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1 Supplementary experimental material

We performed a series of measurements of myosin’s interaction with regulated thin filaments (RTFs, which
consist of actin, troponin and tropomyosin). These experiments were performed at various calcium con-
centrations, with variable numbers of myosin, and under variable loading conditions. In some of these
experiments, we measured event frequency. Here, as a supplement to the main text, we address the con-
cern that this event frequency data might be affected by the height of the RTF above the flow cell surface.
Additionally, in our model of these experiments (see section 2, Supplementary modeling material), we
assume that Ca++ affects only myosin’s attachment to a RTF. To support this assumption, in this sup-
plement we also show that myosin’s attachment duration and step size is Ca++-independent. Finally, we
show the results of a statistical analysis of our mini-ensemble data, showing that Ca++ has a significant
effect on the maximum force and lifetime of binding interactions between myosin and actin observed in the
laser trap.

1.1 Determination of thin filament height off the myosin coated pedestals

In the laser trap, event frequency is ∼ 20-fold slower than the weak-to-strong binding transition measured
in solution (40s−1 [1, 2]), because fluctuations in RTF height effectively reduce the concentration of actin.
Additionally, the effective actin concentration is affected be the mean height of the RTF. In order to ensure
that the height of the RTF off the myosin coated pedestal did not confound or influence the rate of myosin
attachment to the thin filament in a manner independent of the [Ca++], we determined the height of the
RTF in three-bead assay in both the single molecule and mini-ensemble laser trap assay. The major concern
was that the decreased frequency at lower [Ca++] might have been due to the bead-RTF-bead assembly
being further off the surface rather than to the decrease in Ca++. Therefore axial position of the RTF was
determined by analysis of the Airy disk diffraction pattern of the 3µm pedestal bead in brightfield images
based on previously described methods [3].

Briefly, focusing above the 3µm pedestal beads generates a defocused image of the pedestal. The further
the image is out of focus the larger the radius of its central Airy disk. This change in the Airy disk was
used to establish the relationship between distance from the coverslip surface ranging from 2.5 to 4.5µm
above the surface (R2 = 0.99, Figure S1A). The initial calibration curve was developed by first bringing
the surface into focus and then axially moving the 3-axis piezo-controlled stage (Nano-LPS 200, Mad City
Labs, Inc.) in 1nm increments in the z-axis, obtaining still images at each increment. The fact that the
determined height is slightly above 3µm likely reflects that the initial focal setting was based on a by-eye
estimate. However since the major concern was the difference between Ca++ conditions, the absolute
height determination was not important. Using the calibration to determine heights of objects with known
values using the same method described above suggested a this method could detect a difference in height
of at least 90nm.
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Figure S1: RTF height, which defines effective actin concentration, was constant for frequency measurements. A. Top,
images of the 3µm pedestal bead at different heights above the surface based on movements of the piezo-controlled
sub-stage. The radius of Airy disc of the bead was measured at various known heights and used to generated the
calibration curve, shown below. B. The height during an experiment was determined from a still image taken during
data collection where the height was determined based on the radius of the Airy disc using the calibration curve.
The bar graph shows the average (mean ± SEM) thin filament height above the surface at pCa 4 and pCa 9 from the
mini-ensemble laser trap assay. An ANOVA revealed no significant (p < 0.05) differences in filament height among
all Ca++ levels in either the single molecule or mini-ensemble laser trap assays.

During a data collection in the laser trap assays, a brightfield image was obtained and the calibration
curve was used to determine the corresponding height above the surface. The results suggested that the
axial position of the RTF ranged from 3.20 to 3.45µm above the surface. This corresponds to a height
slightly above the 3µm myosin coated pedestal. Importantly, there was no significant difference between
the values for any condition. In fact there was a slight tendency to hold the filament closer to the pedestal
at the lowest Ca++ level (pCa 9) compared to higher Ca++ (pCa 4) (Fig. S1B). Thus, any changes in
frequency where due to the effects of Ca++ and not to a systemic difference in the distance between the
RTF and the myosin coated pedestal.

Since RTF height did not vary systematically as a function of Ca++, we can remove the effect of the
reduced actin concentration in the single molecule laser trap measurements. In particular, given that actin
concentration A is a function of average RTF height z̄ the attachment rate of a single myosin molecule to
a RTF measured in the laser trap is

kTrap =
A(z̄)

K +A(z̄)
ka(Ca++)

where ka(Ca++) is the attachment rate of myosin to a RTF at saturating actin. Similarly, the attachment
rate of a single myosin molecule to an unregulated actin filament measured in the laser trap is

k0
Trap =

A(z̄)

K +A(z̄)
k0
a

where k0
a is the attachment rate of myosin to an unregulated actin filament. The ratio of these rates is

then

kTrap
k0
Trap

=

A(z̄)
K+A(z̄)ka(Ca++)

A(z̄)
K+A(z̄)k

0
a

=
ka(Ca++)

k0
a
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Figure S2: Single molecule step size and event durations do not depend on Ca++. Values represent mean ± SEM.
Data were collected at 1µM ATP. ANOVA revealed no significant differences among the Ca++ levels for either step
size (A, p = 0.46) or event duration (B, p = 0.79). Sample size was 101, 99, 58, and 63 for pCa 4, 5, 6, and 7,
respectively, with each observation representing a 1 to 3 minute recording of bead position.

Therefore, the ratio of attachment rates in the laser trap is the same as the ratio of attachment rates at
saturating actin, the physiological condition. We define this ratio as ε.

1.2 Single molecule step size and binding event durations as a function of Ca++

In addition to being used to determine the frequency of binding events (Fig. 1 Main text), the single
molecule laser trap assay was used to determine myosin’s single molecule mean step size and event duration
at each [Ca++], (Fig. S2). The step size and event durations were determined using the same method
employed to determine the event frequency [4]. The mean step size was between 6 and 7 nm for all Ca++

levels. An ANOVA revealed no significant differences, suggesting that Ca++ did not affect myosins step
size. The mean value of 6-7 nm is slightly lower than previous reports using whole skeletal muscle myosin
binding to an unregulated actin filament [5]. However the value is nearly identical to the value previously
observed when myosin binds to a RTF [6]. It was hypothesized that the decreased step size in the presence
of regulation may be caused by TnTm affecting proper communication between the heads of myosin that
is required for a 10 nm step [5, 6]. This prior work [6] was done in the absence of Ca++ therefore the
present data suggest that step size is also reduced in the presence of saturating Ca++. Event durations
were also independent of the [Ca++] (Fig S2). These data were collected at 1µM ATP and the duration is
consistent with previous measurements with unregulated actin [6, 7].

In order to ensure that these measurements reflect the action of a single myosin molecule, the exper-
iments were performed at a myosin concentration of 0.2 µg/mL. At this low concentration, we did not
observe binding events at the majority of the pedestals on the flow cell surface. For example, the data
collected at pCa 4 reflects interactions observed at 30 different pedestals with roughly 1 in 5 pedestals
eliciting binding activity. The data at pCa 5 reflects 105 pedestals with the same ratio eliciting activity.
At pCa 6 the data are from 50 pedestals with roughly 1 in 10 eliciting activity. Thus, at each different
Ca++ concentration, our measurements reflect the binding frequency, step size and lifetime of at least five
different single myosin molecules.

1.3 Statistics for mini-ensemble data

We performed a statistical analysis on our measurements of maximum event force and event lifetime from
the mini-ensemble laser trap assay. The effect of [Ca++] on peak force and event lifetime was determined
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using an ANOVA using the data displayed in Fig. 3A of the main text. These data were not normally
distributed (p < 0.001 Shapiro-Wilk test) therefore they were analyzed using the non-parametric Kruskal-
Wallis ANOVA followed by a Dunns post-hoc test to locate significant differences. All pairwise comparisons
were run based on ranks with the difference of ranks and critical value (Q) displayed, and whether this
represented a significance difference (p < 0.05). The sample size was 615, 374, 223, 97 and 27 events for
pCa 5, 6, 6.5, 7 and 9 respectively. The decrease in event number with decrease Ca++ reflects the Ca++

dependence of event frequency. For peak force all pairwise comparisons were significantly different except
pCa 5 vs. 6 and pCa 6.5 vs 7 (Table S1). For event durations all pairwise comparisons were significantly
different except pCa 5 vs. 6.5 (Table S2).

Comparison Difference of ranks Q p < 0.05

pCa 5 vs pCa 9 717.235 9.454 Yes

pCa 5 vs pCa 7 317.498 7.533 Yes

pCa 5 vs pCa 6.5 194.698 6.456 Yes

pCa 5 vs pCa 6 23.996 0.948 No

pCa 6 vs pCa 9 741.231 9.641 Yes

pCa 6 vs pCa 7 341.494 7.768 Yes

pCa 6 vs pCa 6.5 218.693 6.700 Yes

pCa 6.5 vs pCa 9 522.537 6.647 Yes

pCa 6.5 vs pCa 7 122.800 2.617 No

pCa 7 vs pCa 9 399.737 4.762 Yes

Table S1: Statistics for maximum event force, mini ensemble data.

Comparison Difference of ranks Q p < 0.05

pCa 5 vs pCa 9 643.067 8.477 Yes

pCa 5 vs pCa 7 270.896 6.427 Yes

pCa 5 vs pCa 6.5 47.807 1.585 No

pCa 5 vs pCa 6 142.941 5.650 Yes

pCa 6 vs pCa 9 500.125 6.505 Yes

pCa 6 vs pCa 7 127.955 2.911 Yes

pCa 6 vs pCa 6.5 95.134 2.914 Yes

pCa 6.5 vs pCa 9 595.259 7.572 Yes

pCa 6.5 vs pCa 7 224.089 4.754 Yes

pCa 7 vs pCa 9 372.170 4.433 Yes

Table S2: Statistics for event lifetime, mini ensemble data.

2 Supplementary modeling material

To understand and interpret our measurements, we used a model of myosin’s interaction with a RTF [8, 9].
Here, as a supplement to the main text, we describe this model and demonstrate how it both shows that
the data are self-consistent and also predicts how a myosin ensemble’s interaction with a RTF changes
with Ca++.

4



2.1 Model description

The model contains two main components: the first component is a model for myosin’s interaction with
actin and associated ATP hydrolysis [7]; the second component is a model for tropomyosin-induced coupling
between nearby myosin molecules [8, 9, 10, 11].

ATPADP-P

ADP

ADP

P

ATP

2 3

41

Figure S3: Cartoon of myosin’s ATP-dependent interaction with actin. Starting at the lower left (state 1), myosin
(in blue) binds to actin (green), releases phosphate and undergoes a power stroke, though not necessarily in that
order. Completion of these steps moves an unloaded actin filament a distance d and puts myosin in the strongly
bound state (state 2). Myosin then releases ADP in a force dependent process, where force is the extension of myosin
x times its linear stiffness κ, transitioning to the rigor state (state 3). Upon ATP binding, myosin rapidly unbinds
from actin (state 4). The reversible hydrolysis of ATP completes the cycle.

2.1.1 Myosin’s ATP-dependent interaction with actin

The model for myosin’s interaction with actin and hydrolysis of ATP contains four distinct kinetic states.
They are (as numbered in Fig. S3) (1) an unbound/weakly bound state, where myosin’s “head” is in a
pre-powerstroke position and has hydrolyzed ATP (ADP and inorganic phosphate, P) in its active site; (2)
a strongly bound state, where myosin’s head is in a post-powerstroke position and has ADP in its active
site; (3) a rigor state, where myosin’s head is in a post-powerstroke position and its active site is empty;
and (4) an unbound/weakly bound state, where myosin’s head is in a post-powerstroke position and has
ATP in its active site.

Each transition between states is associated with a change in conformation and/or a change in the
nucleotide state of the myosin head. In the transition from (1) to (2), P is released and the powerstroke
occurs (though not necessarily in that order). Since this state transition is also associated with the myosin
head binding to actin, and since it binds in the pre-powerstroke position, if the actin filament’s movement
is unimpeded this results in a movement of the actin filament of a distance d. In the transition from (2)
to (3), ADP is released. ATP binds and the myosin head detaches from actin in the transition from (3)
to (4). Finally, in the transition from (4) back to (1), ATP is hydrolyzed and the powerstroke is reversed.
Note that, in the absence of P and ADP in solution, each transition is assumed irreversible, except the
transition from (4) to (1).

In either of the bound states (states 2 and 3), myosin can experience force, either from an external
influence (like the laser trap) or from other myosin molecules interacting with the same actin filament.
These forces affect only one reaction rate, the transition from state (2) to (3) associated with ADP release
[12, 13]. Because ADP release rate depends on force, myosin molecules are mechanochemically coupled, in
the sense that a myosin molecule that binds and then undergoes its powerstroke (i.e. transitions from state
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(1) to (2)) applies forces to other myosin molecules that have previously attached to the actin filament.
These forces then influence myosin’s chemistry, by changing the transition rate from state (2) to (3).
Generally, it is most convenient to keep track of the extension of each myosin molecule (x), and then relate
that to force by assuming myosin behaves as a linear spring of stiffness κ [14].

Parameter Value without regulation (Walcott et al. 2012) Value with regulation

k+
h 100 s−1 100 s−1

k−h 10 s−1 10 s−1

ka 40 s−1 40 s−1

k0
D 350 s−1 350 s−1

kT 2 µM−1s−1 3 µM−1s−1

d 10 nm 10 nm

δ 1.86 nm 1.86 nm

κ 0.3 pN/nm 0.3 pN/nm

Table S3: Parameters for the model shown in Fig. S3.

This model describes a wide range of molecular-scale measurements performed with chicken pectoralis
myosin at ∼ 25– 30◦C, the same muscle type and temperatures used in our experiments [7, 15]. Importantly,
the model describes experiments with single molecules in the laser trap [7], the distribution of maximum
forces and lifetimes for myosin binding events with mini molecular ensembles in the laser trap [15], and the
speed of actin filaments in the motility assay as a function of ATP ([7]. These are the three experiments
performed here, but with RTFs at variable Ca++ as opposed to unregulated actin filaments. That the
model can describe each experiment with the same set of parameters (listed in Table S3) suggests that it
adequately characterizes the interaction of myosin with actin; thus, modeling our current experiments only
requires a description of the effects of Ca++ on the attachment of, and the local coupling between, myosin
molecules. While it is possible that the individual parameters are inexact – for example, the parameter
δ = 1.86 nm is in broad agreement with, but larger than, some measurements (Capitanio et al. 2006 [16]
predict an upper bound of 1–1.3 nm for this value, and Greenberg et al. 2014 [17] and Sung et al. 2015
[18] measure δ = 0.96 and 1.01 nm, respectively, for cardiac myosin) – at the very least the model captures
the emergent behavior that occurs when an ensemble of myosin work together.

While there was no need to adjust the majority of the parameters in this kinetic model, our measure-
ments from the motility assay suggest an ATP binding rate of kT = 2.95±0.45µM−1s−1 (mean plus/minus
SD, see Fig. S4). In our previous work [7], we estimated an ATP binding rate of kT = 2µM−1s−1. It is
unclear whether this change in ATP binding rate is due to the presence of regulatory proteins, or simply
experimental variability. Thus, in our simulations, we use an ATP binding rate of kT = 3µM−1s−1, while
all other parameters remain the same (see Table S3).

2.1.2 Modeling Ca++-dependent activation

Myosin molecules, interacting with a RTF, influence the position of Tm, which wraps around actin. Our
model belongs to a class of models of Ca++-dependent activation that derive equations relating these
mechanical interactions into chemical binding rates. As a starting point, we use a model that simplifies
the geometry and mechanics of the system, the continuous flexible chain model [19, 20, 21]. The basic idea
of this model is to treat Tm as an infinite, slender, linear elastic beam. The interaction of Tm with actin
and Tn is treated as a potential energy density W (x) that, for simplicity, is assumed not to vary along
actin. When myosin binds to actin, it induces a displacement in Tm, and the slope of the beam is locally
zero. Thus, mathematically, the position of Tm (u(x)) is given by the solution to the following equation
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Figure S4: Motility data with RTFs at saturating Ca++ are consistent with a higher ATP binding rate and larger
ensemble size than motility data with actin alone. A. The initial slopes of our motility data suggest an ATP binding
rate of kT = 2.95 ± 0.45µM−1s−1 (mean plus/minus SD). At low ATP concentrations, RTF speed (v) is limited by
ATP binding so that v = dkT [ATP ], so the initial slope, divided by the powerstroke size, d, gives kT . This result
motivates our choice of kT = 3µM−1s−1 in our simulations. B. Comparison of simulations to our motility data
support kT = 3µM−1s−1 and an ensemble size, Nmot = 75. With Nmot = 50, estimated from motility with actin
alone (Walcott et al. 2012), increasing kT from 2 to 3µM−1s−1 gives better agreement with our measurements, but
cannot match the RTF speeds observed at high [ATP]. Increasing ensemble size to Nmot = 75 allows the model to
recreate these speeds.

for a beam on a (potentially non-linear) elastic foundation:

EI
d4u

dx4
+
dW

dx
= 0 (1)

where E and I are the Young’s modulus and moment of inertia of the Tm beam, respectively. To find the
position of Tm between two bound myosin, separated by a distance s and each inducing a displacement
D, one would solve this equation subject to the boundary conditions that u(0) = u(s) = D, and u′(0) =
u′(s) = 0 (where prime indicates differentiation with respect to x).

The solution to Eq. 1 only gives the lowest energy conformation of the beam. However, being a
molecular scale system, Tm is constantly sampling other energy conformations. Calculating, say, the
equilibrium position of the beam therefore requires an estimate of the energy of all beam conformations –
a complex problem that requires further assumptions about precisely how myosin and Tm interact. For
example, Smith 2001 [19] assumes that myosin locally “pins” Tm in place. However, the precise nature of
this myosin-Tm interaction is unknown.

The problem is simplified considerably with a different assumption: rather than constraining Tm locally,
it is assumed that myosin binding has little effect on the distribution of energies available to Tm. Then,
myosin does not effect the entropy of Tm, and the free energy change upon myosin binding depends only
on the lowest energy conformation of the beam – a quantity that follows simply from the solution to
Eq. 1. Furthermore, since we are only interested in the lowest energy conformation of the beam, further
simplifications are possible.

There are two main contributions to the energy of the Tm beam. First, there is an elastic energy cost
to deforming the Tm beam. Second, there is an interaction energy between the Tm beam and actin/Tn,
defined by W (u) integrated along actin. Suppose that we wish to calculate the energy of the Tm beam
between two bound myosin motors, separated by a distance s. Then, the interaction energy is given by∫ s

0 W (u)dx. If s is small, this energy cost is small, and elastic energy dominates. Thus, if two nearby
myosin molecules are bound, the intervening Tm beam is (approximately) straight, minimizing the elastic
energy. Then the energy of the beam, U , should be U ≈

∫ s
0 W (D)dx = W (D)s, increasing linearly with the
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Figure S5: The regulation model, including a definition of the parameters ` and ε. Myosin is in blue, actin in
green, tropomyosin in black [inactive], yellow [partially active] and fully active [red], troponin is not shown. In
each plot, top shows a cartoon of muscle; middle shows the simplified physical model with myosin heads inducing
a fixed displacement to tropomyosin, which is modeled as a slender, infinite, linear-elastic beam; and bottom shows
the attachment rate as a function of position, calculated from Eq. 2. A. When the first myosin binds, it partially
activates the RTF filament over a distance ` to its left and right. B. If a subsequent myosin molecule binds, within
` of the first one, it fully activates the RTF.

separation between the bound myosin. Alternatively, is s is large, the interaction energy cost dominates,
and the beam minimizes this value. The interaction energy is minimized when each myosin induces an
independent deformation in Tm, giving an energy cost U ≈ U0, independent of s. Thus, there are two
regimes, an initial linear rise in energy and a subsequent plateau. We can further simplify the problem by
assuming that the transition between these two regimes is abrupt [8].

This energy function, U(s), is then defined by two parameters. The first, we define as ε = exp(−U0/kBT ),
which is dimensionless; the second, we define as ` = U0/W (D) and has units of length. It is often con-
venient to define the non-dimensional parameter C = `/∆s, scaling this distance by the spacing between
molecules ∆s [8, 9, 10, 11], but since ∆s varies in our experiments, here we prefer to use the dimensional
parameter `. Note that both of these parameters are defined in terms of the molecular mechanics of Tm,
i.e. given E, I and the interaction energy function W (x), we could calculate both ε and `. With a few
additional assumptions, these two parameters also define how Tm induces local coupling between myosin
molecules. We now discuss these assumptions.

In the kinetic model (Fig. S3), the transition from state (1) to state (2), called the weak-to-strong
binding transition, contains a series of sub-steps. Given that one of these substeps is a rapid equilibrium
between the weak/unbound states and that the equilibrium favors the unbound state e.g. [22], the net
attachment rate is

k ≈ Kw

1 +Kw
kws ≈ Kwkws ≈ k0 exp

(
− U

kBT

)
Thus, supposing that a given molecule’s ith neighbor to the left and jth neighbor to the right are bound
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to actin, then that given molecule has an attachment rate k from the following equation [9, 11].

k(i, j, C, ε) =


εk0 : i, j ≥ C
εi/Ck0 : i < C, j ≥ C
εj/Ck0 : i ≥ C, j < C

ε(i+j−C)/Ck0 : i, j < C, i+ j > C
k0 : i+ j ≤ C

(2)

where C = `/∆s. As this attachment rate depends on the state of nearby molecules, it introduces local
coupling to the model.

This attachment rate, which models the effect of Tm, is defined by the two parameters, ε and `. Both
parameters depend on W (x), the interaction of Tm with actin and Tn, the latter of which changes state
depending on Ca++, and so both are potentially functions of Ca++. Lacking details of the Ca++-dependence
of W (x), we again make simplifying assumptions.

The first simplifying assumption is that ` does not depend on Ca++. A value of ` = 400 nm has been
previously measured, based on fits to in vitro motility [8, 10], and also based on direct measurements of
myosin molecules binding to a RTF in the laser trap [6]. Thus, here we fix ` = 400 nm, regardless of Ca++.

Note that ` defines how far partial activation spreads upon the binding of one myosin (Fig. S5), and
is not equal to a “cooperative unit” which is the distance that full activation spreads upon the binding
of one myosin [23]. Although the relationship between the two varies depending on experiment, a value
of ` = 400 nm predicts a transition from single molecule binding events to motility in the laser trap at a
spacing of 107 nm, which compares very well to direct measurements of this value of 111 nm [6, 8].

The next simplifying assumption is that the binding of Ca++ to Tn is fast. Then, supposing that the
energy required for myosin to bind to a RTF in the absence of Ca++ is ∆GB, and that energy is ∆GC
when Tn is saturated with Ca++,

ε = exp(−θ∆GC − (1− θ)∆GB) = ε1−θ
minε

θ
max (3)

where θ is the proportion of Tn saturated with Ca++, and defining εmin = exp(−∆GB) and εmax =
exp(−∆GC), where ∆G is measured in units of Boltzmann’s constant times absolute temperature. Finally,
we assume Michaelis-Menten saturation of Tn with Ca++

θ =
[Ca++]

K + [Ca++]
(4)

which may be an oversimplification, because there are two main Ca++ binding sites on Tn. We examine
this assumption later in this supplement (section 2.4.4, Michaelis-Menten binding of Ca++ to Tn).

With these assumptions, the model reasonably describes fiber-level experiments, including isometric
force as a function of Ca++ and twitch summation [9]. Additionally, direct measurements of fluorescent
myosin binding to RTFs in solution provide an estimate of εmax = 0.5 [11], and measurements of in vitro
motility (εmin = 0.0030 [8]), single molecule binding frequency (εmin = 0.0045 [6]) and fluorescent myosin
binding to RTFs (εmin = 0.010 [11]) give an estimate of εmin = 0.006 (the mean of the three). Given these
assumptions, Ca++-dependent regulation is completely specified by a single free parameter, K.

2.2 Parameter estimation

The activation model is defined by the single parameter, K. This parameter defines how Ca++ affects
myosin’s attachment to a RTF via Eqs. 3 and 4. Here, we discuss how we estimated K from our measure-
ments in each of three experimental systems.
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2.2.1 Single molecule laser trap

In the single molecule laser trap, we directly measure the rate that a single myosin molecule binds to a
RTF. Since the single molecule has no neighboring myosin, Eq. 2 gives an attachment rate of εk0. By
dividing this frequency by the single molecule binding frequency we measured in the absence of regulation
(k0 = 2.2s−1), this is a direct measurement of ε.
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Figure S6: Estimating K from single molecule fits. Varying K and comparing Eq. 3 and 4 to the data gives a curve
of χ2 as a function of K. The minimum of this curve, K = 0.216µM, is the best-fit and is not significantly different
from the data (p > 0.05, χ2 test). Using a bootstrapping, we can determine the uncertainty in this estimate. A
histogram of best fit K values is shown in red. This distribution is strongly non-normal, with a long tail. The median
of this distribution, K = 0.215µM, is nearly identical to the best-fit value of K and the lower and upper quartiles are
K = 0.170µM and K = 0.279µM, respectively. These give an uncertainty estimate of ±0.055µM, the shaded region.

We calculated the best fit by minimizing the χ2 error, which gives K = 0.216µM. The minimum χ2

value is 2.17, well below the critical χ2 value (at which p = 0.05) of 9.488. To estimate the error associated
with this value, we used a bootstrapping approach. At each pCa concentration, we randomly selected from
our N frequency measurements, with replacement, until we had a full complement of N measurements. We
then fit the resulting data, using Matlab’s fminsearch function (a Nelder-Mead simplex algorithm) with an
initial random seed to find the value of K that minimizes mean squared error. We repeated this process
10,000 times, giving a distribution of best-fit K values. The distribution is strongly non-normal, with a
long tail at high K (see Fig. S6). However, the median of this distribution was K = 0.215µM, nearly
identical to the best-fit value of K. The lower quartile was K = 0.170µM and the upper quartile was
K = 0.279µM. We report the best-fit plus/minus half the difference between the upper and lower quartile,
K = 0.216± 0.055µM. Note that similar results are obtained regardless of whether we minimize χ2 error
or average mean squared error.

2.2.2 Mini-ensemble laser trap

Estimating K from the mini-ensemble laser trap measurements is complicated for two reasons. First, we
must estimate two parameters, NM and k2

a, defined below; and second, simulations of a single experiment
are computationally expensive, requiring several minutes to run. In the following, we (1) describe the
model of these experiments, defining the parameters NM and k2

a in the process; (2) explain how NM and
k2
a were estimated; and (3) explain how K was estimated. In addition to these parameters, we also had to

estimate the degree of coupling, i.e. the value of `/∆s in Eq. 2. We used `/∆s = 3, meaning that each
myosin molecule is coupled to its three closest neighbors on either side. A justification for this estimate is
given in section 2.3.1 of this supplement.
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Figure S7: Estimating NM , k2a and K from mini-ensemble fits. A. Curves of goodness of fit as a function of event
frequency for several values of NM . Event frequency was varied by changing k2a. At the measured event frequency
(dashed line) goodness of fit was determined, giving goodness of fit as a function of NM (inset). Below NM = 14, the
observed event frequency could not be achieved without increasing k2a above ka; above NM = 22 the fit dramatically
worsens. B. The best-fit value of K is insensitive to NM . A contour plot, showing goodness of fit (cold colors indicate
a better fit; gray area is a worse fit than the dark red) as a function of K and NM . Insets show individual fits to
the maximum force/lifetime distributions (top) and event frequency (bottom). In all cases, the best fit K ≈ 0.2µM.
C. A series of simulations at NM = 14, showing goodness of fit as a function of ε at increasing pCa (left to right).
Top shows fits to maximum force/lifetime data; bottom shows fits to event frequency data. To minimize the effect of
noise, each point represents the average of three simulations, and we fit the simulated data with a polynomial (sold
line). Yellow region shows the plausible range of K (from 0.05 to 0.5µM), and the vertical line indicates the best
fit, K = 0.199µM. D. Goodness of fit as a function of K. Best fit (vertical line) plus/minus one standard deviation
(shaded region) is shown. Inset shows individual fits to maximum force/lifetime distributions and event frequency,
which are weighted equally in the main plot.

The model

To model these small myosin ensembles, we used our previous approach for unregulated actin [15], with
some modifications. Briefly, this method involves using a modified version of the Gillespie algorithm [24]
to keep track of the state of each myosin molecule in a small ensemble as they interact with a common
actin filament. The filament moves, due to Brownian motion, and when a myosin molecule binds to it, the
mean position of the actin filament (and the laser-trapped beads) moves and motion is restricted.

In our previous work [15], we assumed that the motion of the bead was well-approximated by white
noise from a Gaussian distribution with mean position given from mechanical equilibrium of the myosin-
actin-bead-laser system, and standard deviation σ =

√
kBT/k where k is the overall stiffness of the

myosin-actin-bead-laser system. This overall stiffness includes the trap stiffness (which we measured for
each individual data recording) and each bound myosin molecule. Here, in order to model the noise more
accurately, we include a time scale for the noise. In particular, we model the motion of the bead-actin-bead
system as an over-damped system with a damping coefficient of γ = 2.25 · 10−5pN · s/nm. We then use
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a simple forward Euler integration scheme to integrate the stochastic Langevin equation, and update the
position of the bead-actin-bead system at each time interval (0.0025 s). The damping coefficient, γ, was
picked to give a signal with a similar power-spectrum to our measurements.

We found in our previous work [15] that mini myosin ensembles exhibit a form of binding cooperativity.
Specifically, the first myosin molecule binds relatively slowly (2.2s−1), the second myosin molecule at a
faster rate, and subsequent molecules at a rate that approaches the weak-to-strong binding transition
measured in solution (40s−1 [1, 2]). The likely physical basis of this cooperativity is fluctuations in the
height of the bead-actin-bead system that are restricted upon myosin binding. To model this effect, we
assumed that the second myosin molecule bound at a rate, k2

a, that was somewhere between the single
molecule and solution rate.

Estimating NM and k2
a

Besides this unknown binding rate (k2
a), we also do not precisely know the number of myosin molecules in

the mini-ensemble (NM ). We estimated these values by fitting the data collected at near-saturating Ca++,
pCa 5.

To fit the data, we first simulated the laser trap/mini ensemble system. These data were analyzed
with the same algorithm used to analyze the experimental measurements, until we had the same number
of binding events. At that point, we compared the distribution of event lifetimes and maximum forces,
by calculating the mean-squared difference between the measured and simulated cumulative probability
distributions. We then determined the event frequency in our simulations by dividing the number of events
by the total time. We performed these simulations for ensemble sizes of NM = 14, 16, 18, 20, 22, 24, and 26
(see Fig. S7A). We found that ensemble sizes of NM = 13 or fewer were unable to achieve the observed
event frequency with k2

a less then the solution weak-to-strong binding transition rate of 40s−1. For the
remaining larger ensembles, we varied k2

a to get event frequencies that were both lower and higher than
the observed frequency (4.1s−1) and interpolated to get the predicted goodness-of-fit at the observed event
frequency. For each value of NM and k2

a, we performed three simulations and found the average event
frequency and goodness-of-fit of the three.

These simulations show that there is little difference in goodness-of-fit for ensemble sizes less than 22,
but that ensemble sizes of 24 and 26 are different from the data (Fig. S7A, inset). Thus, we conclude that
ensemble size, NM , is between 14 and 22. For each NM , there is an associated best-fit k2

a based on the
binding frequency (k2

a = 10, 13, 17, 25 and 36s−1 for NM = 22, 20, 18, 16, 14, respectively). In general, these
values are higher than our previous estimate of k2

a = 1 + 2s−1. One reason for this difference could be
that RTFs are stiffer than actin alone [25]. Thus, the binding of the first myosin molecule would restrict
the motion of an RTF more than an actin filament, which might flex and thereby inhibit the binding of a
second myosin. Another possibility is that, in this study, we have event frequency information, which was
lacking in our previous study, which makes the current estimate more accurate.

Estimating K

We determined K by fitting the remaining measurements, at pCa 6, 6.5, and 7. Note that, although we
collected data at pCa 9, we used a different event detection algorithm to analyze these data, so we did not
simulate them.

As before, to fit the data, we first simulated the laser trap/mini ensemble system and then analyzed
the data with the same algorithm used to analyze the experimental measurements, until we had the same
number of binding events. Data and model were compared by calculating the mean-squared difference
between the measured and simulated cumulative probability distributions of event lifetimes and maximum
forces. Event frequency in our simulations was determined by dividing the number of events by the
total time, and compared to measurements by determining the sum of the squared difference of the mean
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frequencies. We looked at ensemble sizes of NM = 14, 16, 18, 20 – all values that were consistent with
the pCa 5 data, and using the best-fit values of k2

a (k2
a = 36, 22, 20, 17, and 13, respectively). We then

varied K from 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, and 0.35µM. At each K, NM combination, we performed three
simulations and found the average event frequency and goodness-of-fit of the three (a total of 90 simulations
of the experiments at the three pCa values).

Interestingly, there is little effect of NM on the best-fit value of K, either for the fits to event frequency
(K = 0.002, 0.002, 0.0015, 0.0015, for NM = 14, 16, 18, 20, respectively) or the fits to the distribution of
event lifetimes and maximum force (K = 0.002, 0.0025, 0.002, 0.0015, for NM = 14, 16, 18, 20, respectively).
When combined, with equal weight, the range of viable values of K fell between 0.14 and 0.27µM, regardless
of NM (Fig. S7B).

To get a more precise estimate of K, we performed a larger set of simulations at NM = 14, which is
most consistent with our previous estimate of ensemble size NM = 21 ± 3, given that we used 10µg/mL
here and 15µg/mL in our previous measurements. To minimize the effect of stochastic noise, we fit the
resulting goodness-of-fit curves with polynomials (Fig. S7C). Then, the optimal value of K was 0.195µM
for event frequency and 0.235µM for the distributions of event lifetimes and maximum force (Fig. S7D,
inset). Given the two fits equal weight gives a best-fit estimate of K = 0.199µM (Fig. S7D). Since the
simulations are so computationally expensive, a bootstrapping approach for an uncertainty estimate was
impractical. Instead, assuming that the model with the best-fit value of K was exact, we estimated the
standard deviation from each measurement (distribution of event lifetimes, distribution of event maximum
forces and event frequency). Then, we calculated the χ2 error, and found the values of K at which p = 0.05,
thereby identifying our 95% confidence interval. The standard deviation was estimated as one quarter of
this interval, giving K = 0.199± 0.044µM.

In the main text (Fig. 3a), we present the distributions of event lifetimes and event maximum forces
both for the model and the measurements. As an alternate view of the data, here we present average
event lifetimes and maximum forces (Fig. S8). Generally, we observe that lifetimes and forces increase
with Ca++. The slight decrease in maximum force at pCa 5 is explained by differences in trap stiffness,
since maximum event displacement increases monotonically with Ca++ (Fig. S8, inset).

2.2.3 In vitro motility

Estimating K from the in vitro motility measurements required an estimate of one parameter, Nmot, the
number of myosin molecules interacting with an RTF. In the following, we (1) describe the model of
motility; (2) explain how Nmot was estimated; and (3) explain how K was estimated. In addition to these
parameters, we also had to estimate the degree of coupling, i.e. the value of `/∆s in Eq. 2. We used
`/∆s = 11, meaning that each myosin molecule is coupled to its eleven closest neighbors on either side. A
justification for this estimate is given in section 2.3.1 of this supplement.

The model

We have previously modeled in vitro motility with RTFs [8, 10]. We used the same approach. As with
the mini ensemble simulations, we used a modified version of the Gillespie algorithm [24] to keep track of
the state of each myosin molecule in a small ensemble as they interact with a common actin filament. The
filament moves due to Brownian Motion and when a myosin molecule binds to it. The motion is determined
by calculating the position at which all forces balance; that is, we assume that the myosin-RTF system
reaches mechanical equilibrium instantly. To determine filament velocity, we simulated 30,000 chemical
reactions (myosin binding, ADP release, ATP binding/detachment, and ATP hydrolysis), fit the latter half
of the position-time trace with a straight line (we neglect the first half to allow the system to reach steady
state), and filament velocity was the slope of that line.

As shown in Fig. S4B, our previous estimate of Nmot = 50 underestimated RTF speed. Increasing the
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Figure S8: The model reproduces the Ca++-dependence of the average maximum force and lifetime of binding events
measured using a laser trap with a mini myosin ensemble. Left, average event lifetime increases monotonically with
Ca++. The dashed line indicates the minimum event lifetime of our event detection algorithm (10 ms). Right,
average maximum event force generally increases with Ca++, although pCa 5 shows a slight decrease with respect to
pCa 6 for the model and for the median measured force. This non-monotonicity is likely due to differences in trap
stiffness, since it disappears when maximum event displacement is plotted (inset). Note, for all data at pCa < 7, the
upper limit of the whisker extends beyond the axis limits.

ensemble size to Nmot = 75 gave better agreement with the data. One potential reason for this larger value
is that RTFs are stiffer than actin [25]. In the model, the RTF is assumed to be infinitely stiff. Thus, if a
myosin molecule binds and undergoes its powerstroke, it applies forces to all bound myosin. In reality, if
myosin molecules are too distant (i.e. over a persistence length away), the newly bound molecule will not
apply a force on them. Thus, the parameter Nmot gives an estimate for the number of myosin molecules
that are mechanochemically coupled. The stiffer the filament, the larger Nmot should be.

Estimating K

To estimate K, at each pCa we fit the velocity-ATP curve by varying ε. To do so, we simulated 100 velocity-
ATP curves with ε at equally spaced intervals between 0 and 0.5 (i.e. ε = 0.005, 0.010, 0.015, . . . , 0.495, 0.500).
We then used a Bootstrapping method to estimate the distribution of best-fit ε values. Specifically, we
randomly selected velocity data points, with replacement, at each ATP concentration and determined the
best-fit ε. Performing 10,000 of these fits gave estimates of ε = 0.491±0.012 (pCa 4), ε = 0.486±0.017 (pCa
5), ε = 0.236±0.079 (pCa 6), ε = 0.139±0.051 (pCa 6.5), ε = 0.025±0.002 (pCa 7) and ε = 0.008±0.001
(pCa 9) (mean plus/minus SD, see Fig. S9A). Note that, to obtain a more precise estimate of ε at pCa 9, we
re-ran simulations with 10 values of ε equally spaced between 0 and 0.01. These estimates are independent
of our assumed form of ε, given by Eqs. 3 and 4.

Fitting the resulting ε(Ca++) curve with Eqs. 3 and 4 gives an estimate of K = 0.217± 0.024µM (best
fit not significantly different from data, p > 0.05, χ2 test; standard dev. estimated by one quarter of the
range of K that are not sig. diff. from the data). For most pCa values, the fits using the best fit ε and the
fits using Eqs. 3 and 4 with K = 0.217µM are nearly indistinguishable (Fig. S9B). At pCa 6.5, there is a
difference between the two, but the data also show a large discrepancy at the highest ATP concentration
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Figure S9: Estimating K from in vitro motility fits. A. Estimating ε(Ca++) from fitting in vitro motility data.
Goodness-of-fit (solid curve) is the sum of the squared error, normalized to be 1 at the minimum. Best-fit values of
ε, calculated by bootstrapping, are shown in the red histograms. Best-fit values of ε (dashed line) plus/minus one
standard deviation (shaded region) are shown along with the predictedε from the best-fit value of K = 0.217µM
(sold vertical line). B. The motility data agrees with both individual best fits and fits with K = 0.217µM .

(1000 µM).

2.3 Support for modeling assumptions

Analysis of the data depends on three assumptions of the model. First, we assume that the coupling
distance ` = 400nm is independent of calcium. Second, we assume a form for ε, given by Eq. 3. Third, we
assume Michaelis-Menten saturation of Tn with Ca++, given by Eq. 4. These assumptions can be justified
by the fact that, with these assumptions, the model gives estimates of K that are consistent with our
direct measurements. There is also additional evidence that supports these assumptions; here we discuss
this additional evidence.

2.3.1 Coupling distance ` = 400nm

Our estimate of ` = 400 nm comes from previous work fitting motility data at pCa 8, and also estimating
the myosin spacing at which a thin filament becomes activated in the laser trap ([8] fitting data from [6]).
With this value, the model describes motility in the presence of myosin binding protein-C at high and low
calcium [10] and, assuming that it does not depend on Ca++, the model describes observations of myosin
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molecules binding to RTF in solution [11]. Besides this previous work, our current data also provides
evidence of a coupling distance ` = 400 nm.
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Figure S10: Our mini-ensemble and in vitro motility measurements independently support a coupling distance of
` = 400 nm. In all plots, ∆s is the spacing between myosin molecules along the RTF. The values of `/∆s used in
our simulations (11 for motility, 3 for mini-ensemble) are indicated with an arrow. A. A plot of the best-fit value of
K as a function of molecules coupled (`/∆s) is only consistent with the best-fit value of K from our single molecule
measurements (solid line, best fit, shaded area, plus/minus one quartile) for `/∆s = 11 ± 3 (pink region). Fixing
K = 0.216µM, the best-fit value from our single molecule measurements, identifies the same best-fit, but a tighter
range (`/∆s = 11 ± 1, pink region, inset). B. A plot of the best-fit value of K as a function of molecules coupled
(`/∆s) is only consistent with the best-fit value of K from our single molecule measurements (solid line, best fit,
shaded area, plus/minus one quartile) for `/∆s = 3± 2 (pink region). Fixing K = 0.216µM, the best-fit value from
our single molecule measurements, identifies a similar best-fit and range (`/∆s = 4 ± 2, pink region, inset). C. An
estimate of spacing between myosin molecules along a RTF as a function of myosin density (data from Harris and
Warshaw 1993), with a fit from Eq. 5. From this curve, we get an estimate of ∆s = 35 nm in motility and ∆s = 153
nm in the mini ensemble experiments. D. Using the different values of ∆s to re-plot the curves from A and B as a
function of `, shows a consistent best-fit value of ` = 400± 100 nm.

Varying ` changes the importance of myosin strong binding activation; a smaller ` means less myosin
activation, a larger ` means more. Thus, if we underestimate `, the model should predict too much Ca++

activation (i.e. underestimate K); if we overestimate `, the model should predict too little Ca++ activation
(i.e. overestimate K). We can therefore determine the optimum value of ` by performing a series of fits,
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with variable `, and seeing which value gives best agreement with our direct single molecule measurement
of K.

The model does not directly depend on `, but rather depends on `/∆s, where ∆s is the spacing between
myosin molecules (Eq. 2). This non-dimensional parameter gives the number of coupled myosin molecules.
For the simulations of motility, we re-did our estimate of the best fit K (as described in section 2.2.3 In
vitro motility) for `/∆s = 1, 5, 15, and 20 (we used `/∆s = 11 in that section). For the small ensemble
trap simulations, we re-did our estimate of the best fit K (as described in section 2.2.2 Mini-ensemble laser
trap) for `/∆s = 0, 2, 4, and 7 (we used `/∆s = 3 in that section).

In both simulations, as expected, the best-fit value of K increased with increasing `. Using our single
molecule estimate of K = 0.216±0.055µM identifies a range of possible values of `/∆s, giving `/∆s = 11±3
for motility and `/∆s = 3± 2 (Fig. S10A,B). As an alternate means to estimate `, we fixed K = 0.216µM
and compared the model to the data for each value of `/∆s. This procedure identified `/∆s = 11± 1 and
`/∆s = 4± 2 for motility and small ensemble measurements, respectively (Fig. S10A,B, insets) consistent
with our previous estimates.

To estimate `, we need an estimate of ∆s for the two experiments. Harris and Warshaw (1993) [26]
provide an estimate for this value as a function of myosin density in solution, M (in µg/mL). To obtain
the best estimate for ∆s, we fit these measurements with the following equation

∆s =
2Msat∆smin(

(M +Msat +Keq)−
√

(M +Msat +Keq)2 − 4 ∗MsatM
) (5)

where the parameters Msat is the myosin concentration (in µg/mL) at which the surface becomes saturated,
Keq = k−/k+ is the equilibrium constant for unbinding from the surface (i.e. k− is the rate myosin unbinds
from the surface in s−1 and k+ is the rate myosin binds to the surface in s−1(µg/mL)−1) and ∆smin is the
spacing between myosin molecules when the surface is saturated. This equation comes from the steady-
state of the following reaction mechanism, which assumes that there are a discrete and finite number of
binding sites on the flow cell surface to which myosin can attach [27]

M +B
k+

�
k−

MB

where B is a binding site, M is a myosin molecule in solution and MB is a myosin molecule bound to the
surface. Assuming relatively strong affinity of myosin for the surface, Keq = 0.1µg/mL gives a reasonable
fit to the data, with Msat = 43µg/mL and ∆smin = 35 nm (Fig. S10C).

Given this estimate of ∆s, we can transform our estimates of `/∆s for the motility and mini ensemble
laser trap measurements to a common scale of `. The data are all remarkably consistent, with the estimate
of K from our single molecule, mini-ensemble and motility measurements all intersecting near K = 0.2µM
and ` = 400 nm (Fig. S10D). More quantitatively, in order to explain each of our three measurements,
the model requires a coupling distance of ` = 400± 100 nm. If the coupling is weaker than that, then the
motility data and the small ensemble laser trap data require more Ca++ activation than we observed in our
direct measurements; if the coupling is stronger than that, then the motility data and small ensemble laser
trap data require less Ca++ activation than we observed. With K = 0.216µM, the best-fit to both data
sets was also near ` = 400nm (Fig. S10D, inset). Thus, myosin strong-binding activation, with ` = 400
nm, is both necessary and sufficient to explain both the mini ensemble and motility measurements.

2.4 Cellular-scale simulations

We simulated isometric force as a function of pCa for a skinned muscle fiber. To do so, we ran simulations
of 300 myosin molecules, with `/∆s = 11, the same coupling as in the motility assay. In each simulation,
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at each pCa value, we used a modified Gillespie algorithm to perform 15,000 chemical reactions (myosin
binding, ADP hydrolysis, unbinding, ATP hydrolysis) for the entire ensemble. We assumed an ATP
concentration of 4mM. Since we are interested in isometric force, we kept the RTF stationary throughout
the simulation, and kept track of the aggregate force produced by all attached motors (F (t)). If the
simulation started at time t = 0 and ended at time t = T , we determined average force by interpolating
F (t) with 1001 points equally spaced between time t = 0.25T and T . In this way, we get a time averaged

force (i.e. approximate 1
0.75T

∫ T
0.25T F (t)dt), and neglect non steady-state effects.

2.4.1 Force-pCa parameters

We estimated fitting parameters for isometric force as a function of pCa, in order to compare our model
to the measurements of Millar and Homsher 1990 [28]. We ran cellular-scale simulations at each pCa
value used by Millar and Homsher 1990 [28], pCa 8, 7.5, 7, 6.8, 6.7, 6.5, 6.3, 6, 5.5, and 4.5. We ran 10
simulations at each pCa.

We calculated the best fit by minimizing the mean squared difference between our simulations and the
following Hill model

F ([Ca++]) = F0 + ∆F
[Ca++]

α

[Ca++]α +Kα
I

where [Ca++] = 10−pCaM, F0 is the force generated in the absence of Ca++, ∆F is the difference between
force at maximal activation and F0, α is the Hill coefficient, and KI = 10−pCa50 . We assumed that F0 is
the average of the 10 isometric force simulations at pCa 8, the remaining parameters (∆F , α and pCa50)
were determined from the best fit. To estimate the error associated with these best fit parameters, we used
a bootstrapping approach. At each pCa concentration, we randomly selected from our 10 simulations, with
replacement, until we had a full complement of 10 values. We then fit the resulting data, using Matlab’s
fminsearch function (a Nelder-Mead simplex algorithm) with an initial random seed to find the values of
α, pCa50 and ∆F that minimize mean squared error. We repeated this process 10,000 times, giving a
distribution of best-fit values. In this way, we estimate α = 1.71 ± 0.19 and pCa50 = 6.81 ± 0.03 (means
plus/minus standard deviation). Note that these values are insensitive to our assumed number of myosin
molecules in a half sarcomere, provided that there are a sufficiently large number, since with an ensemble
of 150 molecules we found α = 1.65± 0.20 and pCa50 = 6.81± 0.03, and with an ensemble of 75 molecules
we found α = 1.58± 0.15 and pCa50 = 6.79± 0.03.

2.4.2 Binding of Ca++ to Tn

To further explore if and how strong binding activates the RTF, we used the model to predict how Tn
saturates with Ca++, both in the presence and absence of myosin strong binding. If strong binding leads
to RTF activation, and if Ca++ binding to Tn is proportional to RTF activation, then measurements of
Tn saturation as a function of Ca++ in the presence of myosin strong binding should show evidence of
increased Ca++ sensitivity (i.e. a leftward shift). Indeed this effect has been observed in muscle fibers
[29, 30], but it remains controversial because others have not seen this shift [31, 32]. By predicting these
measurements, the model can provide independent support for one of these two contradictory observations.

In the model, without myosin strong binding, the Tn saturation curve is given by equation (4), a
Michaelis-Menten curve with a Michaelis-Menten constant of K = 0.2µM. This gives half Tn saturation at
pCa 6.7, nearly identical to the isometric force pCa50 = 6.8. This prediction can be tested by a previously
published measurement of Ca++ binding to Tn in muscle fibers stretched to where the thick and thin
filaments barely overlap (an average sarcomere length of 3.8µm) [29]. When plotted relative to the pCa50

of the isometric force-Ca++ curve, the measured Tn saturation curve agrees well with the prediction of our
model. Indeed, the two are not significantly different (Fig. S11A, p > 0.05, χ2 test).
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Figure S11: Model predicts a myosin-induced increase in the binding of Ca++ to Tn. A. Model predictions of Ca++

binding to troponin (Tn) in the absence of myosin strong binding (solid line), given by equation (4), agree with cellular
measurements [29] (squares, error bars show SEM.). B. Model predictions of a leftward shift in Ca++ binding to
Tn in the presence of myosin strong binding (black line), which indicates strong-binding induced activation, are
consistent with some experimental measurements [30] (black symbols, error bars show SEM.). The horizontal axis
shows pCa relative to the pCa50 of isometric force

To predict Tn saturation in the presence of strong binding, we assume that myosin strong binding
transitions Tn into a state with high Ca++ affinity. Then, the model predicts that myosin strong binding
induces a leftward shift of 0.27 ± 0.07 pCa (mean plus/minus SD, Fig. S11B). Measurements of this
value vary, depending on ionic strength and Mg++ concentration used in the experimental solutions, but
previously observed values are 0.28 pCa [29] (200mM ionic strength), 0.48 ± 0.11 [30] (1mM Mg++) and
0.21 ± 0.08 [30] (5mM Mg++). The model successfully predicts the existence and the magnitude of this
shift. Therefore, by incorporating our measurements into a model, we add independent support to the
hypothesis that myosin strong binding to a RTF activates it and leads to Ca++ binding to Tn [29, 30],
even at physiological ATP concentrations.

2.4.3 Functional form of ε(Ca++)

We have assumed a particular form of ε(Ca++), given by Eq. 3. This form is based on the assumption that
myosin can always bind to a RTF, regardless of the state of Tn or Tm, but the energy required to do so
varies depending on Tn’s saturation with Ca++. This assumption leads to the prediction that attachment
rate varies exponentially with Tn’s saturation with Ca++, as opposed to assuming that attachment rate
varies in proportion to Tn’s saturation with Ca++.

If attachment rate varies in proportion to Tn’s saturation with Ca++ then, in the absence of myosin’s
interaction with actin, Tn should be half saturated around pCa 6 (based on our measurements of ε(Ca++)).
Alternatively, if attachment rate varies exponentially with Tn’s saturation with Ca++ then, in the absence
of myosin’s interaction with actin, Tn should be half saturated around pCa 6.7 (the negative log base 10 of
K). Under isometric conditions, half maximal force is produced around pCa 6.8. Thus, the proportional
model predicts that Tn reaches half saturation at a much lower pCa value as half maximal force, while the
exponential model predicts that Tn reaches half saturation approximately at the same pCa value as half
maximal force. Fig. S11A shows that, in the absence of myosin interacting with actin, Tn half saturation
and half maximal force occur at the same pCa value [29]. Thus, these data support our assumed form of
Eq. 3.

2.4.4 Michaelis-Menten binding of Ca++ to Tn

We have assumed Michaelis-Menten binding of Ca++ to Tn; however, since there are two primary Ca++-
binding sites on skeletal Tn, one might anticipate cooperative binding. We investigated whether we can
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see evidence of cooperative binding in two ways.
First, since our estimate of ε(Ca++) from our in vitro motility measurements was independent of Eqs. 3

and 4, we fit this estimate with a Hill model

θ =
[Ca++]α

Kα
H + [Ca++]α

(6)

where α is a cooperativity parameter (of course, Eq. 4 is a special case of this equation with α = 1). If
a Hill model fits these data significantly better than Eq. 4, then we have evidence of cooperative Ca++

binding to Tn. However, the best fit of Eq. 6 (with α = 1.171 and KH = 0.190µM) was not significantly
different from the Michaelis-Menten fit (p > 0.05, F-test).
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Figure S12: Adding cooperativity to our model of Ca++ binding to Tn has only a small effect on predictions at the
fiber scale. In all plots, the best Michaelis-Menten fit (Eq. 4) is shown as a dashed line; the best Hill fit (Eq. 6, with
α = 1.171) is shown as a solid line. Data (symbols, error bars SEM) are the same as in Fig. 5 of the main text. A.
Isometric force as a function of pCa (inset shows the increase in slope due to myosin binding activation). B. Ca++

binding to Tn in the absence of myosin binding. The model prediction from the Hill fit is significantly better than
the model prediction from the Michaelis-Menten fit (F-test, p < 0.05). C. A leftward shift in Ca++ binding to Tn in
the presence of myosin strong binding. In B and C, the horizontal axis shows pCa relative to the pCa50 of isometric
force.

Second, the measurements of Güth an Potter (1987) [29] of Ca++ binding to Tn in the absence of
myosin’s interaction with actin are well-predicted by the model (prediction and data not significantly
different, p > 0.05, χ2 test). Interestingly, however, the best Hill fit to the motility data was a significantly
better fit to these data than the best Michaelis-Menten fit (Fig. S12B, p < 0.05 F-test). Thus, these data
are consistent with weak cooperativity (α = 1.171). Predictions of isometric force (Fig. S12A) and Ca++

binding to Tn in the presence of myosin strong binding (Fig. S12C) are qualitatively the same as the best
Michaelis-Menten fit (i.e. we see evidence of strong binding activation, including an increase in slope of
the isometric force-pCa curve (Fig. S12A), and a left-ward shift of Tn’s binding of Ca++ (Fig. S12C)),
but show slightly better agreement with the data. Thus, the fiber data suggest that weak cooperativity
exists in Tn’s binding of Ca++; however, it is worth noting that fiber force data includes contributions
from non-myosin, Ca++-sensitive proteins, like titin [33] and myosin binding protein C [34, 35]. Thus, it is
hard to know whether differences between these measurements and the model’s predictions arise because
of weak Tn cooperativity or from the force generation of these accessory proteins.

Thus, our own data do not allow us to conclude that cooperativity occurs. Fiber data, which might
include non-myosin force generation, are consistent with weak cooperativity. Therefore, in this study, we
assume no cooperativity, with the additional justification that it allows us to get rid of one parameter
(i.e. we don’t need to specify α).
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