

Supplementary Material

The transcription factor ZNF683/HOBIT regulates human NK cell development

Mirte Post, Angelica Cuapio, Markus Osl, Dorit Lehmann, Ulrike Resch, David M. Davies, Martin Bilban, Bernhard Schlechta, Wolfgang Eppel, Amit Nathwani, Dagmar Stoiber, Jan Spanholtz, Emilio Casanova and Erhard Hofer*

* Correspondence: Erhard Hofer erhard.hofer@meduniwien.ac.at erhard.hofer@gmx.at

Supplementary Table S1. List of the 20 genes most strongly upregulated during *ex-vivo* differentiation of NK cells.

CD34⁺ stem cells were isolated from one cord blood sample and *ex vivo* differentiated into NK cells as described in the methods section. Cells were collected at several time points between10 and 35 days of culture, total RNA was isolated and subjected to Affymetrix microarray analysis. Changes in gene expression are displayed as fold induction relative to day 10 of culture. Genes are listed according to decreasing induction rates. Genes listed several times in the original Affymetrix array data set are only given once using their highest value.

	mRNA accession	Gene symbol	Gene full name	Day 15	Day 17	Day 20	Day 22	Day 24	Day 27	Day 29	Day 31	Day 35
1	NM_001080416.3	MYBL1	MYB proto-oncogene like 1	1.2	1.5	2.8	8.6	15.9	31.7	77.2	96.5	158.3
2	NM_012481.4	IKZF3 (Aiolos)	IKAROS family zinc finger 3	0.69	1.24	1.4	1.5	2.19	4.31	6.16	9.97	15.33
3	NM_001143820.1	ETS1	ETS proto-oncogene 1	1.46	1.64	1.69	2.71	2.71	4.49	7.53	9.68	13.75
4	NM_003151.3	STAT4	Signal transducer and activator of transcription 4	1.45	2.38	1.81	2.54	2.87	4.16	6.96	8.63	13.13
5	NM_001002295.1	GATA3	GATA-binding factor 3	0.92	0.91	1.11	1.15	1.49	2.02	3.08	4.11	9.59
6	NM_001114759.2	ZNF683	Zinc finger protein 683	0.97	1.04	1.24	1.20	1.91	2.77	2.90	4.30	8.87
7	NM_005442.3	EOMES	Eomesodermin	1.07	1.16	1.58	1.64	2.32	4.01	5.22	5.57	7.93
8	NM_014729.2	тох	Thymocyte associated high mobility group box	1.32	1.51	1.27	1.49	1.86	2.47	3.68	5.1	7.73
9	NM_134260.2	RORA (RORa)	RAR related orphan receptor A	1.04	1.25	0.99	1.19	1.50	1.68	2.10	2.27	4.14
10	NM_003670.2	BHLHE40	Basic helix-loop-helix family member e40	1.46	1.76	1.66	1.91	2.10	2.92	4.57	4.08	4.06
11	NM_001323638.1	ZEB1	Zinc finger E-box binding homeobox 1	0.98	1.28	1.05	1.13	1.18	1.71	2.34	2.46	3.89
12	NM_007249.4	KLF12	Kruppel like factor 12	0.80	1.07	0.90	0.85	1.09	1.38	2.01	1.82	3.86
13	NM_001031680.2	RUNX3	Runt related transcription factor 3	1.17	1.80	1.40	1.65	2.47	3.04	3.16	3.51	3.85
14	NM_002167.4	ID3	Inhibitor of DNA binding 3, HLH protein	1.38	1.45	1.32	1.23	1.83	1.78	2.56	2.59	3.71
15	NM_001198.3	PRDM1	PR/SET domain 1	2.76	4.20	2.66	2.96	3.70	4.62	2.60	2.58	3.44
16	NM_021813.3	BACH2	BTB domain and CNC homolog 2	0.86	0.88	0.80	0.85	0.96	1.38	1.53	1.86	3.13
17	NM_002166.4	ID2	Inhibitor of DNA binding 2, HLH protein	1.28	1.56	1.44	1.26	1.31	1.68	2.37	2.30	2.92
18	NM_007315.3	STAT1	Signal transducer and activator of transcription 1	1.10	1.48	1.41	1.60	2.31	4.39	5.66	4.27	2.77
19	NM_002198.2	IRF1	Interferon regulatory factor 1	1.26	1.27	1.59	1.99	2.07	3.35	4.53	3.69	2.75
20	NM_002163.2	IRF8	Interferon regulatory factor 8	1.89	1.67	2.21	2.61	2.74	2.80	2.67	2.21	2.45

Supplementary Table S2. Comparison of the upregulation of ZNF683/HOBIT and PRDM1/BLIMP-1 mRNA during NK cell differentiation.

RNA was isolated between days 21 and 35 and realtime RT-PCR performed. β -actin was used as internal control. Results are calculated as fold upregulation in comparison to the values obtained for day 10 cells and are shown as mean +/- SEM. Two independent series of experiments were performed in triplicates.

	НОВІТ	BLIMP-1			
Day 21	59 (+/- 52)	8 (+/- 4)			
Day 28	413 (+/- 254)	10 (+/- 7)			
Day 35	1185 (+/- 615)	18 (+/- 13)			

Supplementary Table S3. List of Primers used for realtime RT-PCR analysis.

	1
Primer	Sequence (5' - 3' direction)
HOBIT-1 Forward	CATATGTGGCAAGAGCTTTGG
HOBIT-1 Reverse	GGCAAGTTGAGTGAAGCTCT
HOBIT-2 Forward	GGTCCCATTGAGTTCCCAGA
HOBIT-2 Reverse	GGTGGGCAAGTTGAGTGAAG
BLIMP1-1 Forward	TACATACCAAAGGGCACACG
BLIMP1-1 Reverse	TGAAGCTCCCCTCTGGAATA
β-actin Forward	TTTGAATGATGAGCCTTCGTCCCC
β–actin Reverse	GGTCTCAAGTCAGTGTACAGGTAAGC
HPRT Forward	AAGCTTGCTGGTGAAAAGGA
HPRT Reverse	CAAACATGATTCAAATCCCTGA

CD number	Alternative name	Fluoro ⁻ chrome	Clone	Vendor	Cat. No	
CD56	N-CAM	PeCy7	B159	BD	557747	
CD14		PerCPCy5.5	ΜφΡ9	BD	562692	
CD159a	NKG2A	APC	Z199	BC	A60797	
CD158	KIR	PE	180704	RD	FAB1848P	
CD107a	Lysosomal-associated membrane protein 1 (LAMP-1)	APC	H4A3	BD	560664	
IFN-γ		PE	4S.B3	BD	559326	
CD34		APC	AC136	Miltenyi	130-098-139	

Supplementary Table S4. Monoclonal antibodies used for flow cytometry analysis.

BD = BD Biosciences; BC = Beckman Coulter; RD = R&D Systems

Supplementary Figure 1. Effects of HOBIT shRNA on the percentage of CD56+ cells at day 35. Cord blood CD34+ stem cells expanded for 5 days were transduced with either shHOBIT or shControl lentiviruses. The percentages of CD56+ NK cells within the total cells at day 35 were assessed by flow cytometry. Percentages of CD56+ cells within the transduced GFP+ and non-transduced GFP- fractions are shown. Results are calculated from four independent experiments using different donor cells and displayed as mean +/- SEM.

Supplementary Figure 2. Exemplary dot plots for the effects of HOBIT shRNA on NKG2A and KIR receptor expression and degranulation capacity.

Expanded cord blood stem cells were transduced and further differentiated until day 35. (A) Exemplary dot plots of flow cytometry analysis displaying NKG2A and KIR receptor expression. (B) Exemplary dot plots displaying CD107a surface levels. Cells were cocultured with K562 target cells in the presence of CD107a antibodies. Then the cells were fixed, stained with CD56 antibodies and subjected to flow cytometry.

Supplementary Figure 3. Effects of HOBIT shRNA on intracellular IFN- γ levels. Expanded and transduced cord blood stem cells were differentiated until day 35. Cells were then cocultured with K562 target cells, permeabilized and stained with IFN- γ antibodies. The mean fluorescence intensity (MFI) of intracellular IFN- γ staining was assessed by flow cytometry as a measure for IFN- γ production per cell within the transduced GFP+ and non-transduced GFP- fractions. Results are derived from four independent experiments using different donor cells and are shown as mean +/- SEM.