Supplementary Information

NMR-based metabolomics for simultaneously evaluating multiple determinants of primary beef quality in Japanese Black cattle

Yoshinori Kodani, Takuya Miyakawa, Tomohiko Komatsu, Masaru Tanokura*

*Corresponding author. E-mail: amtanok@mail.ecc.u-tokyo.ac.jp

Contents

- **Supplementary Table 1:** ¹H and ¹³C signal assignments of the compounds detected in D₂O extracts
- **Supplementary Figure S1.** Loading plot for PC2 of the score plot that was generated using the ¹H NMR spectra of the D₂O extracts of ribeye samples with different aging duration.
- **Supplementary Figure S2:** PCA score plot of the CDCl₃ extracts of ribulose samples with different aging duration (0, 2, 4, 6, 8 and 10 weeks)
- **Supplementary Figure S3:** ¹H NMR spectrum of an equimolar mixture of nucleotides (ATP, ADP, AMP and IMP) and HxR

C I			Chemical shift (ppm)	
Compound	Abbreviation	Assignment	¹ H (multiplicity)	¹³ C
Amino acids				
alanine	Ala	α-CH	3.77	53.30
		β -CH 3	1.48 (d) *	18.89
		СООН		178.60
anserine	Ans	CH-2, ring	8.23	139.13
		C- 4, ring		133.13
		CH-5, ring	7.09 (s)	123.27
		N–CH ₃	3.77 (s)	35.93
carnitine		α-CH ₂	2.42	45.72
		β-CH	4.57	66.70
		γ -CH ₂	3.42	72.79
		N(CH ₃) ₃	3.21 (s) *	56.77
		СООН		180.40
carnosine	Car	β -alanyl α -CH ₂	2.67 (m) *	
		β -alanyl β -C H ₂	3.21	
		Histidyl α-C H	4.47 (m)	
		Histidyl β -CH ₂	3.09	29.99
		CH-2, ring	8.18 (s)	137.08
		C-4, ring		133.95
		CH-5, ring	7.11 (s)	119.85
		СООН		179.35
		CONH		174.42
creatine	Cr	α- CH ₂	3.92 (s)	56.57
		N-CH ₃	3.03 (s) *	39.65
		СООН		177.43
		$NH=C(NH_2)-N$		159.89
glutamic acid	Glu	β- CH ₂	2.05 (m)	29.70
		γ -CH ₂	2.35 (m) *	36.07
		α -CH ₂ –COOH		177.19
		γ -CH ₂ -COOH		183.81
glutamine	Gln	β-CH ₂	2.13 (m)	
		γ -CH ₂	2.45 (m) *	
		СООН		176 74
		COOL		1/0./1

Supplementary Table S1. ¹ H and ¹³ C signal assignments of the compounds detected	d
in D ₂ O extracts	

(to be continued)

Compound	Abbroviation		Chemical shift (ppm)		
Compound	Appreviation	Assignment	¹ H (multiplicity)	¹³ C	
glycine	Gly	α- CH 2	3.55	44.09	
		СООН		175.17	
isoleucine	Ile	α-CH	3.66	62.42	
		β-CH	1.97	38.69	
		γ - \mathbf{C} H ₂		27.22	
		γ '- C H ₃	1.00 (d) *		
		δ-CH ₃	0.93	13.59	
		СООН		177.43	
leucine	Leu	α-CH	3.73	56.17	
		β -CH ₂	1.70 (m) *	42.59	
		γ -CH	1.69 (m) *	26.96	
		δ- CH ₃	0.94	23.68	
		δ'-CH ₃	0.96	24.78	
		СООН		178.35	
phenylalanine	Phe	β-C H 2	3.12, 3.27		
		C- 1, ring		137.90	
		CH- 2,6, ring	7.32 (d) *	131.78	
		CH- 3,5, ring	7.42 (dd)	131.65	
		CH-4, ring	7.38 (t)	130.28	
tyrosine	Tyr	C- 1		129.61	
		CH- 2,6, ring	7.18 (d)	133.50	
		CH- 3,5, ring	6.88 (d) *	118.55	
		C H-4		157.91	
valine	Val	α-CH	3.60 (d) *	63.04	
		β-CH	2.27	31.98	
		γ -CH 3	0.97 (d)	19.42	
		γ' -CH 3	1.03 (d)	20.50	
Sugars					
α-glucose	α-Glc	CH- 1	5.23 (d) *	94.67	
		CH- 2	3.53	74.04	
		СН-3	3.71	75.30	
		CH- 4	3.40	72.29	
		CH-5	3.83	74.06	
		CH ₂ -6	3.77, 3.84	63.24	

Supplementary Table S1 (continued)

(to be continued)

Commonwel	A I , I ,,	A	Chemical shift (ppm)	
Compound	Addreviation	Assignment	¹ H (multiplicity)	¹³ C
β-glucose	β-Glc	CH- 1	4.64 (d) *	98.57
		СН-2	3.24	76.84
		СН-3	3.47	72.29
		CH- 4	3.40	72.29
		CH- 5	3.47	78.55
		CH ₂ -6	3.72, 3.90	63.42
Purine derivatives				
inosine	HxR	CH- 1'	6.09 (d) *	91.12
		C H- 2	8.23	
		CH- 8	8.34 (s)	142.88
inosine	IMP	C H -1'	6.14 (d) *	
monophosphate		C H- 2	8.22	
		C H- 8	8.58 (s)	
hypoxanthine	Hx	СН-2	8.2 (s)	
		C H- 8	8.19	
Organic acids				
acetic acid	AcOH	CH ₃	1.93 (s) *	25.53
		СООН		183.81
fumaric acid		CH=CH	6.51 (s) *	
		СООН		177.38
lactic acid		α-CH	4.11 (q)	71.23
		β-CH ₃	1.32 (d) *	22.90
		СООН		185.28
Alcohol				
ethanol	EtOH	CH ₃	1.17 (t) *	19.45
		CH ₂	3.65	60.13
glycerol		CH ₂ -1	3.55 (m)	65.16
		СН-2	3.78 (m)	74.74
		CH ₂ -3	3.66 (m) *	65.16
Other compounds				
betaine		N(CH ₃) ₃	3.25 (s) *	56.17
		\mathbf{CH}_2	3.90 (s)	68.93
		СООН		172.02
choline		N(CH ₃) ₃	3.19 (s)	56.45

Supplementary	Table S1	(continued)
---------------	----------	-------------

*Proton signals were chosen for the quantitative analysis.

Supplementary Figure S1. Loading plot for PC2 of the score plot that was generated using the ¹H NMR spectra of the D_2O extracts of ribeye samples with different aging duration. The PCA score plot is shown in Fig. 4A. Buckets with high loading values are labeled by the assigned compound names. The square brackets represent the chemical shift range of each spectral bucket.

Supplementary Figure S2. PCA score plot of the CDCl₃ extracts of ribulose samples with different aging duration (0, 2, 4, 6, 8 and 10 weeks). Ribulose samples are derived from heifers and delivered cows. The heifer samples are separated from the delivered cow in the score plot, and the individual regions are divided by a dashed line.

Supplementary Figure S3. ¹H NMR spectrum of an equimolar mixture of nucleotides (ATP, ADP, AMP and IMP) and HxR. The signals observed near 6.10 and 6.15 ppm were derived from the ¹H attached to the 1' position of the ribose ring. The nucleotides signals overlapped.