variability (Figure S6B). 



9 Validity of using the experimentally measured DT distributions to 

extract parameters for the model 
Our model is most often used to predict population growth rates from experimentally measured single-cell 

parameters (mean and SD of mother and daughter DTs). However, these experimentally measured DT 

distributions do not necessarily correspond to the DT distributions that are sampled from to assign DTs to newly 

formed individuals. Indeed, Tănase-Nicola & ten Wolde (2008) have shown that the population average of a 

quantity (measured at a certain point in time) can be different from its time average (when tracking this quantity 

in a single-cell and its descendents), especially when fluctuations of this quantity influence growth rate [7]. 

Therefore, we investigated whether there is a discrepancy between the model’s parameters and the 

experimentally measured values that are supposed to represent them. 

 

To avoid confusion, we will first define the three different DT distributions that are relevant in this discussion.  

 

1) The (model-)sampling distribution: The DT distribution from which the model samples when it 

assigns a new DT (to newly-born cells or cells that have just completed a previous doubling). 

 

2) The steady-state distribution: The population DT distribution at any instant during steady-state 

growth. More specifically, this distribution can be measured (during simulations) by randomly sampling 

cells from one time point during exponential growth, and extracting the DTs that were last assigned to 

them. 

 

3) The experimental distribution: The DT distribution that was measured experimentally in this study, 

by allowing the cells to finish the cell cycle that they were going through at the start of the movie, and 

following their subsequent growth as shown in Figure 1A. Similarly, these experimental distributions 

can be extracted during simulations by assigning new DTs to all cells present at a fixed time point. 

 

In Figure S4D-E, we compare the three types of DT distributions described above for the model with and 

without epigenetics. The parameters used for these simulations were those as measured for BY/s288c growing in 

palatinose, a strain/condition that shows high DT noise and high epigenetic DT inheritance (Dataset S1).  

 

The model-sampling distribution and the steady-state distribution are generally not the same under the stochastic 

model (Figure S4D), as the steady-state distribution is enriched for cells that were assigned a long DT (slowly-

growing cells). This is because the fast-growing cells finish their doubling faster than the slow-growing cells, but 

the chance of being assigned a short or long DT are equal. Importantly, under the model assuming epigenetics, 

the fast-growing cells are more likely to give rise to fast-growing progeny, so the differences between the steady-

state and model-sampling distributions become less pronounced (Figure S4E). 

 

It is important to note that the experimental DT distributions are different from the steady-state distributions, 

because we do not measure the DTs at one instantaneous point in time. Instead, after spotting an aliquot of an 

exponentially growing culture on an agar gel, we randomly follow single-cells and only start scoring DTs after 

they finish their current cell cycle (Figure 1 and Movie S1). Under the purely stochastic model, newly-assigned 

DTs are independent of previously assigned DTs, and therefore the experimental distribution by definition equals 

the model-sampling distribution. When taking into account epigenetic inheritance, the experimental distribution 

has on average slightly more slow-growing cells, but not as much as the steady-state distribution (Figure S4D-

E).  

 

In conclusion, when predicting population growth rates from single-cell DT measurements, the experimentally 

measured DT distributions can be readily used to extract parameters for the purely stochastic model 

(modelstoch,no-epig). However, caution should be taken when predicting population growth rates from single-cell 

DT measurements using the model which assumes epigenetic effects (modelstoch,epig). As the epigenetic DT 

correlations increase, the experimental DT distribution will contain increasingly more slow-growing cells 

compared to the model-sampling DT distribution, which could lead to an underestimation of population growth 

rates. Importantly though, this does not affect the general result that increasing epigenetic DT inheritance (while 

keeping the DT noise and mean constant) leads to an increase in population growth rate (Figures 5B,C and S5). 



10 Intuitive understanding of the effect of DT noise and epigenetic DT 

inheritance on the population growth rate 

10.1 General 
In these following sections, we try to provide the reader with an intuitive understanding of the effect that 

stochastic DT variability and epigenetic DT correlations have on the population growth rate.  

First, we derive equations that allow the exact prediction of the (instantaneous) population growth rate when the 

size and growth rates of the subpopulations (or cells) are known (section 10.2). We show that the instantaneous 

growth rate is the weighted arithmetic mean of the growth rates of the subpopulations (cells), weighted by the 

size of the subpopulations (cells).  

In section 10.3, we extend this equation to fit the parameters used in our stochastic model (the last DT assigned 

to each cell, and the time remaining until completion of the current cell cycle). We identify three factors that 

individually could lead to either an increase or decrease in population growth rate, when the DT noise in the 

model-sampling distribution (see section 9) is increased. These factors are 1) the growth rate associated with a 

certain DT, 2) the steady-state proportion of cells that have been assigned a certain DT and 3) the steady-state 

distribution of the progression through the cell cycle within these cells. We show that factor 1 and 3 theoretically 

could increase the population growth rate, while factor 2 theoretically could decrease it. 

10.2 The instantaneous population growth rate in function of the sizes and 

growth rates of N subpopulations 
Assume a population consisting of 𝑁 different subpopulations. For simplicity, we will refer to these 

subpopulations as cells, and assume that their size=1 at time t=0. Each i-th cell grows at a fixed growth rate 𝜇𝑖 

which can be different for each cell but stays constant through time. We will first derive what the average 

population growth rate is from time=0 until time=t. 

The average growth rate of the whole population after time = t is given by the following formula. 

𝜇𝑡𝑜𝑡𝑎𝑙(𝑡) ≡  
𝑙𝑛(

𝑁𝑡𝑜𝑡𝑎𝑙(𝑡)

𝑁𝑡𝑜𝑡𝑎𝑙(0)
)

𝑡
     with 𝑁𝑡𝑜𝑡𝑎𝑙(𝑡) representing the total size of the population                  (25) 

At time=0 there are 𝑁 different cells of size=1, so:  

𝑁𝑡𝑜𝑡𝑎𝑙(0) =  ∑ 𝑠𝑖𝑧𝑒𝑖(0)𝑁
𝑖=1 = 𝑁                                           (26) 

The total number of cells at time t, 𝑁𝑡𝑜𝑡𝑎𝑙(𝑡), is then given by: 

𝑁𝑡𝑜𝑡𝑎𝑙(𝑡) =  ∑ 𝑠𝑖𝑧𝑒𝑖(0) ∗ 𝑒𝑥𝑝(𝜇𝑖 ∗ 𝑡)𝑁
𝑖=1 = ∑ 𝑒𝑥𝑝(𝜇𝑖 ∗ 𝑡)𝑁

𝑖=1                                            (27) 

The combination of equations 25-27 gives: 

𝜇𝑡𝑜𝑡𝑎𝑙(𝑡) =
ln(∑ 𝑒𝑥𝑝(𝜇𝑖∗𝑡)𝑁

𝑖=1 )−𝑙𝑛(𝑁)

𝑡
                          (28) 

To know what the instantaneous growth rate is of the population at time = 0, we have to calculate the limit of this 

function at time = 0. 

lim𝑡→0 𝜇𝑡𝑜𝑡𝑎𝑙(𝑡) =
ln(∑ 𝑒𝑥𝑝(𝜇𝑖∗0)𝑁

𝑖=1 )−𝑙𝑛(𝑁)

0
=  

ln(𝑁)−𝑙𝑛(𝑁)

0
=  

0

0
                         (29) 

This limit’s solution is now in an indeterminate form, but can be calculated through L’Hôpital’s rule if the some 

constraints are fulfilled.  

L’Hôpital’s rule states that if 

lim𝑡→0 𝑓(𝑡) = lim𝑡→0 𝑔(𝑡) = 0 𝑜𝑟 ± ∞ and lim𝑡→0
𝑓′(𝑡)

𝑔′(𝑡)
 exists        (30) 

then  



lim𝑡→0
𝑓(𝑡)

𝑔(𝑡)
= lim𝑡→0

𝑓′(𝑡)

𝑔′(𝑡)
 .             (31)

          

Applying L’Hôpital’s rule using 𝑓(𝑡) =  ln(∑ 𝑒𝑥𝑝(𝜇𝑖 ∗ 𝑡)𝑁
𝑖=1 ) − 𝑙𝑛(𝑁) 𝑎𝑛𝑑 𝑔(𝑡) = 𝑡 gives: 

lim𝑡→0 𝜇𝑡𝑜𝑡𝑎𝑙(𝑡) =
𝐷{ln(∑ 𝑒𝑥𝑝(𝜇𝑖∗𝑡)𝑁

𝑖=1 )−𝑙𝑛(𝑁)}

𝐷{𝑡}
                 (32) 

lim𝑡→0 𝜇𝑡𝑜𝑡𝑎𝑙(𝑡) =
𝐷{ln(∑ 𝑒𝑥𝑝(𝜇𝑖∗𝑡)𝑁

𝑖=1 )}−𝐷{𝑙𝑛(𝑁)}

𝐷{𝑡}
             (33) 

lim𝑡→0 𝜇𝑡𝑜𝑡𝑎𝑙(𝑡) =
𝐷{ln(∑ 𝑒𝑥𝑝(𝜇𝑖∗𝑡)𝑁

𝑖=1 )}−0

1
              (34) 

lim𝑡→0 𝜇𝑡𝑜𝑡𝑎𝑙(𝑡) = 𝐷{ln(∑ 𝑒𝑥𝑝(𝜇𝑖 ∗ 𝑡)𝑁
𝑖=1 )}              (35) 

lim𝑡→0 𝜇𝑡𝑜𝑡𝑎𝑙(𝑡) =
1

∑ 𝑒𝑥𝑝(𝜇𝑖∗𝑡)𝑁
𝑖=1

𝐷{(∑ 𝑒𝑥𝑝(𝜇𝑖 ∗ 𝑡)𝑁
𝑖=1 )}             (36) 

lim𝑡→0 𝜇𝑡𝑜𝑡𝑎𝑙(𝑡) =
1

∑ 𝑒𝑥𝑝(𝜇𝑖∗𝑡)𝑁
𝑖=1

∗ (∑ 𝐷{𝑒𝑥𝑝(𝜇𝑖 ∗ 𝑡)𝑁
𝑖=1 })            (37) 

lim𝑡→0 𝜇𝑡𝑜𝑡𝑎𝑙(𝑡) =
1

∑ 𝑒𝑥𝑝(𝜇𝑖∗𝑡)𝑁
𝑖=1

∗ (∑ 𝑒𝑥𝑝(𝜇𝑖 ∗ 𝑡)𝑁
𝑖=1 ∗ 𝐷{𝜇𝑖 ∗ 𝑡})            (38) 

lim𝑡→0 𝜇𝑡𝑜𝑡𝑎𝑙(𝑡) =
1

∑ 𝑒𝑥𝑝(𝜇𝑖∗𝑡)𝑁
𝑖=1

∗ (∑ 𝑒𝑥𝑝(𝜇𝑖 ∗ 𝑡)𝑁
𝑖=1 ∗ 𝜇𝑖})             (39) 

lim𝑡→0 𝜇𝑡𝑜𝑡𝑎𝑙(𝑡) =
1

∑ 𝑒𝑥𝑝(𝜇𝑖∗0)𝑁
𝑖=1

∗ (∑ 𝑒𝑥𝑝(𝜇𝑖 ∗ 0)𝑁
𝑖=1 ∗ 𝜇𝑖})             (40) 

lim𝑡→0 𝜇𝑡𝑜𝑡𝑎𝑙(𝑡) =
1

𝑁
∗ (∑ 1𝑁

𝑖=1 ∗ 𝜇𝑖})                (41) 

lim𝑡→0 𝜇𝑡𝑜𝑡𝑎𝑙(𝑡) = 𝑎𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐 𝑚𝑒𝑎𝑛 𝑜𝑓 𝜇𝑖  (𝑤𝑖𝑡ℎ 𝑖 = 1,2,3, . . , 𝑁)             (42) 

This result is based on the assumption that the initial size of each cell equals 1. The result can easily be extended 

to the situation where each i-th cell has an initial size of 𝑠𝑖𝑧𝑒𝑖(𝑡 = 0) and the total initial size of the population 

equals  ∑ 𝑠𝑖𝑧𝑒𝑖(0)𝑁
𝑖=1 . 

lim𝑡→0 𝜇𝑡𝑜𝑡𝑎𝑙(𝑡) =
1

∑ 𝑠𝑖𝑧𝑒𝑖(0)𝑁
𝑖=1

∗ (∑ 𝑠𝑖𝑧𝑒𝑖(0)𝑁
𝑖=1 ∗ 𝜇𝑖})          

= 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑎𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐 𝑚𝑒𝑎𝑛 𝑜𝑓 𝜇𝑖 , 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑏𝑦 𝑠𝑖𝑧𝑒𝑖(𝑤𝑖𝑡ℎ 𝑖 = 1,2,3, . . , 𝑁)               (43) 

In conclusion, the instantaneous population growth rate of a population is the weighted arithmetic mean of the 

growth rates of its cells (more generally, subpopulations), weighted by the sizes of its cells (subpopulations). 

10.3 The steady-state growth rate in function of the variables used in our 

stochastic model 
In the previous section, we derived an equation that allows the calculation of the instantaneous population 

growth rate, based on the growth rates and sizes of all single-cells within that population. To make these 

equations compatible with our model, we first need to define the size and growth rate of each cell, based on the 

two single-cell parameters that can fully describe the state of each cell in our stochastic model. The first 

parameter is the DT assigned to each cell DTi, and the second parameter is the time remaining for completion of 

its doubling τi.  

In our model, each i-th cell start out at a size of 1, and grows exponentially at a rate of ln(2)/DTi until it reaches a 

size of 2. The size and the growth rate of each cell can thus be represented using the following formula. 

𝑠𝑖𝑧𝑒𝑖 = 2
(

𝐷𝑇𝑖−"𝑇𝑖𝑚𝑒 𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝐹𝑜𝑟 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 𝐵𝑢𝑑"

𝐷𝑇𝑖
)
 = 2

(
𝐷𝑇𝑖−τ𝑖

𝐷𝑇𝑖
)
                             (44) 

µ𝑖 =
ln (2)

𝐷𝑇𝑖
                (45) 



Combing equations 43 until 45 gives the instantaneous growth rate in terms of the parameters used in our model. 

𝜇𝑖𝑛𝑠𝑡𝑎𝑛𝑡𝑎𝑛𝑒𝑜𝑢𝑠(𝑡) =
1

∑ 2
(

𝐷𝑇𝑖−τ𝑖
𝐷𝑇𝑖

)
𝑁
𝑖=1

∗ (∑ 2
(

𝐷𝑇𝑖−τ𝑖
𝐷𝑇𝑖

)𝑁
𝑖=1 ∗

ln (2)

𝐷𝑇𝑖
)            (46) 

Since the parameters used in our model represent continuous variables, we will now derive the same equation, 

but using integrals. For this, we will define the function 𝑝(𝐷𝑇, 𝜏, 𝑡), which describes the probability to find a cell 

in a state given a combination of 𝐷𝑇 and 𝜏, at time = t. 

𝑝(𝐷𝑇, 𝜏, 𝑡) =  𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑡𝑜 𝑓𝑖𝑛𝑑 𝑎 𝑐𝑒𝑙𝑙 𝑖𝑛 𝑎 𝑠𝑡𝑎𝑡𝑒 𝑔𝑖𝑣𝑒𝑛 𝐷𝑇 𝑎𝑛𝑑 𝜏  

𝑤𝑖𝑡ℎ      ∫ ∫ 𝑝(𝐷𝑇, 𝜏, 𝑡) ∗ 𝑑𝐷𝑇 ∗ 𝑑𝜏
∞

0
= 1

∞

0
       𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑡                               (47) 

Given equation 47, the instantaneous growth rate in terms of the parameters used in our model can be written in 

the integral form. 

𝜇𝑖𝑛𝑠𝑡𝑎𝑛𝑡𝑎𝑛𝑒𝑜𝑢𝑠(𝑡) =  
1

∫ ∫ 𝑝(𝐷𝑇,𝜏,𝑡)∗2
(

𝐷𝑇−𝜏
𝐷𝑇 )

∗𝑑𝐷𝑇∗𝑑𝜏
∞

0
∞

0

∗ ∫ ∫ 𝑝(𝐷𝑇, 𝜏, 𝑡) ∗ 2(
𝐷𝑇−𝜏

𝐷𝑇
) ∗

𝑙𝑛(2)

𝐷𝑇
∗ 𝑑𝐷𝑇 ∗ 𝑑𝜏     

∞

0

∞

0
(48) 

During steady-state growth, the probability 𝑝(𝐷𝑇, 𝜏, 𝑡) function and the population growth rate will have reached 

a stable distribution. Therefore, the steady-state probability distribution (≡ 𝑝𝑠𝑠(𝐷𝑇, 𝜏)) and the steady-state 

population growth rate (≡ µ𝑠𝑠) are not dependent on time.  

𝜇𝑠𝑠 =  
1

∫ ∫ 𝑝𝑠𝑠(𝐷𝑇,𝜏)∗2
(

𝐷𝑇−𝜏
𝐷𝑇 )

∗𝑑𝐷𝑇∗𝑑𝜏
∞

0
∞

0

∗ ∫ ∫ 𝑝𝑠𝑠(𝐷𝑇, 𝜏) ∗ 2(
𝐷𝑇−𝜏

𝐷𝑇
) ∗

𝑙𝑛(2)

𝐷𝑇
∗ 𝑑𝐷𝑇 ∗ 𝑑𝜏 

∞

0

∞

0
           (49) 

The denominator in equation 50 can be thought of as the arithmetic mean of the cell sizes, and will be 

summarized as ‘MeanCellSize’.  

µ𝑠𝑠 =
1

𝑀𝑒𝑎𝑛𝐶𝑒𝑙𝑙𝑆𝑖𝑧𝑒
∫ ∫ 𝑝𝑠𝑠(𝐷𝑇, 𝜏) ∗

∞

0

∞

0
2(

𝐷𝑇−𝜏

𝐷𝑇
) ∗

𝑙𝑛(2)

𝐷𝑇
∗ 𝑑𝐷𝑇 ∗ 𝑑𝜏            (50) 

10.4 Intuitive understanding of the population growth rate effect of DT noise in 

the modelstoch,no-epig  
In order to intuitively understand how DT noise can affect the steady-state population growth, it can be useful to 

divide the population into groups of cells that were assigned the same DT, and consider how much each group 

contributes to the total population growth.  

µ𝑠𝑠 ≡ ∫ 𝐺𝑟𝑜𝑤𝑡ℎ𝑅𝑎𝑡𝑒𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 (𝐷𝑇) ∗ 𝑑𝐷𝑇
∞

0
           (51) 

Given equations 50 and 51, the growth rate contribution at a certain DT will be given by the following equation. 

𝐺𝑟𝑜𝑤𝑡ℎ𝑅𝑎𝑡𝑒𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛  (𝐷𝑇) =
1

𝑀𝑒𝑎𝑛𝐶𝑒𝑙𝑙𝑆𝑖𝑧𝑒
∗  

𝑙𝑛(2)

𝐷𝑇
∗ ∫ 𝑝𝑠𝑠(𝐷𝑇, 𝜏) ∗

∞

0
2(

𝐷𝑇−𝜏

𝐷𝑇
) ∗ 𝑑𝜏                  (52) 

The ratio 
𝑙𝑛(2)

𝐷𝑇
 within the equation represents the growth rate of the cells, while the right part 

∫ 𝑝𝑠𝑠(𝐷𝑇, 𝜏) ∗
∞

0
2(

𝐷𝑇−𝜏

𝐷𝑇
) ∗ 𝑑𝜏 represents the proportion of the cells that have been assigned this DT but weighted 

by the size of these cells. 

In order to understand how population growth rate is affected by adding (Gaussian) noise to the sampling DT 

distribution, while keeping the mean DT µ𝐷𝑇 the same, one can compare the growth rate contribution at the DT = 

µ𝐷𝑇 − 𝐶 with the growth rate contribution at the DT = µ𝐷𝑇 + 𝐶 (with C being a positive constant). If the average 

growth rate contribution of DT = µ𝐷𝑇 − 𝐶 and DT = µ𝐷𝑇 + 𝐶 is higher than the growth rate contribution at DT = 

µ𝐷𝑇, the population growth rate will increase, and vice versa. 

The effect of changing the DT on the single-cell growth rate is straightforward since it is given by equation 
𝑙𝑛(2)

𝐷𝑇
. 

The longer the DT that is assigned to a cell, the slower it will grow. However, since this is a convex function, the 



growth rate increase of cells that were assigned a DT = µ𝐷𝑇 − 𝐶, is higher than the growth rate decrease of cells 

that were assigned a DT = µ𝐷𝑇 + 𝐶. In other words: 

ln (2)

𝐷𝑇−𝑐
−

ln(2)

𝐷𝑇
>

ln (2)

𝐷𝑇
−

ln(2)

𝐷𝑇+𝑐
           (53) 

Therefore, without considering the proportions and sizes of cells during steady-state in equation 52, we can 

expect that increasing the (Gaussian) noise in the model-sampling DT distribution would increase the population 

growth rate, since the growth rate contribution at DT = µ𝐷𝑇 − 𝐶 would increase more, than the growth rate 

contribution at DT = µ𝐷𝑇 + 𝐶 would decrease. This mathematical consequence is more generally known as the 

Jensen’s inequality, which states that the mean of a set of values that have undergone a convex transformation 

f(x), is equal to or higher than the same transformation of the mean of these values (or mean[f(x)] ≥ f(mean[x])). 

How adding DT noise affects the steady-state distribution is more complicated. But based on equation 52, we 

can identify two factors herein that will have an effect on the population growth rate: the steady-state proportion 

of cells that were assigned a DT, and the size distribution within these groups of cells given a certain DT. 

It can intuitively be understood that increasing the DT noise in the sampling distribution (while keeping the DT 

mean constant) will lead to a higher proportion of cells with long DTs during steady-state. Indeed, while each 

cell has a similar chance of being assigned a long or a short DT, the cells with a short DT will finish their cell 

cycle more quickly. The net effect is that the steady-state population will be enriched with long DTs compared to 

the model-sampling distribution (Figure S4D). The higher the DT noise in the sampling distribution, the bigger 

this effect will be. This will reduce the population growth rate contribution of the cells which were assigned 

short DTs.  

Finally, increasing the DT noise in the sampling distribution (while keeping the mean DT constant) will increase 

on average the size of cells with short DT. This is because, equal proportions of cells with long and short DTs 

are assigned at each instant, but cells with a long DT progress increase in size more slowly. This will increase 

the population growth rate contribution of the cells that were assigned short DTs. 

In summary, we can identify three factors that influence the population growth rate under stochastic DT 

variability. In comparison to cells with long DTs, cells that have been assigned short DTs will: 1) grow faster, 2) 

become less abundant during steady-state, and 3) have larger sizes during steady-state. Factors 1 and 3 will 

increase the growth contribution of cells with short DTs, while factor 2 will decrease it. The net effect of these 

three factors is difficult to predict a priori, but our modelstoch,no-epig shows that the combined effect is an increase 

in population growth rate (Figure 4 and S4). 

10.5 Population growth rate effect of DT noise in the modelstoch,epig 
When the model is run assuming epigenetic DT correlations (modelstoch,epig), the population growth rate will be 

dependent on the same three factors as described in section 10.4. In this framework, the predicted population 

growth rate increase due to epigenetic DT correlations, can be explained by its effect on the steady-state 

distribution 𝑝𝑠𝑠(𝐷𝑇, 𝜎). Similar as in the modelstoch,no-epig, cells that have been assigned short DTs will become 

depleted from the steady-state population. However, the effect is less pronounced because these cells now have a 

higher chance to be assigned a short DT again. This will reduce the differences in abundance and average size 

that exist during steady-state between cells that have been assigned long and short DTs. While reducing the 

differences in abundance could lead to an increase in population growth rate, reducing the differences in average 

size could lead to a decrease. The net effect is difficult to predict a priori, but our modelstoch,epig predictions show 

that the combined effect is an increase in population growth rate (Figure 5 and S5). 
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Supplemental Dataset Legends 

Dataset S1. Related to Figure 1,2 and 6. All single-cell DT measurements obtained using time-lapse 

microscopy. This includes firstly all measurements from the dataset used throughout this study (n=41 

experiment; see Figures 1,2), and secondly the measurements used exclusively for Figure 6. The latter 

measurements are flagged under the column ‘Used exclusively in Fig 6’. 

(A) All measured single-cell DTs and (un)budded periods. All DTs and daughter (un)budded periods 

were scored as shown in Figure 1A. Mother (un)budded periods were scored for 21 out of 41 

experiments (not shown in Figure 1A). Missing observations are shown by “NA”, and represent 

individual observations that could not be scored (due to overcrowding) or observations that were not 

scored across a whole experiment (see Supplemental Experimental Procedures). 

 

(B) Mean, SD, CoV, skewness and kurtosis of mother and daughter DT distributions. Per experiment, 

the mean, SD, CoV, skewness and kurtosis were calculated for the mother and daughter DT 

distributions (using the data from (A)). These calculations were done using a bootstrapping 

(resampling) approach (see Supplemental Experimental Procedures). For each parameter, this led to a 

‘bootstrapped mean’ and a ‘ bootstrapped SD’. These ‘bootstrapped SDs’ were used to generate error 

bars in Figure 2A,C, Figure 4A and Figure S4A. 

 

(C) Epigenetic DT inheritance per experiment. R represents the Pearson's correlation coefficient for the 

correlations between DTs of the cells within microcolonies. The two DT correlations which were 

considered in the model were calculated for each experiment individually: 1) the correlation between 

consecutive mother DTs (mDT1 vs. mDT2) and 2) the correlation between DTs of a mother and its most 

recently born daughter (mDT1/2 vs. dDT1/2). The distribution of R² for both correlations across our 

dataset is shown in Figure 5A. N represents the number of data points used to calculate R and R². All 

these parameters were calculated using the DT data from (A). 

 

(D) Cumulative mother and daughter DT distributions per experiment. These cumulative DT 

distributions are represented in Figure 1B. 

Dataset S2. Related to Figure 3. Testing Goodness-of-Fit of Normal, Gamma, Weibull, Log-logistic, Log-

normal and Exponential probability distributions for observed DT data. 

(A) Fitting probability distributions to DT data. All mother and daughter DT measurements (Dataset S1) 

were grouped per experiment, and Normal, Gamma, Weibull, Log-logistic, Log-normal and 

Exponential distributions were fitted to them using a bootstrapping (resampling) approach (see 

Supplemental Experimental Procedures). In short, the DT data was resampled 1000 times with 

replacement at full population size and distributions were fitted using the fitdist() function in 

MATLAB. For each of the fitted distribution's parameters, this led to a ‘bootstrapped mean’ and 

‘bootstrapped SD’. 

 

(B) Goodness-of-fit using Anderson-Darling Test. The goodness-of-fit of the distributions fitted to the 

bootstrapped DT data in (A) is tested using the Anderson-Darling test. For each bootstrapped dataset 

from (A), the goodness-of-fit was examined for the different fitted distributions (Normal, Gamma, 

Weibull, Log-logistic, Log-normal and Exponential), and p-values were calculated using the function 

adtest() in MATLAB. As the DT data was resampled 1000 times per experiment, this led to 1000 p-

values per experiment per distribution. To assess whether a certain distribution gave a good fit with our 

experimental data, an average p-value was calculated as the mean of these 1000 ‘bootstrapped p-

values’. Also see Supplemental Experimental Procedures. 

Dataset S3. Related to Figure 3-5. Modeled and empirical population growth rates.  

(A) Predicted population growth rates for the whole dataset using the deterministic and stochastic 

model (with and without epigenetic effects). This table contains all predicted population growth rates 

which were obtained using the models discussed in this study: 1) the deterministic model (Hartwell & 

Unger, 1977), 2) our stochastic model without epigenetics and 3) our stochastic model with epigenetics. 

All growth rate predictions of the model were obtained using a bootstrapping (resampling) approach 

(Supplemental Experimental Procedures). For each of the predictions, this led to a ‘bootstrapped mean’ 

and ‘bootstrapped SD’. Furthermore, the specific values of the single-cell parameters used in each 



model are listed. When running our model assuming epigenetics, two different sets of parameters were 

used: 1) ‘Global epigenetic DT inheritance’, using the average DT correlations measured on all DT data 

combined across all experiments and 2) ‘Individual epigenetic DT inheritance’, using the DT 

correlations measured for each experiment individually. 

 

(B) Experimentally measured population growth rates on solid media. Microcolony growth rates were 

measured by tracking either the cell count (Figure 3B) or the area (Figure S3B)  increase over time. Per 

time-lapse movie, a number of microcolonies were analyzed by measuring the area (or cell count) at 

three evenly spaced time-points throughout the movie. Next, the area (or cell count) of all the 

microcolonies at each timepoint was summed and the microcolony growth rate was calculated by fitting 

a linear model to the ln-transformed summed area (or cell count) plotted against time (Supplemental 

Experimental Procedures). Listed are the slope of this linear model (the microcolony growth rate), the 

R² of the correlation, the fold increase in area (or cell count) from the first time point to the last, and the 

number of microcolonies scored. 

 

(C) Experimentally measured population growth rates in liquid media. These measurements were used 

in Figure 3C. Growth rates were measured in liquid culture using a standard colony counting assay 

(Supplemental Experimental Procedures). 

 

(D) Predicted population growth rates using the empirical DT distributions, Gamma DT distributions 

and Pearson system DT distributions. In contrast to (A), the population growth rates under the 

modelstoch,no-epig were predicted using other DT distributions than the Normal distribution. This data is 

shown in Figure S4A. 

 

(E) Predicted population growth rates using different DT averages in the deterministic model. In (A), 

the deterministic model uses the arithmetic mean DT to estimate the population growth rate. Here, we 

show the population growth rate predictions when using different averages (the median and the 

arithmetic, geometric, harmonic, quadratic and cubic mean). These averages were taken directly on the 

DT measurements, or after converting them to ‘growth rate’-values [using GR = ln(2)/DT] followed by 

conversion of the average back to a DT-value. This data was used to calculate the mean squared error 

and mean error compared to the stochastic model in Figure S4C. 

Dataset S4. Related to Figure 1-6. Summary statistics of different measurements and simulations 

discussed in the manuscript. 

This dataset provides a table with summary statistics of different measurements and simulations 

discussed in the manuscript. All of these data are also shown in Datasets S1 and S3, but are combined 

here in a minimal and easy-to-handle table that was used for statistical analysis. All DT-related 

summary statistics were obtained by bootstrapping, and re-calculation of a given statistic can be found 

in Dataset S1 (Supplemental Experimental Procedures). Model-related statistics were generated as 

described by repeated Monte Carlo simulations (Supplemental Experimental Procedures). Population-

level growth rates were determined as described in the Supplemental Experimental Procedures.  

Dataset S5. Related to Figure 3. Modeled and empirical microcolony growth rate variability 

(A) Experimental and predicted population growth rates for the whole dataset. The microcolony 

growth rates measurements represented in this table were also used to calculate population growth rates 

on solid medium by tracking area increase (Supplemental Experimental Procedures). Per time-lapse 

movie, a number of microcolonies (19-62) were analyzed by measuring the area at three evenly spaced 

time-points throughout the movie. Microcolony growth rates were then calculated 1) from the initial to 

the intermediate time point and 2) from the initial to the final time point. To generate predictions of 

microcolony growth rates, for each strain and condition, we randomly selected the modeled growth 

rates of 1000 microcolonies from our simulation. This was done using the strictly stochastic and the 

stochastic-epigenetic model, which were both extended to take into account the cell-cycle dependent 

volume increase within single cells (Supplemental Experimental Procedures).  

 

(B) Statistical analysis of accuracy of microcolony variability predictions using Anderson-Darling 

(AD) Test. Initially, all microcolony growth rates (from (A)) were normalized to within-distribution 

medians to be able to specifically compare the variability of the modeled and empirical microcolony 

growth rates. Next, the predicted distributions were tested against the empirical distributions using 

adk.test() function in R. For each comparison, the AD-Test Statistic, the p-value and the Bonferroni-



corrected p-value are listed. The parameter “Estimated Population Size” was calculated using the 

following formula: EstimatedPopulationSize = 1 * exp ( microcolonyGrowthRate * timeElapsed ) with 

microcolonyGrowthRate equaling the average microcolony growth rate. 
 

 

 

 

  



Supplemental Movie Legends 

Movie S1. Related to Figure 1. Measurement of single-cell doubling times of mother and daughter cells 

using time-lapse differential interference contrast (DIC) microscopy.  

A time-lapse movie of BY/S288c growing in YP + 3% glucose is shown to indicate which events were 

scored during analysis. A subset of time-lapse pictures from this movie was used in Figure 1A (after 

cropping to show only one microcolony). The color-code that was used to indicate the mother (red), 1
st
 

daughter (blue), 2
nd

 daughter (green) and 3th daughter (yellow) corresponds to the color-code used in 

Figure 1A. The different events that were scored during the analysis are displayed on-screen during the 

movie. 

 


