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Supplementary Table T1 

Table 1. Summary of parameters acquired for single cells cultured in the absence and presence of Cell Tracer. 

The entries represent the mean values with their standard errors and the spread within the sample given by the 

standard deviation (SD) of individual measurements around the mean. Migration velocities 𝑣 and step lengths 𝑙𝑥 

and 𝑙𝑦 were calculated by averaging the displacements between images taken at 15 min intervals. 

Parameter and notation No Cell Tracer With Cell Tracer 

  Average SD  Average SD 

Number of cells 𝑁 26 –  22 – 

Migration velocity (𝜇m/hr) 𝑣 22.7  0.6 16.5  14.1  0.4 12.2 

Step length in x (𝜇m) 𝑙𝑥 3.5  0.1 3.4  2.2  0.1 2.4 

Step length in y (𝜇m) 𝑙𝑦 3.5  0.1 3.5  2.1  0.1 2.5 

Time to first division (hr)  𝑡div 7  1 5  10  2 6.5 

 

Supplementary Table T2 

Table T2. Parameters characterising the migration of hESC pairs, both in the absence and in the presence of Cell 

Tracer.  For each parameter, we present its mean value and standard deviation, as well as the spread given by the 

standard deviation of the individual measurements from the mean. 

Parameter and notation  No Cell Tracer  With Cell Tracer 

  Type A Type B  

  Average SD Average SD Average SD 

Number of pairs 𝑁 10 12 18 

Tracking time (hr)  23 24.25 31.5 

Initial separation (𝜇m) 𝑠0 17 ± 1 4 18 ± 1 5 18 ± 1 6 

Final separation (𝜇m) 𝑠f 123 ± 27 87 42 ± 9. 32 19 ± 2 7 

Maximum separation (𝜇m) 𝑠max 141 ± 30 95 117 ± 17 58 49 ± 2 8 

Time to 𝑠max (hr) 𝑇max 16 ± 2 6 7 ± 1 4 7 ± 2 8 

Speed of each cell (𝜇m/hr) 𝑣 25.8 ± 0.5 20.4 24.8 ± 0.4 17.5 17.5 ± 0.4 14.0 

Pair centroid speed (𝜇m/hr) 𝑣pc 18.7 ± 0.5 13.6 18.6 ± 0.4 12.4 14.1 ± 0.4 11.1 

Relative speed (𝜇m/hr) 𝑣r 38 ± 1 28 33.3 ± 0.8 23.7 20.8 ± 0.6 17.1 

 

Supplementary Section S1: Directionality 

Directionality, (or the straightness index) is a simple and convenient parameter to quantify an isotropic 

random walk, as employed by Li et al1.  The displacement of the cell at a time 𝑡, measured along the 

straight line from the starting point is 𝐿𝑖 = √[𝑥𝑖(𝑡) − 𝑥𝑖,0]2 + [𝑦𝑖(𝑡) − 𝑦𝑖,0]2 (with 𝑖 the cell identifier) 

and the total distance traversed during the time 𝑡 is denoted 𝑇𝑖.  The directionality of the cell migration 

is then defined as 𝛥𝑖 = 𝐿𝑖/𝑇𝑖, and its values lie in the range 0  𝛥𝑖  1. If the cell moves along a straight 

path, we have 𝑇𝑖 = 𝐿𝑖, and the directionality has its maximum value, 𝛥𝑖 = 1. If, however, the cell 

follows a long and tortuous trajectory, then 𝑇𝑖 is much larger than 𝐿𝑖, and the directionality is low, 𝛥𝑖 ≈

0. Thus, the directionality quantifies how tangled and convoluted the cell’s trajectory is. This quantity 

is closely related to the tortuosity, similarly characterising the shape of convoluted trajectories2. While 



the directionality may not the most useful characteristic of trajectories3, we use it to retain comparability 

with earlier work on cell kinematics3. In particular, the directionality depends on the number of steps 

taken in the random walk. However, the unstained and stained cells move with similar correlation times, 

performing similar number of steps per unit time; this allows us to compare their trajectories in real 

time. It would not be difficult to describe the trajectories in terms of the number of random walk steps, 

but such a description would be less intuitive. 

For a two-dimensional isotropic random walk, with steps of a length 𝑙, the average displacement from 

the starting point increases with the number of steps 𝑁 as 𝐿𝑖 = 𝑙√𝑁, where 𝑁 = 𝑡/𝜏 is the number of 

steps in time 𝑡. Meanwhile, the total distance traversed is 𝑇𝑖 = 𝑙𝑁. Then the average directionality of 

an isotropic random walk varies with time as11 

 
𝛥𝑖 ≃

1

√𝑁
= √

𝜏

𝑡
 , (1) 

decreasing towards zero as the number of steps 𝑁, or time 𝑡, increases. The reduction of the average 

directionality with time in inverse proportion to the square root of time elapsed since the start of the 

migration is a diagnostic property of an isotropic random walk. Note that Equation (1) gives the 

averaged directionality; the displacement and directionality for a single walker may deviate 

significantly due to the probabilistic nature of the walk.  

To further confirm that the cell migration for unstained cells is consistent, on average, with the theory 

of isotropic random walk, we consider the average directionality (averaged over all 26 single hESCs) 

versus time, shown in Figure S1a. Up to around 7 hours there is a systematic decrease in the averaged 

directionality from unity to low values, in qualitative agreement with the random walk behaviour. To 

ascertain the functional form of this decay, the data is plotted on log-log axes (inset of Figure S1a). The 

prominent straight-line behaviour during this time indicates that the directionality decays as a power-

law with time, and a straight-line least-squares fit (not constrained to go through any particular point) 

gives 𝛥𝑖̅(𝑡) = (0.50 ± 0.02)𝑡−0.44±0.04. The scaling with time is close to the 𝑡−1/2 dependence 

characteristic of the isotropic random walk, Equation (1). Beyond 7 hours, the evolution of the average 

directionality changes its character and deviates from the 1/√𝑡 random walk behaviour; a similar 

deviation was noted in the plot of mean-square displacement versus time in Figure 3.  

The averaged directionality in the presence of Cell Tracer, shown in Figure S1b, also indicates the 

systematic decrease over time, characteristic of an isotropic random walk.  The least-squares fit is 

𝛥𝑖̅(𝑡) = (0.61 ± 0.05)𝑡−0.50±0.04, which is also close to the 𝑡−1/2 scaling characteristic of the diffusive 

motion.   

The directionality of the unstained pair centroid motion, shown in Figure S2a, confirms that the pair as 

a whole can be described as an unbiased random walk at a good level of accuracy over the observation 

time range. The least-squares fit for unstained cells 𝛥𝑖̅(𝑡) = (0.49 ± 0.02)𝑡−0.42±0.02.   The pair 

centroid motion of Cell Tracer stained cells is also consistent with a random walk: the least-squares fit 

is 𝛥𝑖̅(𝑡) = (0.54 ± 0.06)𝑡−0.56±0.06, shown in Figure S2b.  

 



Supplementary Figure S1 

 
Supplementary Figure S1: Mean (black circles) and median (blue squares) directionality over time for 

the migration of single hESCs in (a) the absence of Cell Tracer, and (b) the presence of Cell Tracer. 

Insets show the data on natural logarithmic axes. Straight lines are a least-squares fit, applied to the 

whole time range in (b) and up to 7 hours in (a). These fits are (a) 𝛥𝑖̅(𝑡) = (0.50 ± 0.02)𝑡−0.44±0.04 

and (b) 𝛥𝑖̅(𝑡) = (0.61 ± 0.05)𝑡−0.50±0.04. Error bars show the upper and lower quartiles. The number 

of live cells over time for unstained cells (c) and stained cells (d) to indicate the changing sample size. 

The sampling interval is every 15 minutes. 

 



Supplementary Figure S2          

 

Supplementary Figure S2. Mean (black circles) and median (blue squares) directionality over time for 

the migration of pairs of hESCs in (a) the absence of Cell Tracer, and (b) the presence of Cell Tracer. 

Insets show the data on natural logarithmic axes. Straight lines are a least-squares fit, applied to the 

whole time range in (b) and up to 12 hours in (a). These fits are (a) 𝛥𝑖̅(𝑡) = (0.49 ± 0.02)𝑡−0.42±0.02 

and (b) 𝛥𝑖̅(𝑡) = (0.54 ± 0.06)𝑡−0.56±0.06. Error bars show the upper and lower quartiles. The number 

of live cells over time for unstained cells (c) and stained cells (d) to indicate the changing sample size. 

The sampling interval is every 15 minutes. 

 

 



Supplementary Figure S3 

 

Supplementary Figure S3: Histograms of division times, with bin widths of 5 hours in each case, for 

the single hESCs in the absence (blue) and presence of Cell Tracer (cross hatched in red).  The 

Kolmogorov–Smirnov two-sample test confirms that the two distributions are distinct, suggesting that 

the Cell Tracer treatment affects significantly the ability of the cells to divide. The Mann-Whitney U 

test also confirms the two distributions are distinct (𝑝 < 0.05). 

 

Supplementary Figure S4 

 

Supplementary Figure S4: The scatter plot of the step lengths 𝑙𝑥 and 𝑙𝑦 at each time frame (every 15 

minutes) for cells (a) without Cell Tracer and (b) with Cell Tracer. Together with the low cross-

correlation coefficient between the two variables discussed in the main text, the lack of any pronounced 

correlation between 𝑙𝑥 and 𝑙𝑦 [except perhaps the rare events with large values of  𝑙𝑦 in Panel (a)] 

suggests the isotropy of the random walk.  According to the Kolmogorov-Smirnov and Mann-Whitney 

U tests, there is no evidence to distinguish between the distributions of 𝑙𝑥  and 𝑙𝑦. The Pearson product-

moment correlation coefficient of 𝑙𝑥 and 𝑙𝑦 is as small as 0.22, confirming the steps in the 𝑥 and 𝑦 

directions are uncorrelated. 

 



Supplementary Figure S5 

 

Supplementary Figure S5: (a) The speed of the pair centroid in the absence of Cell Tracer for the 

Type A (red) and Type B (blue) pairs: (i) the median speeds, with error bars representing the upper 

and lower quartiles, and (ii) the corresponding probability densities of the centroid speeds. Horizontal 

lines in (i) indicate the average across the entire category.  (b): as in Panels (a) but for the relative 

speed within a pair. According to Kolmogorov–Smirnov and Mann-Whitney U tests the probability 

distributions for the Type A and Type B relative speeds are different. 

 

  



Supplementary Figure S6       

 

Supplementary Figure S6.  (a) Median pair centroid speeds and (b) relative speeds of cell pairs in the 

presence of Cell Tracer. 

 



Supplementary Figure S7       

 

Supplementary Figure S7: The time evolution of the mean (black circles) and median (squares) centroid 

𝐿2 for pairs of unstained cells of Type A (a) and unstained cells of Type B (b) and stained cells (c). The 

least-squares fit for Type A cells is 𝐿2 = 2𝐷𝑡 with 𝐷 =  58.45 ± 1.8 𝜇m2/hr. Error bars show the upper 

and lower quartiles. The sampling interval is 15 minutes. 

  



 

Supplementary Section S3: Correlated Random Walk 

An alternative model for the migration of the cells is a correlated random walk, where the direction of 

a new step depends on the direction of the previous step, so that the migration retains a short-term 

memory of its direction10. We recall that the direction of movement is selected independently of the 

previous direction in the ordinary random walk.  The migration remains diffusive over long time and 

length scales, but the diffusivity now depends on the mean value of the cosine of the angle 𝜃 between 

the two consecutive displacements, denoted here 〈cos 𝜃〉: 

𝐷 =  
〈𝑙2〉

2𝜏
+

〈𝑙〉2〈cos 𝜃〉

𝜏(1 − 〈cos 𝜃〉)
 , 

where, as before, 𝜏 is the correlation time, 〈𝑙2〉 and 〈𝑙〉 are the mean squared length of the steps and their 

mean length, respectively, and angular brackets denote averaging12.  For 〈cos 𝜃〉 = 0 (e.g., for 𝜃 

uniformly distributed between 0 and 2𝜋), the standard expression (3) is recovered, with 〈𝑙2〉 = 〈𝑣2〉/𝜏. 

For 〈cos 𝜃〉 → 1 (unidirectional motion), 𝐷 → ∞ signifying a non-diffusive motion.  

For a correlated random walk, the relation of the correlation time to the diffusivity changes from 𝜏 =

2𝐷/〈𝑣2〉 = 〈𝑙2〉/(2𝐷), used in the main text, to 

𝜏 =
〈𝑙2〉/2 + 〈𝑙〉2〈cos 𝜃〉/(1 − 〈cos 𝜃〉)

𝐷
. 

To assess possible importance of the short-time correlations, consider two cases that illustrate the range 

of possibilities, assuming 〈𝑙2〉 = 〈𝑙〉2 (e.g., a constant step length 𝑙).  The diffusion coefficient obtained 

for an uncorrelated random walk is 𝐷0 = 𝑙2/(2𝜏).  For 〈cos 𝜃〉 = 1/2, we obtain 𝐷 = 3𝐷0, and the 

correlation time derived as 𝜏 = 𝑙2/(2𝐷) would is three times longer than its true value 𝜏 = 𝑙2(1 +
〈cos 𝜃〉)/[2𝐷(1 − 〈cos 𝜃〉)]. Alternatively, for 〈cos 𝜃〉 = −1/2, we have 𝐷 = 𝐷0/3 and the correlation 

time inferred using the assumption of uncorrelated random walk is three times shorter than the true 

value. 

We have not noticed any obvious signs that would suggest that the cell migration is better modelled as 

a correlated random walk.  Since the correlation time of the cell migration is not affected much by the 

staining, the comparisons and conclusions discussed in the text are independent of this aspect of the 

random walk, if the staining only affects the parameters of the random walk (as we assume) rather than 

destroys or introduces any significant short-time correlations.  However, this interesting question 

deserves further careful analysis.  
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