Cytological and molecular characterization of carotenoid accumulation in normal and high-lycopene mutant oranges

Peng-jun Lu, Chun-yan Wang, Ting-ting Yin, Si-lin Zhong, Don Grierson, Kun-song Chen & Chang-jie Xu

Supplementary data

Figure S1. Carotenoid biosynthetic pathway in higher plants with the sites inhibited by CPTA and NFZ indicated.

Figure S2. The mRNA sequences of *phytoene synthase 1 (PSY1)* alleles, *PSY1-a* and *PSY1-b*, in Newhall and Cara Cara oranges.

Figure S3. The mRNA sequences of *lycopene* β *-cyclase* (*LCYB*) alleles, *LCYB-a* and *LCYB-b*, in Newhall and Cara Cara oranges.

Figure S4. The mRNA sequences of *chromoplast-specific lycopene* β *-cyclase (CYCB)* alleles, *CYCB-a* and *CYCB-b*, in Newhall and Cara Cara oranges.

Figure S5. The observation of red crystalline chromoplast under the light microscope in 2-(4-chlorophenylthio)-triethylamine hydrochloride (CPTA) treated albedo layers of Newhall, control Newhall and control Cara Cara oranges.

Table S1. List of primers for real-time quantitative PCR.

Table S2. Effects of 2-(4-chlorophenylthio)-triethylamine hydrochloride (CPTA) and norflurazon

 treatments on accumulation of carotenoids in *in vitro* cultured flesh tissues of Newhall and Cara Cara.

Table S3. List of primers for full-length gene cloning.

Supplementary Fig. S1. Carotenoid biosynthetic pathway in higher plants with the sites inhibited by CPTA and NFZ indicated. BCH, β -carotene hydroxylase; CPTA, 2-(4-chlorophenylthio)-triethylamine hydrochloride; CRTISO, carotene isomerase; CYCB, chromoplast-specific lycopene β -cyclase; DXS, 1-deoxy-D-xylulose 5-phosphate-synthase; DXR, 1-deoxy-D-xylulose 5-phosphate reductoisomerase; ECH, ϵ -carotene hydroxylase; GGPP, geranylgeranyl diphosphate; LCYB, lycopene β -cyclase; LCYE, lycopene ϵ -cyclase; MEP, 2-C-methyl-D-erythritol 4-phosphate; NCED, nine-*cis*-epoxycarotenoid dioxygenase; NFZ, norflurazon; NXS, neoxanthin synthase; PDS, phytoene desaturase; PSY, phytoene synthase; VDE, violaxanthin de-epoxidase; ZDS, ζ -carotene desaturase; ZEP, zeaxanthin epoxidase; ZISO, 15-*cis*- ζ -carotene isomerase

PSY1-a PSY1-b	:	* 20 * 40 * 60 * 80 CTACAGAGAGTTGAAGTTACAGGGGGCCTCAAA ^R TTTTCTTTTTATCCAAAAAAAATAATTTTTTACAGCATGTCTGTT <mark>C</mark> ATT CTACAGAGAGTTGAAGTTACAGGGGGCCTCAAA ^T TTTTCTTTTTATCCAAAAAAAAAAATAATTTTTTACAGCATGTCTGTT CTACAGAGAGTTGAAGTTACAGGGGGCCTCAAA TTTTCTTTTTATCCAAAAAAAAAA	:	82 82
PSY1-a PSY1-b	:	* 100 * 120 * 140 * 160 GCTCTGGGTTGTATCACCTAACTCACAATTGTCCAATTGCTTCGGGTTCGTCGATTCAGTTCGAGAGGAAAACAGGCTGTTT GCTATGGGTTGTATCACCTAACTCACAATTGTCCAATTGCTTCGGGTTCGTCGATTCAGTTCGAGAGGAAAACAGGCTGTTT GCT TGGGTTGTATCACCTAACTCACAATTGTCCAATTGCTTCGGGTTCGTCGATTCAGTTCGAGAGGAAAACAGGCTGTTT	:	164 164
PSY1-a PSY1-b	:	* 180 * 200 * 220 * 240 TATTCATCAAGATTTCTTTACCAACATCAAACCCGGACTGCTGTGTTTAATTCTAGACCTAAGCAGTTTAATAATAG TATTCATCAAGATTTCTTTACCAACATCAAACCCGGACTGCGTGTGTTTAATTCTAGACCTAAGCAGTTTAATAATAA TATTCATCAAGATTTCTTTACCAACATCAAACCCGGACTGCGTGTGTTTAATTCTAGACCTAAGCAGTTTAATAATAA TATTCATCAAGATTTCTTTACCAACATCAAACCCGGACTGCGTGTGTTTAATTCTAGACCTAAGCAGTTTAATAATAA	:	246 246
PSY1-a PSY1-b	:	* 260 * 280 * 300 * 320 AGCAGACACGGAATTCTTATCCTTTAGATACAGATTTGAGGCATCCTTGCTCATCTGGAATCGACTTGCCTGAAAT ATAATAAGCAGAAACGGAATTCTTATCCTTTAGATACAGATTTGAGGCATCCTTGCTCATCTGGAATCGACTTGCCTGAAAT A GCAGA ACGGAATTCTTATCCTTTAGATACAGATTTGAGGCATCCTTGCTCATCTGGAATCGACTTGCCTGAAAT	:	322 328
PSY1-a PSY1-b	:	* 340 * 360 * 380 * 400 * ATCATGTATGGTTGCTAGCACTGCTGGAGAAGTGGCCATGTCTTCAGAAGAAATGGTTTACAATGTTGTGCTCAAGCAGGCA ATCATGTATGGTTGCTAGCACTGCTGGAGAAGTGGCCATGTCTTCAGAAGAAATGGTTTACAATGTTGTGCTCAAGCAGGCA ATCATGTATGGTTGCTAGCACTGCTGGAGAAGTGGCCATGTCTTCAGAAGAAATGGTTTACAATGTTGTGCTCAAGCAGGCA	:	404 410
PSY1-a PSY1-b	:	420*440*460*480*GCCTTGGTTAATAAGCAACCAAGTGGGGTTACTCGTGATCTTGATGTGAACCCAGATATTGCTTTACCCGGAACTTTAAGTCGCCTTGGTTAATAAGCAACCAAGTGGGGTTACTCGTGATCTTGATGTGAACCCAGATATTGCTTTACCCGGAACTTTAAGTCGCCTTGGTTAATAAGCAACCAAGTGGGGTTACTCGTGATCTTGATGTGAACCCAGATATTGCTTTACCCGGAACTTTAAGTC	:	486 492
PSY1-a PSY1-b	:	500 * 520 * 540 * 560 * TGCTCAGTGAAGCTTATGATCGTTGTGGAGAAGTTTGCGCCGAGTATGCTAAGACATTTTACTTGGGGAACTTTGCTGATGAC TGCTCAGTGAAGCTTATGATCGTTGTGGAGAAGTTTGCGCCGAGTATGCTAAGACATTTTACTTGGGAAACTTTGCTGATGAC TGCTCAGTGAAGCTTATGATCGTTGTGGAGAAGTTTGCGCCGAGTATGCTAAGACATTTTACTTGGGAAACTTTGCTGATGAC TGCTCAGTGAAGCTTATGATCGTTGTGGGAGAAGTTTGCGCCGAGTATGCTAAGACATTTTACTTGGGAAACTTTGCTGATGAC	:	568 574
PSY1-a PSY1-b	:	580 * 600 * 620 * 640 * OTCTGAAAGGCCAAGGGCTATATGGGCTATATGTGTGTGGGGGGGG	:	650 656
PSY1-a PSY1-b	:	660 * 680 * 700 * 720 * 7 CACATAACTCCAACAGCTTTAGACAGGTGGGAGTCCAGGTTGGAAGACCTTTTCCGGGGTCGTCCATTTGATATGCTTGATG CACATAACTCCAACAGCTTTAGACAGGTGGGAGTCCAGGTTGGAAGACCTTTTCCGGGGTCGTCCATTTGATATGCTTGATG CACATAACTCCAACAGCTTTAGACAGGTGGGAGTCCAGGTTGGAAGACCTTTTCCGGGGTCGTCCATTTGATATGCTTGATG	:	732 738
PSY1-a PSY1-b	:	40 * 760 * 780 * 800 * 820 CTCCATTATCAGATACAGTAACCAAATTTCCTGTCGACATTCAGCCATTCAGAGATATGATAGAAGGAATGAGGAGGACGA CTCCATTATCAGATACAGTAACCAAATTTCCTGTCGACATTCAGCCATTCAGAGATATGATAGAAGGAATGAGGGATGGACCT CTG ATTATCAGATACAGTAACCAAATTTCCTGTCGACATTCAGCCATTCAGAGATATGATAGAAGGAATGAGGATGGACCT	:	814 820
PSY1-a PSY1-b	:	* 840 * 860 * 880 * 900 TAGGAAGTCAAGATACAAAAACTTTGATGAATTATACTTGTATTATGTTGCTGGGACCGTAGGGCTAATGAGTGTT TAGGAAGTCAAGATACAAAAACTTTGATGAATTATACTTGTATTGTTATGTTGCTGGGACCGTAGGGCTAATGAGTGTT TAGGAAGTCAAGATACAAAAACTTTGATGAATTATACTTGTATTGTTATGTTGCTGGGACCGTAGGGCTAATGAGTGTT	:	896 902
PSY1-a PSY1-b	:	* 920 * 940 * 960 * 960 CCAGTTATGGGCATAGCACCTGACTCACAGGGCACAACAGAGAGCGTCTACAATGCAGCATTGGCACTAGGGATTGCTAATG CCAGTTATGGGCATAGCACCTGACTCACAGGCAACAACAGAGAGGGGTCTACAATGCAGCATTGGCACTAGGGATTGCTAATG CCAGTTATGGGCATAGCACCTGACTCACAGGCAACAACAGAGAGGGGTCTACAATGCAGCATTGGCACTAGGGATTGCTAATG	:	978 984
PSY1-a PSY1-b	:	* 1000 * 1020 * 1040 * 1060 AGCTCACTAACATACTCAGAGATGTTGGAGAGGATGCCC AGCTCACTAACATACTCAGAGATGTTGGAGAGGATGCCC AGCTCACTAACATACTCAGAGATGTTGGAGAGGATGCCC AGGAGGAAGGGTTTATCTACCACAAGATGAGTTGGCACAGGC AGCTCACTAACATACTCAGAGATGTTGGAGAGGAGGGTTGCCC AAGAGGAAGGGTTTATCTACCACAAGATGAGTTGGCCACAGGC	:	1060 1066
PSY1-a PSY1-b	:	* 1080 * 1100 * 1120 * 1140 AGGGCTTTCAGATGATGACATATTTGCTGGAGACGTGACGATTAAATGGAGAAACTTCATGAAGAACAAATTAAGAGGGCA GGGCTTTCAGATGATGACATATTTGCTGGAGAAGTGACTAATTAAATGGAGAAACTTCATGAAGAACCAAATTAAGAGGGGCA GGGCTTTCAGATGATGACATATTTGCTGGAGA GTGAC A TAAATGGAGAAACTTCATGAAGAACCAAATTAAGAGGGGCA	:	1142 1148
PSY1-a PSY1-b	:	* 1160 * 1180 * 1200 * 1220 * AGGATGTTCTTTGATATGGCTGAGAACGGTGTGACCGAGCTGAGTGAG	:	1224 1230
PSY1-a PSY1-b	:	1240 * 1260 * 1280 * 1300 * TGTACCGGCAAATACTGGATGAGATTGAGGCCAATGATTACAACAACTTCACAAAGAGAGGCTTATGTGAGTAAAGCCAAGAA TGTACCGGCAAATACTGGATGAGATTGAGGCCAATGATTACAACAACTTCACAAAGAGAGGCTTATGTGAGTAAAGCCAAGAA TGTACCGGCAAATACTGGATGAGATTGAGGCCAATGATTACAACAACTTCACAAAGAGAGGCTTATGTGGAGTAAAGCCAAGAA	:	1306 1312
PSY1-a PSY1-b	:	1320 * 1340 * 1360 * 1380 * GATAGCTGCACTACCAATTGCATATGCAAAATCCCTCTTACGCCCGTCAAGAATATATACCAGTAAGGCTTAAACTGAACAT GATAGCTGCACTACCAATTGCATATGCAAAATCCCTCTTACGCCCGTCAAGAATATATACCAGTAAGGCTTAAACTGAACAT GATAGCTGCACTACCAATTGCATATGCAAAATCCCTCTTACGCCCGTCAAGAATATATACCAGTAAGGCTT <u>AA</u> ACTGAACAT	:	1388 1394
PSY1-a PSY1-b	:	1400 * 1420 * 1440 * 1460 * TTAACATCAAAGTTTAGAAGCATATATAGTTGAAACGGATTCAAAGTGGAAAAAAATGAAAATGATTGCTTGTATATTAG TTAACATCAAAGTTTAGAAGCATATATAGTTGAAACGGATTCAAAGTGGAAACAAAAATGAAAATGATTGCTTGGATATTAG TTAACATCAAAGTTTAGAAGCATATATAGTTGAAACGGATCAAAGTGGAAA AAAAATGAAAATGATTGCTTG ATATTAG	:	1470 1476
PSY1-a PSY1-b	:	1480 * 1500 * 1520 * 1540 * GAATTGTTGGTATGCAGCATGTATTTGATGGTAAAGTTAGAATAGTGAATCCAATTCACAATCCAAGGCCGATGCCCTA : GAATTGTTGGTATGCAGCATGTATTTGATGGTAAAGTTAGAATAGTGAATCCAATTCACAATCCAAGGCCGATGCCCTA : GAATTGTTGGTATGCAGCATGTATTTGATGGTAAAGTTAGAATAGTGAATCCAATTCACAATCCAAGGCCGATGCCCTA	154 155	9

Supplementary Fig. S2. The mRNA sequences of *phytoene synthase 1 (PSY1)* alleles, *PSY1-a* and *PSY1-b*, in Newhall and Cara Cara oranges. Note that, no difference in sequence was observed between the two oranges. Start codon and stop codon are underlined by red.

LCYB-а LCYB-b	:	* 20 * 40 * 60 * 80 ACCAGGAGCTTAGGTTTGGTCTCAAGAAGTCTCGTCAAAAGAGGAATAG GCAGGAGCTTAGGTTTGGTCTCAAGAAGTCTCGTCAAAAGAGGAATAT GCAGGAGCTTAGGTTTGGTCTCAAGAAGTCTCGTCAAAAGAGGAATA ACCAGGAGCTTAGGTTTGGTCTCAAGAAGTCTCGTCAAAAGAGGAATA GAGTTGTTTCATTAAGGCTAGTAGTAGTGGTCCTC	:	82 82
LCYB-a LCYB-b	:	* 100 * 120 * 140 * 160 TTTGGACTAGTTCCTGAAACCAAGAAGGAAAATCTTGAATTTGAGCTTCCCATGTATGACCCATCAAAGGGCCTTGTTGTA TTTGGACCTAGTTCCTGAAACCAAGAAGGAAAATCTTGAATTTGAGCTTCCCATGTATGACCCATCAAAGGGCCTTGTTGTA TTTGGA CTAGTTCCTGAAACCAAGAAGAAGGAAAATCTTGAATTTGAGCTTCCCATGTATGACCCATCAAAGGGCCTTGTTGTA	:	164 164
LCYB-a LCYB-b	:	* 180 * 200 * 220 * 240 GACCTAGCAGTTGTCGGTGG GGCCCGGCTGGGCTGGGC	:	246 246
LCYB-a LCYB-b	:	* 260 * 280 * 300 * 320 TTGATCCATCTCCCAAATTGGTTTGGCCAAATAATTATGGTGTTTGGGGGGGAGAATTTGAGGCCATGGATTGCTTGATTG TTGATCCATCTCCCAAATTGATTTGGCCAAATAATTATGGTGTTTGGGTGGATGAATTTGAGGCCATGGATTGCTTGATTG TTGATCCATCTCCCAAATTGATTTGGCCAAATAATTATGGTGTTTGGGTGGATGAATTTGAGGCCATGGATTGCTTGATTG	:	328 328
LCYB-a LCYB-b	:	* 340 * 360 * 380 * 400 * CCTTGATACTACTTGGTCTGGTGCTGTTGTGCACATTGATGATAATACAAAGAAGGATCTTAATAGACCTTATGGCAGAGTT CCTTGATACTACTTGGTCTGGTGCTGTTGTGCACATTGATGATAATACAAAGAAGGATCTTCATAGACCTTATGGCAGAGTT CCTTGATACTACTTGGTCTGGTGCTGTTGTGCACATTGATGATAATACAAAGAAGGAGGTCTT ATAGACCTTATGG AGAGTT	:	410 410
LCYB-а LCYB-b	:	420 * 440 * 460 * 480 * AATAGGAAGTTGCTGAAGTCGAAAATGCTGCAAAAATGCATAACCAATGGTGTTAAGTTCACCAAGCTAAAGTTATTAAGG AATAGGAAGTTGCTGAAGACCGAAAAATGCATAACCAATGGTGTTAAGTTCACCAAGCTAAAGTTATTAAGG AATAGGAAGTTGCTGCAAAAATGCTGCAAAAATGCATAACCAATGGTGTTAAGTTCACCAAGCTAAAGTTATTAAGG AATAGGAAGTTGCTGCAAAAATGCTGCAAAAATGCATAACCAATGGTGTTAAGTTCACCAAGCTAAAGTTATTAAGG AATAGGAAGTTGCTGCAAAAATGCTGCAAAAATGCATAACCAATGGTGTTAAGTT	:	492 492
LCYB-а LCYB-b	:	500 * 520 * 540 * 560 * TTATTCATGAAGAGTCCAAATCTTTGTTGATTGCAATGATGGTGGTGACAATTCAGGCTGCCGTGGGTTCTTGATGCTACGGG TTATTCATGAAGAGTCCAAATCTTTGTTGATTGCAATGATGGTGGGGACAATTCAGGCTGCCGTGGTTCTTGATGCTACGGG TTATTCATGAAGAGTCCAAATCTTTGTTGATTGCAATGATGGTGGGGACAATTCAGGCTGCCGTGGCTGCTGAGGATGCTACGGG TTATTCATGAAGAGTCCAAATCTTTGTTGATTGCAATGATGGTGGGACAATTCAGGCTGCCGTGGCTGCTGTGATGCTACGGG	:	574 574
LCYB-a LCYB-b	:	580 * 600 * 620 * 640 * GTTCTCTAGGTGTCTTGTCCAGTATAACCCCTATAATCCAGGTACCAAGTGGCATATGGAATACTAGCTGAGGTAGAA ATTCTCTAGGTGTCTTGTCCAGTAGAAACCCCTATAATCCAGGTACCAAGTGGCATATGGAATACTAGCTGAGGTAGAA TTCTCTAGGTGTCTTGT CAGTATGATAA CCCTATAATCCAGGTTACCAAGTGGCATATGGAATACTAGCTGAGGTAGAA	:	656 656
LCYB-а LCYB-b	:	660 * 680 * 700 * 720 * 7 GAGCACCCGTTTGATTTAGACAAGATGGTTTTCATGGATTGGAGAGATTCGCATCTGAACAACAATTCGGAGCTCAAAGAGG GAGCACCCGTTTGATTTAGACAAGATGGTTTTCATGGATTGGAGGAGATTCGCATCTGAACAACAATTCGGAGCTCAAAGAGG GAGCACCCGTTTGATTTAGACAAGATGGTTTTCATGGATTGGAGGAGTTCGCATCTGAACAACAATTCGGAGCTCAAAGAGG GAGCACCCGTTTGATTAGACAAGATGGTTTTCATGGATTGGAGGAGTTCGCATCTGAACAACAATTCGGAGCTCAAAGAGG	:	738 738
LCYB-a LCYB-b	:	40 * 760 * 780 * 800 * 820 CAAATAGCAAAATTCCTACTTTTCTTTATGCCATGCCCTTTTCGTCAAACAGGATATTTCTTGAAGAGACTTCGCTAGTGGC CAAATAGCAAAATTCCTACTTTTCTTTATGCCATGCC	:	820 820
LCYB-a LCYB-b	:	* 840 * 860 * 880 * 900 GCGGCCTGGAGTGCCAATGAAAGATATCCAGGAAAGAATGGTGGCTAGATTAAAGCACTTAGGCATAAAAGTTAA GCGGCCTGGAGTGCCAATGAAAGATATCCAGGAAAGAATGGTGGCTAGATTAAAGCACTTAGGCATAAAAGTTA GCGGCCTGGAGTGCCAATGAAAGATATCCAGGAAAGAATGGTGGCTAGATTAAAGCACTTAGGCATAAAAGTTA AAGCATT	:	902 902
LCYB-a LCYB-b	:	* 920 * 940 * 960 * 980 GAAGAGGATGARCATTGTGTCATTCCGATGGGTGGGGCCCCTTCCAGTGCTTCCTCAAAGAGTTGTTGGAATAGGTGGTACCG GAAGAGGATGACCATTGTGTCATTCCGATGGGTGGGGCCCCTTCCAGTGCTTCCTCAAAGAGTTGTTGGAATAGGTGGTACCG GAAGAGGATGA CATTGTGTCATTCCGATGGGTGGGGCCCCTTCCAGTGCTTCCTCAAAGAGTTGTTGGAATAGGTGGTACCG	:	984 984
LCYB-a LCYB-b	:	* 1000 * 1020 * 1040 * 1060 CTGGGATGGTGCACCCTTCAACTGGCTATATGGTGGCAAGGACTTTAGCTGCGGGCTCCTATGTTGCAAATGCAATCGTTCG CTGGGATGGTGCACCCTTCAACTGGCTATATGGTGGCAAGGACTTTAGCTGCGGGCTCCTATTGTTGCAAATGCAATCGTTCG CTGGGATGGTGCACCCTTCAACTGGCTATATGGTGGCAAGGACTTTAGCTGCGGCTCCTATTGTTGCAAATGCAATCGTTCG	:	1066 1066
LCYB-a LCYB-b	:	* 1080 * 1100 * 1120 * 1140 AAGCCTCAGTTCTGACAGAAGCATTTCAGGACACAAATTGTCTGCTGAAGTTTGGAAAGATTTGTGGCCCATAGAAAGGAGA AAGCCTCAGTTCTGACAGAAGCATTTCAGGACACAAATTGTCTGCTGAAGTTTGGAAAGATTTGTGGCCCATAGAAAGGAGA AAGCCTCAGTTCTGACAGAAGCATTTCAGGACACAAATTGTCTGCTGAAGTTTGGAAAGATTTGTGGCCCATAGAAAGGAGA	:	1148 1148
LCYB-a LCYB-b	:	* 1160 * 1180 * 1200 * 1220 * AGGCAAAGGGAGTTCTTCTGTTTTGGTATGGATATCCTGCTCAAACTTGACTTACCTGCCACTAGAAGGTTTTTCGATGCTT AGGCAAAGGGAGTTCTTCTGTTTTGGTATGGATATCCTGCTCAAACTTGACTTACCTGCCACTAGAAGGTTTTTCGATGCTT AGGCAAAGGGAGTTCTTCTGTTTTGGTATGGATATCCTGCTCAAACTTGACTTACCTGCCACTAGAAGGTTTTTCGATGCTT	:	1230 1230
LCYB-a LCYB-b	:	1240 * 1260 * 1280 * 1300 * TTTTTGATCTGGAGCCTCGTTATTGGCATGGTTTCTTATCATCGAGATTGTTTCTCCCCGAGCTTTTAGTTTTTGGGCTTTC TTTTTGATCTGGAGCCCCGGTTATTGGCATGGTTTCTTATCATCGAGATTGTTTCTCCCCGAGCTTTTAGTTTTTGGGCTTTC TTTTTGATCTGGAGCCCCGGTTTTTGGCATGGTTTCTTATCATCGAGATTGTTTCTCCCCCGAGCTTTTAGTTTTTGGGCTTTC	:	1312 1312
LCYB-а LCYB-b	:	1320 * 1340 * 1360 * 1380 * TCTATTCTCACATGCCTCTAATACTTCTAGGCTAGAGATCATGGCAAAGGGACTCTTCCTTTGGTTAACATGATCAACAAC TCTATTCTCACATGCCTCTAATACTTCTAGGCTAGAGATCATGGCAAAGGGCACTCTTCCTTTGGTTAACATGATCAACAAG TCTATTCTCACATGCCTCTAATACTTCTAGGCTAGG	:	1394 1394
LCYB-a LCYB-b	:	1400 * 1420 * TTGGTACAAGATACAGATTAAGGTGACCATGATAGTTATAAT : 1436 TTGGTACAAGATACAGATTAAGGTGACCACGATATTTATAAT : 1436 TTGGTACAAGATACAGATTAAGGTGACCA GATA TTATAAT		

Supplementary Fig. S3. The mRNA sequences of *lycopene* β -*cyclase* (*LCYB*) alleles, *LCYB-a* and *LCYB-b*, in Newhall and Cara Cara oranges. Note that, no difference in sequence was observed between the two oranges. Start codon and stop codon are underlined by red.

Supplementary Fig. S4. The mRNA sequences of *chromoplast-specific lycopene* β *-cyclase (CYCB)* alleles, *CYCB-a* and *CYCB-b*, in Newhall and Cara Cara oranges. Note that, no difference in sequence was observed between the two oranges. Start codon and stop codon are underlined by red.

albedo layers with red chromoplasts albedo layers without red chromoplasts

Supplementary Fig. S5. The observation of red crystalline chromoplast under the light microscope in 2-(4-chlorophenylthio)-triethylamine hydrochloride (CPTA) treated albedo layers of Newhall, control Newhall and control Cara Cara oranges. Bar, 20µm.

Gene	Primers (Forward; Reverse)	Genome accession
Actin	5'-CATCCCTCAGCACCTTCC-3';	Cs1g05000
	5'-CCAACCTTAGCACTTCTCC-3'	
BCH	5'-GTTTGCCATAATCAACGC-3';	Cs9g19270
	5'-CTCTCCGGAAATAAGGCA-3'	
CCD1	5'-GCACGAAATGGAATAGTGGC-3';	Cs7g01710
	5'-CTTTAGTAGGAGGAGTCTCG-3'	
CRTISO	5'-ATTTGATAACCCAAGCACTG-3';	Cs6g13340
	5'-TGAGGCAGATAATAGGCAAG-3'	
СҮСВ	5'-CCCTATTTCCATTAGGCCGC-3';	Cs1g04120
	5'-CACGTCATATCGAATACGATC-3'	
CYCB-a	5'-GAGCAAGTCTCATCGCGTCATA-3'	
	5'-ACTTTAGCCTTATGAAACTTAACTCCATTTG-3'	
CYCB-b	5'-GCAAGTCTCATCGCGTCATGGTA-3'	
	5'-ACTTTAGC CTTATGAAACCTAACGCCATTTA-3	
DXR	5'-GAAGTTAAAGTGGCTGATGC-3';	Cs5g05440
	5'-GAAGAATCCTGTGTTTCGAC-3'	6
DXS1	5'-CCGCATTCTCATTCCCGACT-3':	Cs9g05150
	5'-TTGTGAGTGATACTCTCCTCT-3'	
DXS2	5'-TTCCGGGATTGCTATTGGAG-3'	Cs1g20530
21102	5'- AAATCAATTTTCCAGCCGCC-3'	0018-0000
LCYB	5'-GAACCAGGAGCTTAGGTCTG-3'	orangel 1t00772
Leib	5'-GCTAGGTCTACAACAAGGCC-3'	orange1.100772
I CYF	5'-A ACCCATCTTGATTGGTCGT-3'	Cs4g14850
LUIL	5'-AGA AGCA ACAGTAGCA AGCCT-3'	051611050
NCED2	5'-CCATGGCCTTGGACATGGCG-3'	$C_{s}2a03270$
NCLD2	5'-TGATGCATTCGGGGATGGAG-3'	032803270
NCED3	5'-CTTTAGCCTTGGACGCAGTC-3'	Cs5g1/370
NCEDJ	5' GAATGCAGTCGGGGACCTTT 3'	C35g1+570
PDS	5' TTCAGCCGATTTGATTTTCC 2'	orange1 1t02361
1 D3	5° ACACCETECTTTETEATEC 3°	01alige1.1102501
DSV1	5° CTACAATCCACCATTCCCAC 2°	Cc6c15010
1311	5 - CIACAAIOCAOCAIIOOCAC-5,	Cs0g13910
	5 - CATOAAOTTICTCCATTIAATOO-5	
r 511-u	5' ACCCATACCCCCATCC 2'	
DCV1 L		
PS11-0	5 - CAGATGAGTGGCACAGGCG-5	
DEVA	5-GAUCUCATACUGUCATUT- 5	
PSI2	5 - 11 A CAATGCAGCATTATTAAT 2'	orange1.1100657
VDE	5 - CATGAAGIIICICCATIIAIIAAI-5	$C_{-5} - 2(0.80)$
VDE	5 -ACCGAAIGCCAGAICAAAIGIGG- 3 ;	C\$5g26080
700	5 - CUAUUATATUUATUUUATUU(A/G)TU-3'	
ZDS	$5 - 1 \cup A \cup U \cup U A \cup G \cup U \cup A \cup G \cup G \cup G \cup A \cup G \cup G \cup G \cup A \cup G \cup G$	orange1.1t06069
700	5'-1ACCAGACAAAGTTGCTCC-3'	1.1.0.1071
ZEP	5'-ACITGITACACIGGAATTGCAGA-3';	orange1.1t04051
-	5'-CCCATATTTGGCTGCATAGCATG-3'	~
ZISO	5'-ACTCCGTCTCCCTTTCA-3';	Cs5g24730
	5'-TTACCTGCCCAACCATCTGT-3'	

Supplementary Table S1. List of primers for real-time quantitative PCR

Supplementary Table S2. Effects of 2-(4-chlorophenylthio)-triethylamine hydrochloride (CPTA)
and norflurazon treatments on accumulation of carotenoids in in vitro cultured flesh tissues of Newhall
and Cara Cara. The 0 week tissues were separated from fruit at S5 stage.

Treatment	Contents (µg g ⁻¹ FW)								
	Phytoene	Phytofluene	β-Carotene	Lycopene	Violaxanthin	Luteoxanthin	cis-Violaxanthin	Others	Total carotenoids
Control (2 weeks) Newhall					0.20 ±0.05	0.20 ±0.02	0.56 ±0.11	0.12 ±0.02	1.08 ±0.13
Control (2 weeks) Cara Cara	24.07 ±0.20	3.87 ±0.17	0.14 ±0.08	5.85 ±0.30	0.12 ±0.03	0.11 ±0.02	0.36 ±0.05	0.57 ±0.05	35.08 ±0.70
CPTA (2 weeks) Newhall	1.60 ±0.07	0.39 ±0.03		13.91 ±0.89			0.14 ±0.01	1.41 ±0.11	17.44 ±1.02
CPTA (2 weeks) Cara Cara	10.64 ±0.49	1.91 ±0.11	0.24 ±0.03	7.39 ±0.45			0.03 ±0.02	0.82 ±0.01	21.04 ±0.98
Norflurazon (2 weeks) Newhall	32.22 ± 0.53	1.77 ±0.03			$\begin{array}{c} 0.01 \\ \pm \ 0.00 \end{array}$	$\begin{array}{c} 0.03 \\ \pm \ 0.00 \end{array}$	$\begin{array}{c} 0.04 \\ \pm \ 0.00 \end{array}$		34.07 ±0.55
Norflurazon (2 weeks) Cara Cara	46.60 ±1.34	3.04 ±0.08		2.62 ±0.17			$\begin{array}{c} 0.02 \\ \pm 0.01 \end{array}$	0.53 ±0.03	52.81 ±1.48
Control (4 weeks) Newhall	0.03 ±0.03				0.17 ±0.01	0.27 ±0.02	0.60 ±0.05	0.41 ±0.03	1.48 ±0.04
Control (4 weeks) Cara Cara	33.44 ±1.44	5.33 ±0.24		5.37 ±0.46	0.10 ±0.02	0.19 ±0.05	0.37 ±0.04	0.85 ±0.09	45.64 ±2.24
CPTA (4 weeks) Newhall	2.52 ±0.03	0.83 ±0.02		18.13 ±0.69	0.05 ±0.00	0.03 ±0.00	0.24 ±0.00	1.40 ±0.06	23.20 ±0.80
CPTA (4 weeks) Cara Cara	31.48 ±1.28	6.25 ±0.23		16.64 ±0.74	0.02 ±0.00		$\begin{array}{c} 0.08 \\ \pm 0.02 \end{array}$	1.47 ±0.05	55.95 ±2.29
Norflurazon (4 weeks) Newhall	60.09 ±3.37	4.13 ±0.20			0.04 ±0.01	0.07 ±0.00	0.13 ±0.02	0.08 ±0.01	64.54 ±3.59
Norflurazon (4 weeks) Cara Cara	82.76 ±2.15	5.10 ±0.17		0.64 ±0.00		$\begin{array}{c} 0.03 \\ \pm 0.00 \end{array}$	0.05 ± 0.02	0.24 ±0.04	88.82 ±2.31

Gene	Primers (Forward: Reverse)
CYCB	5'- CTTTCTTTGTCTTTCTCATTTC-3'
0102	5'- GAGACGCTAATTATTCAAGAAC-3'
LCYB	5'-TGAAGATTCAGAACCAGGAG-3'
	5'- GCATGAGTTATTAAGCACATTA-3'
PSY1	5'-CTACAGAGAGTTGAAGTTACAGGG-3'
	5'-TAGGGCATCGGCCTTGGATTGTG-3'

Supplementary Table S3. List of primers for full-length gene cloning