Supplementary Information Pronounced Plasticity Caused by Phase Separation and β-relaxation Synergistically in Zr–Cu–Al–Mo Bulk Metallic Glasses

T. Wang,^a L. Wang,^a Q. J. Wang,^a Y.H. Liu,^b X.D. Hui^{a,*}

^aState Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China ^bInstitute of Physics, Chinese Academy of Sciences, Beijing 100190, China

Supplementary Figures

^{*}Corresponding authors. E-mail: xdhui@ustb.edu.cn (X. D. Hui).

Fig. S1 The temperature dependence on the loss modulus E'' measured with frequency f, the inset plots are ln(f) vs the onset temperature of β -relaxation (T_{β}) for the alloys: (a) Zr₅₀Cu_{44.5}Al_{5.5} (b) Zr₅₀Cu_{41.5}Al_{5.5}Mo₃

Supplementary Note

The temperature dependence on the *E*" as a function of frequency (*f*) is shown in Fig. S1. The inset of Fig. S1 shows the *f* dependence on the onset temperature of β -relaxation (T_{β}) which is marked on the DMA curver. These points were fitted by the Arrhenius equation

$$f = f_{\infty} \exp(-E_{\beta} / RT) \tag{1}$$

Where f_{∞} is the prefactor, E_{β} is the activation energy of β -relaxation, R is the ideal gas constant and T is the temperature. The Eq. (1) can be also written as

$$\ln(f) = \ln(f_{\infty}) - E_{\beta} / RT \tag{2}$$

So, $-E_{\beta}/R$ is the slope of the line on a plot of $\ln(f)$ versus $1/T_{\beta}$.

The E_{β} is determined to be 162 ± 12 kJ/mol and 135 ± 11 kJ/mol for Zr₅₀Cu_{44.5}Al_{5.5} (ZCA) and Zr₅₀Cu_{41.5}Al_{5.5}Mo₃ (ZCAM3) from the Arrhenius plots, resepectively. And these values are corresponding to ΔE_1 and ΔE_2 , resepectively.