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Supplementary Text 

 

More examples for gap closing with various symmetries 

 

In the main text we gave four examples for closing of the gap, classified by the k-group of the k 

point considered: (i) no symmetry, (ii) twofold rotation C2, (iii) C2 and C’2, and (iv) mirror 

reflection M. Here we give more examples, in order to demonstrate evolution of the band 

structure as the value of the parameter m changes. As explained in the Methods section in the 

main text, we consider the Hamiltonian of the form H(q, m)=
3

1i

 ai(q,m)σi, where σi (i = x,y,z) 

are Pauli matrices, and q = k−k0. We assume ai(q=0, m=m0)=0, i = 1,2,3. We also assume that 

when m<m0 the gap is open. 

 

(v) ΘC2 symmetry: We consider a k point which is invariant only under an operation ΘC2, where 

Θ is the time-reversal operation. Let z denote a coordinate along the C2 axis. The Hamiltonian 

then satisfies H(qx, qy, qz, m) = H∗(qx, qy,−qz, m). It leads to ay = qz fy(qx, qy, qz
2, m), ax = fx(qx, qy, 

qz
2, m), and az = fz(qx, qy, qz

2, m), where fi are analytic functions. From these conditions, we can 

show that the solution at q=0, m=m0 bifurcates into two Weyl nodes, a monopole and an 

antimonopole on the qz=0 plane, and their trajectories are given by qz=0, fx(qx, qy, 0, m)=0=fz(qx, 

qy, 0, m). This case is denoted as 1p, where p stands for “planar”, meaning that the trajectories of 

the monopole and the antimonopole are restricted to be within a high-symmetry plane (fig. S1 A). 

 

(vi) ΘM symmetry: Suppose the wavevector k is invariant under ΘM, where M is a mirror 

operation. We take the z axis to be perpendicular to the mirror plane. We then obtain H(qx, qy, qz, 

m)=H∗(−qx, −qy, qz, m), leading to ay=qxfx(qx
2, qy

2, qz, m)+qyfy(qx
2, qy

2, qz, m), while ax and az are 

analytic functions of qx
2, qy

2, qz and m. By retaining the lowest order in the arguments in these 

functions, one can see that it describes a monopole-antimonopole pair creation and the positions 

of the monopole and the antimonopole are expressed as ( xq  (m), 
yq (m), zq  (m)) and 

(− xq (m),−
yq (m), zq (m)), respectively. They are symmetric with respect to the qx=qy=0 axis. We 

call this case 1sp, where s (symmetric) means that the positions of the monopole and the 

antimonopole are related with each other by symmetry operations (fig. S1 B). 

 



(vii) M and ΘM’ symmetries, with mirror planes of M and M’ perpendicular to each other: 

Let us call the mirror planes for M and ΘM’ as xy and xz planes, respectively. There are two 

representations corresponding to different signs of the eigenvalues of M. Evolution of band 

structure after closing of the gap is different between (vii-1) the two bands with the same 

irreducible representations (Rc=Rv), and (vii-2) those with different irreducible representations 

(Rc≠Rv). For (vii-1), we have H(qx, qy, qz, m) = H(qx, qy,−qz, m), H(qx, qy, qz, m) = H∗(−qx, qy,−qz, 

m), leading to ax = fx(qx
2, qy, qz

2, m), ay=qxfy(qx
2, qy, qz

2, m), az = fz(qx
2, qy, qz

2, m). Therefore, for 

qx=0, the gap closes when fx(0, qy, qz
2, m)=0=fz(0, qy, qz

2, m) is satisfied. These two equations 

determine a curve in the (qy, qz, m) space, and this curve is symmetric with respect to qz→−qz. 

This curve passes through the point qy=0, qz=0, m=m0, but does not go into the m<m0 region. 

Therefore, as we increase m across m0, the solution at qy=0=qz, m=m0 bifurcates into a pair of 

Weyl nodes at q=(0,
yq (m),±

zq (m)). It is denoted as 1sa (fig. S1 C). For the case (vii-2) Rc≠Rv, 

because the mirror symmetry persists for all the k points within the mirror plane (xy plane), it 

gives rise to a nodal-line semimetal after closing of the gap, denoted by 1ℓ. 

 

Classification tables for emergent topological semimetals after closing of the band gap of 

inversion-asymmetric insulators 

 

In the main text, we have shown that patterns for emergence of Weyl nodes and nodal lines after 

closing of the gap are uniquely determined by symmetry, i.e. by the space group and by the value 

of k0 where the gap closes. Here all the patterns for Weyl nodes and nodal lines for all the 138 

space groups are shown in Fig. 4. Notations used in this figure are summarized as follows. 

 

• The numbers in the symbols in e.g. 1s and 1sp represent the number of pair of Weyl nodes, 

except for 1ℓ, 2ℓ, 3ℓ, 4ℓ, where the number represents a number of nodal lines. 

• The symbol ℓ means that there is a nodal line where the gap is closed. Such a nodal line 

always appears as a loop on mirror planes, and only when the valence and the conduction 

bands have different mirror eigenvalues. 

• The symbol a (axial) represents that relative directions between the Weyl nodes are fixed to 

be along certain high-symmetry lines. 



• The symbol p (planar) represents that relative directions between the Weyl nodes are not 

confined to be a high-symmetry axis, but confined within a high-symmetry plane. 

• The symbol c (coplanar) means that all the monopoles and antimonopoles lie on a same 

high-symmetry plane. This symbol c is used only when there are more than one monopole-

antimonopole pairs. 

• The symbol t (tetrahedral) appears only for a few cases with tetrahedral or cubic 

symmetries. It means that the 4 monopoles and 4 antimonopoles form 8 vertices of a cube 

whose center is a high symmetry point, and 4 monopoles form a tetrahedron. 

• The symbol s (symmetric) means that all the monopoles and antimonopoles are related to 

each other by symmetry operations. In such cases they are energetically degenerate, and it is 

possible to locate all the Weyl nodes on the Fermi energy. Otherwise, these monopoles and 

antimonopoles may not necessarily be at the same energy. 

   

Apart from these patterns in Fig. 4, their combinations can appear, such as 1sa1ℓ (e.g. at K and H 

points in No.174 and No.187), which means that one pair of Weyl nodes and one nodal line are 

simultaneously created at closing of the gap. In addition, when there are more than one mirror 

planes at k0, more than one nodal lines can be created (e.g. 2ℓ, 3ℓ, 4ℓ), and they are on different 

mirror planes, intersecting each other at k0. 

 

In the following, we explain how these patterns emerge for various k points in 138 space groups 

without inversion symmetry. Time-reversal symmetry is assumed throughout. All the cases are 

classified in terms of space groups and values of k0 where the gap closes. Then, various cases for 

each k point are classified in terms of irreducible representation of the conduction band and that 

of the valence band, denoted as Rc and Rv, respectively. As explained in the main text, we have to 

study only the cases with dim Rc=dim Rv=1 because otherwise the gap cannot close k0. In 

particular, one can exclude the TRIM as k0, since there is always Kramers degeneracy at the 

TRIM, and the gap cannot close. In addition, if a high-symmetry point shares the same k-group 

with a high-symmetry line which includes this point, the gap does not close at the high-symmetry 

point, because it requires fine-tuning of the Hamiltonian. 

 



In the following tables, we show the high-symmetry points and lines, where the gap can close by 

changing a single parameter m. It should be noted that in addition to the patterns listed in the 

following tables, the following two patterns exist, which are common to all the space groups. 

 

• generic k without any symmetry: 1 (the case (i) in the main text) 

• generic k on a mirror plane: 1sa for Rc = Rv (the case (iv-1)), and 1ℓ, for Rc≠Rv (the case (iv-

2)). In the former case, the conduction and valence bands have the same signs of mirror 

eigenvalues, while in the latter, they have the opposite signs. 

 

In tables S1-S5, we show all the patterns for the combinations of Rc and Rv, where the gap can 

close by changing the parameter m. Cases where the gap cannot close at k0 are excluded from the 

tables. We show all the 138 space groups without inversion symmetry. In the tables “point” and 

“line” refer to the high-symmetry points and the high-symmetry lines, respectively. As noted 

above, Rc and Rv should be both one-dimensional. The names of the irreducible representations 

(irreps) follows the notation in Ref. (36), such as R1 and R2, and so on. For a concise expression in 

the tables, we use the symbols “ii” and “ij”; “ii” means the case with Rc=Rv and “ij” means the 

case with Rc≠Rv. When there is only one representation allowed at the k point, such symbols are 

not needed and thus are not shown. For more complicated cases, for example, the entry (3,4) in 

the tables means (R3, R4), representing to two cases (Rc, Rv) = (R3, R4), (R4, R3). 

 

Furthermore, some lengthy entities are abbreviated in the following way:  

[1]=(R2,R3)(R4,R5); 2ℓ, (R2,R4)(R3,R5)(R2,R5)(R3,R4); 1ℓ.  

[2]=(R5,R6)(R6,R7)(R7,R8)(R8,R5); 1sa, (R5,R7)(R6,R8); 2sp.  

[3]=(R2,R5)(R3,R4); 2ℓ,(R2,R3)(R4,R5)(R2,R4)(R3,R5); 1ℓ.  

[4]=(R5,R6)(R6,R7)(R7,R8)(R8,R5); 1sa, (R5,R7)(R6,R8); 2sa.  

[5]=(R3,R4)(R5,R6); 2ℓ, (R3,R5)(R4,R6); 2sca, (R3,R6)(R4,R5); 1ℓ  

[6]=(R11,R8)(R10,R9)(R7,R12); 1ℓ, (R11,R7)(R10,R8)(R7,R9)(R8,R12)(R9,R11)(R12,R10); 1sa, 

(R11,R10)(R10,R7)(R7,R8)(R8,R9)(R9,R12)(R12,R11); 1sa1ℓ. 

[7]=(R4,R5)(R5,R6)(R6,R4); 4st.  

[8]=(R4,R7)(R5,R6); 4ℓ, (R4,R5)(R6,R7); 3ℓ, (R4,R6)(R5,R7); 1ℓ. 

 

 

 

 



Properties of band structure of HfS 

 

Here we briefly explain the band structure of HfS and the reason why it is appropriate as a 

candidate for a nodal-line semimetal. The crystal structure of HfS is the same as that of tungsten 

carbide (WC). Its space group is No. 187 ( 6 2P m ) (38), and it has several mirror planes, which 

are necessary for the Weyl nodal lines by mirror symmetry as we discussed. Bands of the Hf 5d 

orbitals are classified into three groups, a’1, e’, and e’’, by the crystal field from a trigonal prism 

of S2+ atoms. A narrow gap is formed between the occupied a’1 band and the unoccupied e’ bands. 

A layered triangle lattice formed by Hf atoms is favorable for displacing the point of the 

minimum band gap away from the Γ point to the K point by interference effects. When the spin-

orbit coupling (SOC) is neglected, a Dirac nodal-line exists around the K point on the kz = 0 plane. 

 

When the SOC is considered, due to mismatch between threefold rotational symmetry of the 

trigonal prism and the right angle of electronic clouds of atomic d orbitals, wavefunctions become 

necessarily complex, and a relativistic energy splitting would be partially enhanced. Spin splitting 

vanishes at the TRIM, while it is prominent at the non-TRIM points such as K- and H-points. 

Thus the SOC lifts the degeneracy in the Dirac nodal-line, and the Weyl nodal-line appears 

instead near the K point on the mirror plane kz = 0 

 

Phonon Dispersion of HfS 

 

We check dynamic stability of HfS at ambient pressure and under pressure in the LDA of the 

DFPT. The phonon dispersion at ambient pressure and at 20 GPa is shown in fig. S2 A and B, 

respectively. The structure is at least metastable up to 20 GPa, since there is no imaginary 

frequency in the phonon dispersion. 

 

 



 
 

fig. S1. Trajectories of Weyl nodes after a pair creation at k0 for representative cases. (A), 

(B), and (C) show the cases (v), (vi), and (vii-1), respectively. Yellow and green spheres denote 

monopoles and antimonopoles in k space, respectively, and they are both Weyl nodes.  



   
 

fig. S2. Phonon dispersion of HfS. (A and B) show the calculated phonon dispersions of HfS at 

0 GPa and 20 GPa, respectively.  



table S1. Patterns of gap-closing points after parametric gap closing for triclinic and 

monoclinic space groups. 

 
space group point line 

1 P1   

3 P2  ΛVWU:ij;1a 

4 P21  ΛVWU:ij;1a 

5 C2  ΛU:ij;1a 

6 Pm  ΛVWU:1sp 

7 Pc  ΛW:1sp 

8 Cm  ΛU:1sp 

9 Cc  Λ:1sp 

 



table S2. Patterns of gap-closing points after parametric gap closing for orthorhombic space 

groups. We note that in No. 38, 39, 40 and 41, despite the space group symbols use the A lattice 

for orthorhombic base-centered Bravais lattice, we use the C lattice with the twofold rotation axis 

is along y, following the notations in Ref. (36) (see p. 83 and p. 135 in Ref. (36))  

 
space group point line 

16 P222  ∆DPBΣCEAΛHQG:ii;2a,ij;1a 

17 P2221  ∆DΣCΛHQG:ii;2a,ij;1a 

18 P21212  ∆BΣAΛ:ii;2a,ij;1a 

19 P212121  ∆ΣΛ:ii;2a,ij;1a 

20 C2221  ΛHΣ∆FC:ii;2a,ij;1a D:ij;1a 

21 C222  ΛHAΣ∆BGFEC:ii;2a,ij;1a D:ij;1a 

22 F222  ΛGHQΣCAU∆DBR:ii;2a,ij;1a 

23 I222  ΛGΣF∆U:ii;2a,ij;1a PDQ:ij;1a 

24 I212121 W:ij;2a ΛGΣF∆U:ii;2a,ij;1a PDQ:ij;1a 

25 Pmm2  ∆DPBΣCEA:ii;1sa,ij;1ℓ 

26 Pmc21  ∆DΣC:ii;1sa,ij;1ℓ 

27 Pcc2  ∆DΣC:ii;1sa,ij;1ℓ 

28 Pma2  ∆DPBΣA:ii;1sa,ij;1ℓ  HQ:[1] 

29 Pca21  ∆DΣ:ii;1sa,ij;1ℓ  HQ:[1] 

30 Pnc2  ∆DΣE:ii;1sa,ij;1ℓ  HQ:[1] 

31 Pmn21  ∆DΣ:ii;1sa,ij;1ℓ  HQ:[1] 

32 Pba2  ∆BΣA:ii;1sa,ij;1ℓ  HG:[1] 

33 Pna21  ∆Σ:ii;1sa,ij;1ℓ  HG:[1] 

34 Pnn2  ∆PΣE:ii;1sa,ij;1ℓ  HG:[1] 

35 Cmm2  D:ij;1a AΣ∆BGFEC:ii;1sa,ij;1ℓ 

36 Cmc21  D:ij;1a Σ∆FC:ii;1sa,ij;1ℓ 

37 Ccc2  D:ij;1a Σ∆FC:ii;1sa,ij;1ℓ 

38 Amm2  ΛHAΣEC:ii;1sa,ij;1ℓ  D:1sP 

39 Aem2  ΛHAΣEC:ii;1sa,ij;1ℓ 

40 Ama2  ΛHΣC:ii;1sa,ij;1ℓ  D:1sP BG:[3] 

41 Aea2  ΛHΣC:ii;1sa,ij;1ℓ  BG:[3] 

42 Fmm2  ΣCAU∆DBR:ii;1sa,ij;1ℓ 

43 Fdd2  ΣU∆R:ii;1sa,ij;1ℓ  GH:[1] 

44 Imm2 W:ij;1sa P:ij;1a ΣF∆U:ii;1sa,ij;1ℓ  DQ:1sP 

45 Iba2  P:ij;1a ΣF∆U:ii;1sa,ij;1ℓ 

46 Ima2  P:ij;1a ΣF∆U:ii;1sa,ij;1ℓ  Q:1sP 

 



table S3. Patterns of gap-closing points after parametric gap closing for tetragonal space 

groups. 

space group point line 

75 P4  ∆UΣSYT:1p ΛVW:ij;1a 

76 P41  ∆ΣY:1p ΛVW:ij;1a 

77 P42  ∆UΣSYT:1p ΛVW:ij;1a 

78 P43  ∆ΣY:1p ΛVW:ij;1a 

79 I4  ΛVW:ij;1a ΣF∆UY:1p 

80 I41  ΛVW:ij;1a ΣF∆UY:1p 

81 4P   ∆UΣSYT:1p W:ij;1a 

82 4I  P:[2] W:ij;1a ΣF∆UY:1p 

89 P422  ∆UΣSYTW:ii;2a,ij;1a ΛV:ii;4a,ij;1a 

90 P4212  ∆UΣS:ii;2a,ij;1a Λ:ii;4a,ij;1a 

91 P4122  ∆ΣYW:ii;2a,ij;1a ΛV:ii;4a,ij;1a 

92 P41212  ∆Σ:ii;2a,ij;1a Λ:ii;4a,ij;1a 

93 P4222  ∆UΣSYTW:ii;2a,ij;1a ΛV:ii;4a,ij;1a 

94 P42212  ∆UΣS:ii;2a,ij;1a Λ:ii;4a,ij;1a 

95 P4322  ∆ΣYW:ii;2a,ij;1a ΛV:ii;4a,ij;1a 

96 P43212  ∆Σ:ii;2a,ij;1a Λ:ii;4a,ij;1a 

97 I422  ΛV:ii;4a,ij;1a WΣF∆UY:ii;2a,ij;1a Q:ij;1a 

98 I4122 P:(2,3);4a ΛV:ii;4a,ij;1a WΣF∆UY:ii;2a,ij;1a Q:ij;1a 

99 P4mm  ∆UΣSYT:ii;1sa,ij;1ℓ 

100 P4bm  ∆UΣS:ii;1sa,ij;1ℓ W:[3] 

101 P42cm  ∆ΣSY:ii;1sa,ij;1ℓ 

102 P42nm  ∆ΣST:ii;1sa,ij;1ℓ W:[3] 

103 P4cc  ∆ΣY:ii;1sa,ij;1ℓ 

104 P4nc  ∆ΣT:ii;1sa,ij;1ℓ W:[3] 

105 P42mc  ∆UΣYT:ii;1sa,ij;1ℓ 

106 P42bc  ∆UΣ:ii;1sa,ij;1ℓ W:[3] 

107 I4mm  ΣF∆UY:ii;1sa,ij;1ℓ Q:1sp 

108 I4cm  ΣF∆UY:ii;1sa,ij;1ℓ 

109 I41md P:(13,14);2ℓ W:[3] ΣF∆:ii;1sa,ij;1ℓ Q:1sp 

110 I41cd  W:[3] ΣF∆:ii;1sa,ij;1ℓ 

111 42P m   ∆UYTW:ii;2a,ij;1a ΣS:ii;1sa,ij;1ℓ 

112 42P c   ∆UYTW:ii;2a,ij;1a Σ:ii;1sa,ij;1ℓ 

113 
142P m   ∆U:ii;2a,ij;1a ΣS:ii;1sa,ij;1ℓ 

114 
142P c   ∆U:ii;2a,ij;1a Σ:ii;1sa,ij;1ℓ 

115 4 2P m   ∆UYT:ii;1sa,ij;1ℓ ΣS:ii;2a,ij;1a 

116 4 2P c   ∆Y:ii;1sa,ij;1ℓ ΣS:ii;2a,ij;1a 

117 4 2P b   ∆U:ii;1sa,ij;1ℓ ΣS:ii;2a,ij;1a W:[3] 

118 4 2P n   ∆T:ii;1sa,ij;1ℓ ΣS:ii;2a,ij;1a W:[3] 

119 4 2I m  P:[4] W∆UY:ii;2a,ij;1a ΣF:ii;1sa,ij;1ℓ Q:1sp 

120 4 2I c   W∆UY:ii;2a,ij;1a ΣF:ii;1sa,ij;1ℓ 

121 42I m   ΣF:ii;2a,ij;1a Q:ij;1a ∆UY:ii;1sa,ij;1ℓ 

122 42I d  P:[5] W:[3] ΣF:ii;2a,ij;1a ∆:ii;1sa,ij;1ℓ Q:ij;1a 



table S4. Patterns of gap-closing points after parametric gap closing for trigonal and 

hexagonal space groups. 

space group point Line 

143 P3  ∆P:ij;1a 

144 P31  ∆P:ij;1a 

145 P32  ∆P:ij;1a 

146 R3  ΛP:ij;1a 

149 P312  ∆P:ii;3a,ij;1a UTST’S’:1p ΣR:ij;1a 

150 P321 KH:(3,4);3ca ∆:ii;3a,ij;1a UΣR:1p PTST’S’:ij;1a 

151 P3112  ∆P:ii;3a,ij;1a UTST’S’:1p ΣR:ij;1a 

152 P3121 KH:(3,4);3ca ∆:ii;3a,ij;1a UΣR:1p PTST’S’:ij;1a 

153 P3212  ∆P:ii;3a,ij;1a UTST’S’:1p ΣR:ij;1a 

154 P3221 KH:(3,4);3ca ∆:ii;3a,ij;1a UΣR:1p PTST’S’:ij;1a 

155 R32  ΛP:ij;3a,ij;1a BΣQY:ij;1a 

156 P3m1 KH:ij;1a ∆:(3,4);3ℓ UΣR:ij;1ℓ  P:ij;1a TST’S’:1sp 

157 P31m  ∆P:(3,4);3ℓ UTST’S’:ij;1ℓ ΣR:1sp 

158 P3c1 K:ij;1a ∆:(3,4);3ℓ  P:ij;1a UΣR:ij;1ℓ TT’:1sp 

159 P31c  ∆P:(3,4);3ℓ  UTST’S’:ij;1ℓ Σ:1sp 

160 R3m  ΛP:(3,4);3ℓ BΣQY:1sp 

161 R3c  ΛP:(3,4);3ℓ ΣQ:1sp 

168 P6  ∆UP:ij;1a TST’S’ΣR:1p 

169 P61  ∆UP:ij;1a TT’Σ:1p 

170 P65  ∆UP:ij;1a TT’Σ:1p 

171 P62  ∆UP:ij;1a TST’S’ΣR:1p 

172 P64  ∆UP:ij;1a TST’S’ΣR:1p 

173 P63  ∆UP:ij;1a TT’Σ;1p 

174 6P  KH:[6] ∆:(4,4):3scp U:1sp P:ij;1a TST’S’ΣR:ij;1ℓ 

177 P622 KH:(3,4);3ca ∆:ii;6a,ij;1a UTST’S’ΣR:ii;2a,ij;1a P:ii;3a,ij;1a 

178 P6122 K:(3,4);3ca ∆:ii;6a,ij;1a UTT’Σ:ii;2a,ij;1a P:ii;3a,ij;1a 

179 P6522 K:(3,4);3ca ∆:ii;6a,ij;1a UTT’Σ:ii;2a,ij;1a P:ii;3a,ij;1a 

180 P6222 KH:(3,4);3ca ∆:ii;6a,ij;1a UTST’S’ΣR:ii;2a,ij;1a P:ii;3a,ij;1a 

181 P6422 KH:(3,4);3ca ∆:ii;6a,ij;1a UTST’S’ΣR:ii;2a,ij;1a P:ii;3a,ij;1a 

182 P6322 K:(3,4);3ca ∆:ii;6a,ij;1a UTT’Σ:ii;2a,ij;1a P:ii;3a,ij;1a 

183 P6mm KH:(3,4);3ℓ P:(3,4);3ℓ TST’S’ΣR:ii;1sa,ij;1ℓ 

184 P6cc K:(3,4);3ℓ P:(3,4);3ℓ TT’Σ:ii;1sa,ij;1ℓ 

185 P63cm K:(3,4);3ℓ P:(3,4);3ℓ TT’Σ:ii;1sa,ij;1ℓ 

186 P63mc K:(3,4);3ℓ P:(3,4);3ℓ TT’Σ:ii;1sa,ij;1ℓ 

187 6 2P m  KH:[6] ∆:(3,4);3ℓ, (3,3)(4,4);3sca UTST’S’:ii;1sa,ij;1ℓ  P:ii;3a,ij;1a 

188 6 2P c  K:[6] ∆:(3,4);3ℓ, (3,3)(4,4);3sca UTT’:ii;1sa,ij;1ℓ  P:ii;3a,ij;1a R:[1] 

189 62P m   ∆:(3,4);3ℓ, (3,3)(4,4);3sca UΣR:ii;1sa,ij;1ℓ  P:(3,4);3ℓ 

190 62P c  H:[8] ∆:(3,4);3ℓ, (3,3)(4,4);3sca UΣ:ii;1sa,ij;1ℓ  P:(3,4);3ℓ  SS’:[1] 

 



table S5. Patterns of gap-closing points after parametric gap closing for cubic space groups. 

 
space group point Line 

195 P23  ∆ZT:ii;2a,ij;1a ΣS:1p Λ:ij;1a 

196 F23 W:ij;1a ∆Z:ii;2a,ij;1a Λ:ij;1a ΣS:1p 

197 I23  ΣG:1p ∆:ii;2a,ij;1a ΛDF:ij;1a 

198 P213  ∆:ii;2a,ij;1a Σ:1p Λ:ij;1a 

199 I213 P:[7] ΣG:1p ∆:ii;2a,ij;1a ΛDF:ij;1a 

207 P432  ∆T:ii;4a,ij;1a ΣSZ:ii;2a,ij;1a Λ:ii;3a,ij;1a 

208 P4232  ∆T:ii;4a,ij;1a ΣSZ:ii;2a,ij;1a Λ:ii;3a,ij;1a 

209 F432  ∆:ii;4a,ij;1aΛ:ii;3a,ij;1a ΣSZ:ii;2a,ij;1a Q:ij;1a 

210 F4132 W:(2,4);4a ∆:ii;4a,ij;1aΛ:ii;3a,ij;1a ΣSZ:ii;2a,ij;1a Q:ij;1a 

211 I432  ΣDG:ii;2a,ij;1a ∆:ii;4a,ij;1a ΛF:ii;3a,ij;1a 

212 P4332  ∆:ii;4a,ij;1a Σ:ii;2a,ij;1a Λ:ii;3a,ij;1a 

213 P4132  ∆:ii;4a,ij;1a Σ:ii;2a,ij;1a Λ:ii;3a,ij;1a 

214 I4132 P:[7] ΣDG:ii;2a,ij;1a ∆:ii;4a,ij;1a ΛF:ii;3a,ij;1a 

215 43P m   ΣS:ii;1sa,ij;1ℓ Λ:(3,4);3ℓ  Z:ii;2a,ij;1a 

216 43F m  W:[4] Λ:(3,4);3ℓ ΣS:ii;1sa,ij;1ℓ  Z:ii;2a,ij;1a Q:1sp 

217 43I m  

I43m 

 ΣG:ii;1sa,ij;1ℓ Λ(3,4);3ℓ 

218 43P n   Σ:ii;1sa,ij;1ℓ Λ:(3,4);3ℓ  Z:ii;2a,ij;1a 

219 43F c   Λ:(3,4);3ℓ ΣS:ii;1sp,ij;1ℓ  Z:ii;2a,ij;1a 

220 43I d  P:(17,18);6ℓ Σ:ii;1sa,ij;1ℓ Λ:(3,4);3ℓ  D:[1] F:(9,10);3ℓ 

  




