## SUPPLEMENTARY DATA



**Supplementary Fig. S1.** Representative pictures of Zm*FBX92<sup>OE</sup>*, At*FBX92<sup>OE</sup>*, amiFBX92, At*FBX92<sup>del</sup>* and Col-0 grown *in vitro* and expression levels in mature leaves. (A) Pictures of Zm*FBX92<sup>OE</sup>* and Col-0 plants grown *in vitro* at 6, 9, 15 and 21 DAS. Scale bar 1 cm. (B) qRT-PCR analysis of the At*FBX92<sup>OE</sup>* and Col-0 plants grown *in vitro* at 6, 9, 15 and 21 DAS. Scale bar 1 cm. (C) Pictures of At*FBX92<sup>OE</sup>* and Col-0 plants grown *in vitro* at 6, 9, 15 and 21 DAS. Scale bar 1 cm. (D) qRT-PCR analysis of the At*FBX92<sup>OE</sup>* and Col-0 plants grown *in vitro* at 6, 9, 15 and 21 DAS. Scale bar 1 cm. (D) qRT-PCR analysis of the At*FBX92* expression in mature leaves of six amiFBX92 lines relative to wild type. (E) Pictures of amiFBX92 and Col-0 plants grown *in vitro* at 5, 10, 14 and 21 DAS. Scale bar 1 cm. (F) qRT-PCR analysis of the At*FBX92<sup>del</sup>* and Col-0 plants grown *in vitro* at 6, 9, 16 and 24 DAS. Scale bar 1 cm.



**Supplementary Fig. S2.** Effect of Zm*FBX92* overexpression on maize leaf size and shoot weight under control and mild drought conditions. (A) Expression level of Zm*FBX92* in mature leaves of Zm*FBX92*<sup>*OE*</sup> plants relative to wild type as determined by qRT-PCR. Values were normalized against expression levels of housekeeping genes. Data are average fold change (transgenic versus wild-type plants)  $\pm$  SE (n<sub>transgenic</sub> = 3 and n<sub>wild-type</sub> = 9-20). (B to H) Measurement of final leaf 4-related parameters: length (B), elongation rate (C), elongation duration (D), width (E), area (F), weight (G), and emergence

(H). Data are average  $\pm$  SE ( $n_{transgenic}$  = 20 and  $n_{wild-type}$  = 20. (I to K) Measurement of shoot-related parameters at seedling stage: fresh weight (I), leaf number (J) and V-stage (K). Data are average  $\pm$  SE ( $n_{transgenic}$  = 20 and  $n_{wild-type}$  = 20).



**Supplementary Fig. S3.** Effect of perturbed At*FBX92* expression on rosette growth under mild osmotic stress conditions. (A) PRA of At*FBX92*<sup>OE</sup> lines and WT over time from 6 until 21 DAS. Plants were grown *in vitro* on medium containing 25 mM mannitol. Inset: PRA in log scale. Values represent the mean  $\pm$  SE (n transgenic lines = 26-32, n<sub>WT</sub> = 40). (B) PRA of *amiFBX92* and WT over time from 6 until 21 DAS. Plants were grown *in vitro* on medium containing 25 mM mannitol. Inset: PRA in log scale. Values represent the mean  $\pm$  SE (n transgenic lines = 26-32, n<sub>WT</sub> = 40). (B) PRA of *amiFBX92* and WT over time from 6 until 21 DAS. Plants the mean  $\pm$  SE (n transgenic lines = 26-32, n<sub>WT</sub> = 40). (B) PRA of *amiFBX92* and WT over time from 6 until 21 DAS. Plants were grown *in vitro* on medium containing 25 mM mannitol. Inset: PRA in log scale. Values represent the mean  $\pm$  SE (n = 29).



**Supplementary Fig. S4.** Amino acid alignment of the Zm*FBX92* and At*FBX92* proteins using EMBOSS Needle. Protein domains were determined using the Pfam database (Finn et al., 2014). The F-box

domains are indicated in yellow, the F-box associated domain of At*FBX92* in red. Identical amino acids are indicated by ":", similar amino acids by ".".

| ZmFBX92    | F-box |                         |  |
|------------|-------|-------------------------|--|
| AtFBX92    | F-box | F-box associated domain |  |
| AtFBX92del | F-box |                         |  |

**Supplementary Fig. S5.** Amino acid sequence comparison of the ZmFBX92 and AtFBX92 proteins. Schematic representation of the protein domains in Zm*FBX92*, At*FBX92* and At*FBX92*<sup>del</sup> drawn to scale.



**Supplementary Fig. S6.** At*FBX92* expression levels in leaf 3 during the subsequent phases of leaf development. Normalized expression levels as calculated from AGRONOMICS1 tiling arrays by Andriankaja et al. (2012).





**Supplementary Fig. S7.** Effect of At*FBX92* perturbation on rosette growth under standard conditions in soil. (A) PRA of At*FBX92*<sup>OE</sup> and WT plants grown in soil from 6 until 20 DAS. Plants were grown in standard. Inset: PRA in log scale. Values represent the mean  $\pm$  SE (n = 16). (B) PRA of *amiFBX92* and WT plants grown in soil from 6 until 20 DAS. Plants were grown in standard conditions. Inset: PRA in log scale. Values represent the mean  $\pm$  SE (n = 16). (C) PRA of At*FBX92*<sup>del</sup> and WT plants grown in soil from 6 until 20 DAS. Plants were grown in standard conditions. Inset: PRA in log scale. Values represent the mean  $\pm$  SE (n = 16). (C) PRA of At*FBX92*<sup>del</sup> and WT plants grown in soil from 6 until 20 DAS. Plants were grown in standard conditions. Inset: PRA in log scale. Values represent the mean  $\pm$  SE (n = 16). (C) PRA of At*FBX92*<sup>del</sup> and WT plants grown in soil from 6 until 20 DAS. Plants were grown in standard conditions. Inset: PRA in log scale. Values represent the mean  $\pm$  SE (n = 16). (C) PRA of At*FBX92*<sup>del</sup> and WT plants grown in soil from 6 until 20 DAS. Plants were grown in standard conditions. Inset: PRA in log scale. Values represent the mean  $\pm$  SE (n = 16).





**Supplementary Fig. S8.** Effect of At*FBX92* perturbation on rosette growth under mild drought conditions in soil. (A) PRA of At*FBX92<sup>OE</sup>* and WT plants grown in soil from 6 until 20 DAS. Plants were grown under mild drought conditions from 10 DAS onwards. Inset: PRA in log scale. Values represent the mean  $\pm$  SE (n = 16). (B) PRA of *amiFBX92* and WT plants grown in soil from 6 until 20 DAS. Plants were grown under mild drought conditions from 10 DAS onwards. Inset: PRA in log scale. Values represent the mean  $\pm$  SE (n = 16). (C) PRA of At*FBX92<sup>del</sup>* and WT plants grown in soil from 6 until 20 DAS. Plants vere grown under mild drought conditions from 10 DAS onwards. Inset: PRA in log scale. Values represent the mean  $\pm$  SE (n = 16). (C) PRA of At*FBX92<sup>del</sup>* and WT plants grown in soil from 6 until 20 DAS. Plants were grown under mild drought conditions from 10 DAS onwards. Inset: PRA in log scale. Values represent the mean  $\pm$  SE (n = 16). (C) PRA of At*FBX92<sup>del</sup>* and WT plants grown in soil from 6 until 20 DAS. Plants were grown under mild drought conditions from 10 DAS onwards. Inset: PRA in log scale. Values DAS. Plants were grown under mild drought conditions from 10 DAS onwards. Inset: PRA in log scale. Values DAS. Plants were grown under mild drought conditions from 10 DAS onwards. Inset: PRA in log scale.









C.

**Supplementary Fig. S9.** Relative expression levels of cell cycle genes in the first leaf pair of *amiFBX92-13* (A), At*FBX92<sup>oE</sup>2* and At*FBX92<sup>oE</sup>7* (B) and At*FBX92<sup>del</sup>12* and At*FBX92<sup>del</sup>6* (C) compared to WT at 7 and 8 DAS as determined by qRT-PCR. Values were normalized against the expression level of the housekeeping gene and represent mean expression levels of indicated transcripts of three technical repeats  $\pm$  SE. Significant differences (Student's *t*-test): \*, *P* < 0.10; \*\*, *P* < 0.01 relative to WT.

## Supplementary Table S1. Primer Sequences.

| Construct                    | Application | Forward primer                     | Reverse primer                        |
|------------------------------|-------------|------------------------------------|---------------------------------------|
| Zm <i>FBX92<sup>OE</sup></i> | cloning     | AAAAAGCAGGCTTCATCTCTCCCAGATCCG     | GAAAGCTGGGTCCCGCTGTTCATCTGAAACAG      |
|                              |             | ATC                                |                                       |
| Zm <i>FBX92</i>              | qRT-PCR     | GATGCCGATGATGTTGTG                 | CTGTTGCTGGAAGGACTC                    |
| 18S rRNA                     | qRT-PCR     | ACCTTACCAGCCCTTGACATATG            | GACTTGACCAAACATCTCACGAC               |
| AtFBX920E                    | cloning     | AAAAAGCAGGCTATGGCTTCAGAG           | GAAAGCTGGGTCGAAGATGTACCC              |
| AtFBX92 <sup>del</sup>       | cloning     | AAAAAGCAGGCTATGGCTTCAGAG           | GAAAGCTGGGTCTTAGACAAGTTCTTGGTCG       |
| amiFBX92                     | cloning     | gaTACTAGTCTATGGTTGGGCCGtctctcttttg | gaCGGCCCAACCATAGACTAGTAtcaaagagaatc   |
|                              |             | tattcc                             | aatga                                 |
| amiFBX92                     | cloning     | gaCGACCCAACCATACACTAGTTtcacaggtcg  | gaAACTAGTGTATGGTTGGGTCGtctacatatatatt |
|                              |             | tgatatg                            | cct                                   |
| pAt <i>FBX92</i>             | cloning     | AAAAAGCAGGCTAAAATGTCTTGCAGCTG      | GAAAGCTGGGTCCTAGCTCCTCGAATGAAGAG      |
|                              |             |                                    | AATCAGAAG                             |
| At <i>FBX92</i>              | qRT-PCR     | GCGCGGTCGTTTATGGTAAC               | GCTTTAGCCCCTTTGGCAAG                  |
| AtFBX92 <sup>del</sup>       | qRT-PCR     | GCAACGGTCTTCACTTCCTC               | TGGTCGTGGTACTTGTTGGA                  |
| CDKA1                        | qRT-PCR     | TGATCAGCCAAAAGCCCTTA               | ACGGAGTTCCCATGATTCTG                  |
| ACTIN1                       | qRT-PCR     | GTTGACTACGAGCAGGAGATGG             | ACAAACGAGGGCTGGAACAAG                 |
| CDKB1;1                      | qRT-PCR     | GCATTGCTTCATATCTTCAGGTT            | CAGTCACGCAGTGTGGAAAC                  |
| CDKB1;2                      | qRT-PCR     | CCAATGAAGAAGTATACCCATGAG           | AATGGGTGGCACCAAGAAG                   |
| CDKD1;2                      | qRT-PCR     | CAGATTCCAGCTTCCAAAGG               | TGAATCCTTCAGGACCCATC                  |
| CYCA3;1                      | qRT-PCR     | GCCGACGAAAAAGAGAACTG               | CTTTGTCTATTGCCGCTTCC                  |
| CYCB1;1                      | qRT-PCR     | GCTTCTGCAATCTACGCAGC               | CCAACAGCTTTGCACAGTCC                  |
| CYCD1;1                      | qRT-PCR     | GCGAACGAGTTACCTTCTCTATCC           | GCTCAATCCGTCACACCAAGTC                |
| CYCD3;1                      | qRT-PCR     | CGAAGAATTCGTCAGGCTCT               | ACTTCCACAACCGGCATATC                  |
| CYCFBX92;2                   | qRT-PCR     | CCTAGTGGAAAAGCTTGGACTG             | TTAGCCTCAAACACGAACATGG                |
| DEL1                         | qRT-PCR     | TGATGACGCTGCAAAATTACTG             | CATAAAGCCGCCTCACTTTAGTT               |
| DPA                          | qRT-PCR     | GCAAGAACAGAAGCAAGAACAGAAC          | CGGTCAGCGAGTATCAATGGATC               |
| KRP1                         | qRT-PCR     | GTGGAAGCAATGAATATAAGAAGAAA         | CGACGTTTCAGTGTCACCAT                  |
| KRP2                         | qRT-PCR     | CGTGGATTTACGATGATTTGAA             | GCGGCGAGACTCTACATCTT                  |
| SIM                          | qRT-PCR     | CCCACTTCTTCCGACCACAA               | GCCGAGAGACGACGGTGT                    |
| SMR1                         | qRT-PCR     | GCTACGCCGGCTCTGATG                 | CGGAGGAGAAGAAACGGTCA                  |