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ABSTRACT

Adoption of Electronic Health Record (EHR) systems has led to collection of massive healthcare data, which creates op-
portunities and challenges to study them. Computational phenotyping offers a promising way to convert the sparse and
complex data into meaningful concepts that are interpretable to healthcare givers to make use of them. We propose a novel
supervised nonnegative tensor factorization methodology that derives discriminative and distinct phenotypes. We represented
co-occurrence of diagnoses and prescriptions in EHRs as a third-order tensor, and decomposed it using the CP algorithm. We
evaluated discriminative power of our models with an Intensive Care Unit database (MIMIC-III) and demonstrated superior
performance than state-of-the-art ICU mortality calculators (e.g., APACHE II, SAPS II). Example of the resulted phenotypes are
sepsis with acute kidney injury, cardiac surgery, anemia, respiratory failure, heart failure, cardiac arrest, metastatic cancer
(requiring ICU), end-stage dementia (requiring ICU and transitioned to comfort-care), intraabdominal conditions, and alcohol
abuse/withdrawal.

Supplementary figure

Figure S1. Co-occurence distribution between prescriptions and diagnoses.
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Supplementary Tables

Table S1. Time complexity to update Ai: (Eq. 6). Total time complexity for Ai: is bounded by O(JKR2). Time complexity for
A is O(JKR2|L|)+O(JKR2(I−|L|)) = O(IJKR2).The supervised term had negligible effects on the total time complexity.

Without supervised term Supervised term
Compute ∇ f (Ai:) O(JKR2) O(R)
Compute ∇2 f (Ai:) O((J+K)R2) O(R2)
Inversion ∇2 f (Ai:) O(R3) –

Table S2. Time complexity to update B (Eq. 16). Total time complexity for B is bounded by O(IJKR)+O(J3R3). The
similarity-constraint term had negligible effects on the total time complexity.

Without supervised term Supervised term
Compute ∇g(B) O(IJKR) O(J2R)
Compute ∇2g(B) O((I +K + J2)R2) O(J2R2)
Inversion ∇2g(B) O(J3R3) –

Table S3. Cross validation. Supervised = the supervised phenotyping for discriminative power, Sim.-based = the
similarity-based phenotyping for distinct power, Supervised + Sim.-based = the final model that incorporates the both
supervised and similarity-based phenotyping. The models that contain supervision or label information (i.e., likelihood term in
supervised phenotyping, discrimination evaluation) used training or test sets.

Model Used dataset
Constrained tensor factorization
Supervised Training set for likelihood term
Sim.-based Both
Supervised + Sim.-based Training set for likelihood term
Evaluation
Discriminative power – Logistic regression parameter Training set
Discriminative power – AUC, sensitivity, specificity Test set
Distinctive power Both
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Supplementary methods
Tensor
Tensor is a generalization of matrix. Order of a tensor is the number of dimension. A first-order tensor is a vector, a second-order
tensor is a matrix, and tensors of order three or higher are called high-order tensors such as (Fig. S2a). Matricization is a
process of reshaping the tensor into a matrix by unfolding elements of the tensor. Mode-n matricization of a third-order tensor
is matricization on each mode n (n = 1, 2, 3) and denoted as O(n). For example, a third-order tensor O ∈ R2×2×2 in Fig. S2b
and S2c is unfolded on each mode n =1, 2, and 3.
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(a) Third-order tensor
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(b) Matricization
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(c) Matricization example

Figure S2. A third-order tensor and matricization

A third-order tensor O ∈ RI×J×K is rank-one if it is an outer product of three vectors a,b and c, i.e., O = a◦b◦ c where ◦
means the vector outer product (Fig. S3). Oi jk the element at (i, j,k) in the tensor O , is computed as a product of elements in
the vectors, i.e., Oi jk = aib jck.

Nonnegative tensor factorization (NTF)
Tensor factorization
Tensor factorization is a dimensionality reduction approach that represents the original tensor as a lower dimensional latent
matrix. The CANDECOMP/PARAFAC (CP)1, 2 model (i.e., CP decomposition) is the most popular tensor factorization
method that approximates the original tensor O as a linear combination of rank-one tensors. That is, a third-order tensor O is
decomposed as

O ≈
R

∑
r=1

A:r ◦B:r ◦C:r (1)

where R is a positive integer, and A:r,B:r,C:r is a rth column vector in matrix A ∈RI×R,B ∈RJ×R and C ∈RK×R, respectively
(Fig. S4). Here, the matrices A,B and C are called as factor matrices. The number R of rank-one tensors is called as rank, and
O is called as a rank-R tensor.

Using the factor matrices, the matricized tensor on each mode is written as

O(1) ≈ A(C�B)T ,

O(2) ≈ B(C�A)T ,

O(3) ≈ C(B�A)T

(2)

where � is Kharti-Rao product. The CP decomposition in Eq. (1) is also expressed as a normalized form by setting the size of
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Figure S3. A rank-one tensor O = a◦b◦ c
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Figure S4. A rank-R tensor O ≈ ∑
R
r=1 A:r ◦B:r ◦C:r. O is approximated as sum of outer product of three column vectors.

column vectors to one and absorbing the weights into λr:

O ≈
R

∑
r=1

λrA:r ◦B:r ◦C:r (3)

where A:r =
A:r
||A:r ||F (same for B:r,C:r), and λr = ||A:r||F ||B:r||F ||C:r||F , which is the product of vectors’ Frobenius norm.

Nonnegativity
In many real-world applications, tensor factorization is used for analyzing nonnegative data such as count, time and grayscale
images. In this case, decomposition into nonnegative factor matrices A,B,C≥ 0 is more beneficial than decomposition into
matrices containing negative values due to interpretability. When a factor matrix has negative values, and observed data is
decomposed into combination of both positive and negative values in the factor matrix, we cannot easily interpret meaning of
the negative value in the factor matrices, whereas the positive value indicates the presence of a feature; the zero value indicates
the absence.

Optimization
To compute CP decomposition with the nonnegativity constraint, an objective function is to find a tensor X that best
approximates the observed tensor O:

X = argmin||O−X ||2F

s.t. X =
R

∑
r=1

A:r ◦B:r ◦C:r

A,B,C≥ 0.

(4)
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Then, we can rewrite the optimization problem in Eq.(4) with respect to each factor matrix while fixing the other modes:

A = argminA≥0||A(C�B)T −O(1)||2F ,
B = argminB≥0||B(C�A)T −O(2)||2F ,
C = argminC≥0||C(B�A)T −O(3)||2F .

(5)
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