Supporting Information

Interleukin-33 Regulates Intestinal Inflammation by Modulating Macrophages in Inflammatory Bowel Disease

Dong Hyuk Seo, BS,^{1,2,3*} Xiumei Che, MS,^{1,2,3*} Min Seob Kwak, MD,^{4,5*} Soochan Kim, PhD,^{1,3} Jae Hyeon Kim, BS,^{1,2} Hyun Woo Ma, BS,^{1,2} Da Hye Kim, MS,^{1,3} Tae II Kim, MD, PhD,¹ Won Ho Kim, MD, PhD,¹ Seung Won Kim, PhD,^{1,2,3†} and Jae Hee Cheon, MD, PhD,^{1,2,3†}

¹Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea

²Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea

³Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea

⁴Department of Internal Medicine, Graduate School, Yonsei University College of Medicine, Seoul, Korea

⁵Department of Internal Medicine, Kyung Hee University Hospital at Gang Dong, Kyung Hee University School of Medicine, Seoul, Korea

^{*,†}These authors contributed equally to this work

Supplementary Tables

Characteristic	CD (69)	UC (75)	BD (74)	NC (45)
Age, yr, median (IQR)	23.5 (8.6)	34.0 (21.0)	41.0 (18.0)	35.0 (2.0)
Sex, (%)				
Male	51 (73.9)	44 (58.7)	29 (39.2)	19 (47.5)
Female	17 (24.6)	31 (41.3)	45 (60.8)	21 (52.5)
UC extent, (%)				
Proctitis		13 (17.3)		
Left sided colitis		45 (60.0)		
Extensive colitis		17 (22.7)		
Location, (%)				
L1 (ileal)	14 (20.3)			
L2 (colonic)	15 (21.7)			
L3 (ileocolonic)	26 (37.7)			
L4 (only upper GI)	4 (5.8)			
NA	10 (14.5)			
Behaviour at diagnosis, (%)				
B1 (nonstricturing, nonpenetrating)	16 (23.2)			
B2 (stricturing)	25 (36.2)			
B3 (penetrating)	18 (26.1)			
NA	10 (14.5)			
CDAI, median (IQR)	94.3 (51.9)			
pMayo score, median (IQR)		2.0 (3.0)		
DAIBD, median (IQR)			20.0 (31.0)	
Serum IL-33 level, median (ng/ml, IQR)	0.09 (0.38)	0.07 (0.10)	0.07 (0.12)	0.16 (0.37)
Serum sST2 level, median (ng/ml, IQR)	5.11 (1.56)	5.76 (1.52)	5.38 (1.47)	4.50 (0.99)
ESR, mm/h, median (IQR)	30.0 (44.5)	23.0 (33.0)	27.0 (22.0)	
CRP, mg/dL, median (IQR)	1.8 (7.0)	2.3 (6.0)	1.4 (7.0)	

Table S1. Patient clinical characteristics

IQR, interquartile range; GI, gastrointestinal; NA, not applicable; pMayo, partial Mayo scoring index; CDAI, Crohn's disease activity index; DAIBD, disease activity index for intestinal Behcet's disease; NC, normal control.

	Forward	R	leverse	
Mouse				
Argl		CTCCAAGCCAAAGTCCTTAGAG	AGGAGCTGTCATTAGGGACATC	
β -Actin		AGTGTGACGTTGACATCCGT	TGCTAGGAGCCAGAGCAGTA	
Cd163		GGTGGACACAGAATGGTTCTT	CCAGGAGCGTTAGTGACAGC	
Cd206		CAGGTGTGGGGCTCAGGTAGT	TGTGGTGAGCTGAAAGGTGA	
<i>Il10</i>		GCCACATGCTCCTAGAGCTG	CAGCTGGTCCTTTGTTTGAAA	
Il33		TCCAACTCCAAGATTTCCCCG	CATGCAGTAGACATGGCAGAA	
Klf4		AGAGGAGCCCAAGCCAAAGAG	G CCACAGCCGTCCCAGTCACAGT	
Muc2		GGTCCAGGGTCTGGATCACA	GCTCAGCTCACTGCCATCTG	
Tgfb1		ACCATGCCAACTTCTGTC	CGGGTTGTGTGTGGTTGTAGA	
Tnfa		CAAAGGGAGAGTGGTCAGGT	ATTGCACCTCAGGGAAGAGT	
Human				
BACTIN		CTCTTCCAGCCTTCCTTCCTG	CAGCACTGTGTTGGCGTACAG	
IL33		CACCCCTCAAATGAATCAGG	GGAGCTCCACAGAGTGTTCC	
KLF4		CGGACATCAACGACGTGAG	GACGCCTTCAGCACGAACT	
MUC2		AGGATGACACCATCTACCTCAC	C GGTGTAGGCATCGCTCTTCTC	

Table S2.	Primers f	for qRT-PCR
-----------	-----------	-------------

Supplementary Figures

Figure S1. Ratios of circulating IL-33/ST2 and its correlation with disease activity. (a) Serum IL-33/sST2 ratios in patients with inflammatory bowel disease (IBD). (b) Correlation between serum IL-33/sST2 ratio and IBD clinical disease activity. Solid line, references on the X and Y axes; dotted line, fit for total variables. Results are shown as individual values (symbols) and SDs (lines) for each group of patients. ***P < 0.005 vs. NC as assessed by ANOVA. NC, normal control; CD, Crohn's disease; CDAI, CD activity index; UC, ulcerative colitis; BD, Behçet's disease; DAIBD, disease activity index for intestinal BD.

Figure S2. IL-33 mRNA expression in inflamed mucosal tissue samples. (a) Colonic biopsy samples were harvested from noninflamed areas of normal control (NC, n = 3) patients and from inflamed areas of patients with UC (n = 9), BD (n = 7), and CD (n = 6). Total RNA was extracted and processed for quantitative RT-PCR. IL-33 expression levels were normalised to that of β -actin. Relative mRNA levels were calculated using the 2^{dCt} formula. The significance of differences between groups was analysed using Student's *t*-test. (b) Effects of IL-33 on dextran sodium sulfate (DSS)-induced colitis in mice (n = 5 mice/group). **P* < 0.05 vs. NC, **P* < 0.05 vs. Sham. NC, normal control; UC, ulcerative colitis; BD, Behçet's disease; CD, Crohn's disease; Veh, injected with vehicle; IL-33, injected with mrIL-33; TNBS, injected with 2,4,6-trinitrobenzenesulfonic acid.

Figure S3. Histological score of dextran sodium sulfate (DSS)-induced colitis in mice (n = 5). ^{**}P < 0.01 vs. DSS. IL-33, 5 daily injections of IL-33 (mrIL-33, 0.2 µg/mouse); DSS, treated with 3% (w/v) DSS.

Figure S4. Effects of IL-33 on the survival of mice with 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis. Survival (n = 7) was analysed by generating a Kaplan-Meier plot. Veh, treated with vehicle; IL-33, treated with mrIL-33; TNBS, injected with 2,4,6-trinitrobenzenesulfonic acid.

Figure S5. Effects of IL-33 on disease activity index (DAI, a) and Muc2 expression in colon tissue (b) of wild-type (WT) and Myd88 deficient (*Myd88^{-/-}*) mice with 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis (n = 5). To assess the effects of IL-33 on enterocyte and macrophage early in disease, 100 µl TNBS solution (1.8% (w/v)) in 40% ethanol was injected into the colon of each mouse and DAI score at day 6 (D6) was obtained. $^{##}P < 0.01$ vs. Sham, $^{###}P < 0.005$ vs. Sham, $^{**}P < 0.01$ vs. TNBS, $^{***}P < 0.005$ vs. TNBS. Veh, treated with vehicle; IL-33, treated with mrIL-33; TNBS, injected with 2,4,6-trinitrobenzenesulfonic acid.

PBS-PCC

а

Figure S6. Mouse PCC transfer model. Male C57BL/6 mice were inoculated i.p. with IL-33 (1 µg/mouse) or PBS for 3 consecutive days (**a**). Next, peritoneal cavity cells (PCCs) were extracted from the peritoneum of each mouse by washing the peritoneal cavity with cold PBS. F4/80 positive cells were sorted from the extracted PCCs and i.p. injected (1 × 10⁶ cells) into the recipient mice. After 2 days, 2,4,6-trinitrobenzenesulfonic acid (TNBS) solution was injected into the colon of each recipient mouse (**b**,**c**). (**a**) Representative flow cytometry gating strategies of peritoneal cavity cells (PCCs) isolated from PCC-treated mice (n = 5). (**b**) Histological score of the colon from TNBS-treated mice. Values are expressed as means (n = 5); error bars represent ±SDs. (**c**) Representative image of mouse colon immunostaining (n = 3–4). CD206 is visualized in green using fluorescent conjugated antibodies. Nuclei were counterstained with DAPI (blue). ###P < 0.05 vs. TNBS, *P < 0.05 vs. PBS PCC as assessed by ANOVA. Veh, treated with vehicle; IL-33, treated with mrIL-33; TNBS, injected with 2,4,6-trinitrobenzenesulfonic acid.

Figure S7. Effects of IL-33 on the mRNA expression levels of M2 and goblet cell markers in the colons from peritoneal cavity cell (PCC)-treated mice. (a) mRNA expression of *Il10* and *Tgfb*. (b) mRNA expression of *Muc2*. Male C57BL/6 mice (n = 5)were inoculated i.p. with IL-33 (1 µg/mouse) or PBS for 3 consecutive days. Next, peritoneal cavity cells (PCCs) were extracted from the peritoneum of each mouse by washing the peritoneal cavity with cold PBS. F4/80 positive cells were sorted from the isolated PCCs and i.p. injected $(1 \times 10^6 \text{ cells})$ into the recipient mice. After 2 days, 2,4,6-trinitrobenzenesulfonic acid (TNBS) solution was injected into the colon of each recipient mouse. ***P < 0.005 vs. PBS PCCs as assessed by ANOVA. Veh, treated with vehicle; IL-33, treated with mrIL-33; TNBS, injected with 2,4,6-trinitrobenzenesulfonic acid.

Figure S8. Representative image of CD206 and IL-33 immunostain in human colon (NC, n = 3; UC, n = 4). (a) CD206 immunostaining (green). (b) IL-33 immunostaining (red). Nuclei were counterstained with DAPI (blue). NC, normal control; UC, ulcerative colitis.

Figure S9. Wound healing assay. Monocytes were isolated from PBMCs and differentiated into macrophages for 7 days. Macrophages were cocultured with the HT-29 cells and wound healing assays were performed. Representative images show increased wound closures by IL-33 treatment. Data are presented as means \pm SD (n = 2). **P* < 0.05 vs. Veh as assessed by Student's *t*-test. NC, not cocultured; Veh, treated with vehicle; IL-33, treated with hrIL-33; LPS, treated with lipopolysaccharide. **P* < 0.05 vs. LPS.