Non-autotrophic methanogens dominate in anaerobic digesters

- Supplementary Information -

Atsushi Kouzuma^{*}, Maho Tsutsumi, Shun'ichi Ishii, Yoshiyuki Ueno, Takashi Abe, and Kazuya Watanabe

> *Corresponding author E-mail: akouzuma@toyaku.ac.jp

Figure S1. Configuration of reactors used in this study.

Figure S2. Time course of OLR, HRT, COD in effluent, and biogas production rates in reactor 2. The sample collection date for the metagenomic and metatranscriptomic analysis (day 159) is indicated by a dotted line.

Figure S3. Neighbor-joining tree based on nucleotide sequences of 16S rRNA genes showing phylogenetic relationships in the genus *Methanosarcina* (a) and *Methanothermobacter* (b). Bootstrap values (100 trials, only >50 are shown) are indicated at branching points. The bar indicates 0.5% sequence divergence. GI numbers are shown in parentheses.

Figure S4. BRIG images using Mes1 (a) and Met2 (b) genomes as references. The homology regions with the genomes of Mes1 (BLASTN e-value $\leq 1e-9$) and Met2 (e-value $\leq 1e-2$) are indicated by colors. The first (inner-most) and second circles show the GC content and GC-skew, respectively. The locations of some genes of interest are indicated by red boxes.

Mes1 (3,194,059 bp)

Figure S5. Synteny dot plot between Mes1 and Methanosarcina thermophila TM-1 genomes. Gray dots represent the homologous DNA region between the two methanogens.

Table S	51. Performance	parameters for reactor	1 and reactor 2.
---------	-----------------	------------------------	------------------

Doromotor ^a	Rea	Reactor 2		
Falameter		Day 122	Day 200	Day 159
HRT (day)		1.7	0.3	0.5
OLR (g/L-reactor/day)	COD	5.9	37.2	21.1
OLR (g/L-reactor/day)	Acetate	4.7	29.2	17.9
Biogas production rate (L/L-reactor/day)	3.45	22.65	8.89	
Effluent	COD (mg/L)	142	1129	2971
	Acetate (mg/L)	23.6	479	1723
	Propionate (mg/L)	9.05	65.2	63.2
	рН	6.9	6.7	6.4
Removal ratio (%)	COD	97.2	88.7	69.8
	Acetate	99.2	93.9	79.3
Methane production yield (%) ^b		100	113	100
Biomass (mg/mL) ^c	PF	0.0522	0.0281	0.359
	BF	1.29	26.9	23.0

^aData shown are average of values collected during each steady state of operation period.

^bThe ratio of experimental methane production yield to theoretical methane production yield calculated based on COD removal ratio.

The theoretical methane potential was calculated from 350 mLCH₄/gCOD. Methane gas concentration in the biogas was assumed as 58%.

[°]The protein concentration in microbial cells collected from each fraction.

Table S2. Summary	/ of metag	enomic seq	uencing	and assemb	y.

Sample name	Description	No. of reads ^a		Total road longth (bp)	No. of continue ^b	Total contig longth (ha) ^b		
Sample hame		PF	BF	Iotal read length (bp)	No. of contrigs	Iotal contig length (bp)	1450 (bp)	NO. 01 CD3
R1_D122_DNA	DNA from reactor 1 on day 122	189,730,176	188,992,618	37,521,286,131	68,129	189,840,872	14,030	227,393
R1_D200_DNA	DNA from reactor 1 on day 200	159635878	146,710,738	30,218,344,676	63,397	169,742,023	13,548	208,966
R2_D159_DNA	DNA from reactor 2 on day 159	52,127,542	61,078,732	11,334,532,371	22,754	110,369,745	29,150	127,381
R1_D122_RNA	RNA from reactor 1 on day 122	-	197,969,722	19,994,941,922	-	-	-	-
R1_D200_RNA	RNA from reactor 1 on day 200	-	55,769,551	5,632,724,651	-	-	-	-

^aThe number of DNA reads represents the number of DNA reads after being quality-trimmed.

^bCalculated for contigs more than 500 bp in length.

Table S3. Full list of bin-genomes reconstructed in this study.

Bin ID	Taxonomy ^a -	Frequency ^b (%)		Length	CDS	No. of contins	Estimated	
		PF	BF	(Mbp)	CDS	NO. OF CORINGS	Completeness ^c (%)	
Mes1	Methanosarcina	0.1	33.9	3.20	2772	1	99	
Met2	Methanothermobacter	3.3	23.9	1.52	1604	1	98	
Cop3	Coprothermobacter	25.6	15.0	0.97	1146	226	91	
Cop4	Coprothermobacter	14.8	8.2	1.31	1500	266	84	
Anb5	Anaerobaculum	6.9	6.4	1.50	1538	147	95	
Clo6	Clostridium III	11.3	1.3	3.40	3229	199	92	
Clo9	Clostridia	2.7	1.2	3.20	2848	222	94	
Met7	Methanothermobacter	0.4	1.1	1.50	1651	8	97	
Syn8	Syntrophaceticus	0.3	1.0	2.04	2075	116	95	
Rum11	Ruminococcaceae	1.8	0.8	2.38	2343	189	94	
Lut10	Lutispora	3.2	0.8	2.11	2086	192	93	
Bct12	Bacteria	0.4	0.7	2.43	2223	53	91	
Atr13	Atribacteria	0.2	0.7	1.64	1677	115	91	
Fir16	Firmicutes	2.7	0.4	2.24	2209	87	96	
Unc14	-	0.5	0.4	1.84	1784	443	26	
Pet15	Petrotoga	0.8	0.4	1.95	1798	76	98	
Eth17	Ethanoligenens	3.1	0.3	1.86	1708	26	96	
Thd18	Thermodesulfovibrio	0.0	0.2	1.75	1781	51	99	
Fir25	Firmicutes	0.8	0.2	2.45	2151	94	94	
Rum19	Ruminococcaceae	0.7	0.2	2.18	1951	10	97	
Met20	Methanothermobacter	0.0	0.2	1.56	1678	25	99	
Fir23	Firmicutes	1.3	0.2	2.32	2056	23	94	
Unc30	-	0.8	0.2	2.65	2704	58	99	
Bct26	Bacteria	0.4	0.2	2.18	2109	54	97	
Def24	Defluviitalea	7.7	0.1	3.24	3099	46	94	
Bcr29	Bacteroidetes	0.2	0.1	2.12	1857	213	96	
Unc27	-	0.3	0.1	3.99	3435	165	92	
Bct36	Bacteria	0.3	0.1	2.65	2541	230	88	
Unc39	-	0.2	0.1	2.22	2163	137	55	
Tep37	Tepidanaerobacter	0.3	0.1	3.19	3321	73	96	
Unc28	-	0.2	0.1	2.85	2376	108	94	
Unc21	-	0.3	0.0	2.92	2662	165	96	
Unc22	-	0.5	0.0	4.01	3372	105	95	
Bac31	Bacillus	2.1	0.0	3.50	3663	46	99	
Bac32	Bacillus	1.1	0.0	3.85	3999	66	98	
Par35	Paracoccus	0.3	0.0	3.49	3612	276	99	
Acb33	Acinetobacter	0.6	0.0	2.73	2641	25	99	
Ptm38	Petrimonas	0.4	0.0	3.65	3108	57	97	
Pse34	Pseudomonas	0.4	0.0	6.42	6053	90	98	

^aTaxonomic positions assigned by RDP classifier with a confidence threshold of 80%. Unclassified ("Unc") bin-genomes (i.e., Unc14, Unc21, Unc22, Unc27, Unc28, Unc30, and Unc38) are not classified because *16S* rRNA genes were not binned for these bin-genomes.

^bCalculated based on RPKM values of PF and BF reads for each bin-genome.

^cEstimated based on the frequency of universal single-copy genes (136 genes for archaea and 105 genes for bacteria) in each bin-genome.

Table S4. Nucleotide variation in reconstructed methanogen genomes between day 122 and day 200^a.

	SNV ^b	MNV ^c	Insertion	Deletion
Mes1	4	0	0	0
Met2	1	2	0	0
Met7	14	5	0	1
Met20	1621	30	23	14

^aValues indicate the number of nucleotide variants detected by mapping the day 200 reads to each bin-genome

constructed from the day 122 reads.

.

^bSingle nucleotide variants.

^cMultiple nucleotide variants.