Gender Differences in Bile Acids and Microbiota in Relationship with Gender Dissimilarity in Steatosis Induced by Diet and FXR Inactivation

Lili Sheng, Prasant Kumar Jena, Hui-Xin Liu, Karen M. Kalanetra, Frank J. Gonzalez, Samuel W. French, Viswanathan V. Krishnan, David A. Mills, Yu-Jui Yvonne Wan

Table of contents

Supplementary Tables	2
Supplementary Figures	7
Supplementary References	14

Supplementary Tables

Supplementary Table S1. The concentration (µM) or ratio of hepatic bile acid in CD- and WD-fed WT and FXR KO mice of both genders.

	Male							Female								
Bile acid	WT				FXR KO				WT				FXR KO			
	CD		WD		CD		WD		CD		WD		CD		WD	
	Ave	SD	Ave	SD	Ave	SD	Ave	SD	Ave	SD	Ave	SD	Ave	SD	Ave	SD
ТСА	26.221	6.938	29.944	8.420	89.964	16.165	99.931	5.955	40.000	11.883	39.383	7.245	111.400	17.011	98.900	17.458
α-MCA	0.327	0.087	0.288	0.072	0.286	0.071	0.446	0.074	0.152	0.050	0.309	0.090	0.172	0.049	0.416	0.152
CDCA	0.009	0.002	0.008	0.002	0.006	0.002	0.011	0.002	0.002	0.001	0.006	0.002	0.007	0.001	0.004	0.004
UDCA	0.015	0.004	0.023	0.003	0.023	0.003	0.047	0.004	0.005	0.002	0.007	0.003	0.003	0.002	0.007	0.003
HDCA	0.018	0.005	0.037	0.009	0.044	0.010	0.066	0.030	0.007	0.007	0.014	0.007	0.006	0.009	0.021	0.005
TLCA ^a	0.032	0.010	0.047	0.016	0.065	0.027	0.107	0.039	0.009	0.005	0.035	0.013	NA	NA	NA	NA
DCA	0.037	0.010	0.065	0.012	0.104	0.023	0.121	0.008	0.090	0.017	0.058	0.010	0.082	0.032	0.084	0.025
β-ΜCΑ	0.366	0.097	0.617	0.117	1.352	0.262	5.360	1.180	0.308	0.129	0.335	0.101	0.598	0.164	1.540	0.536
LCA	0.004	0.001	0.003	0.001	0.003	0.001	0.003	0.001	0.002	0.001	0.003	0.001	0.003	0.001	0.003	0.001
Τ-α,β- ΜCΑ	19.293	5.105	27.369	4.266	32.093	4.177	41.813	4.381	25.932	2.955	21.767	5.331	37.417	2.870	36.550	8.987
TCDCA	2.776	1.651	2.746	0.722	3.074	1.361	2.984	1.634	2.927	1.026	3.920	1.142	2.683	0.761	2.365	0.389
CA	0.190	0.050	0.161	0.042	0.159	0.041	0.262	0.043	0.228	0.029	0.269	0.053	0.254	0.028	0.172	0.089

^a: TLCA was under the limit of detection in CD- and WD-fed FXR KO female mice.

Supplementary Table S2. Relative abundance (%) of cecal microbiota in CD- and WD-fed WT and FXR KO mice of both genders at

phylum level.

Phylum	Male								Female							
	WT				FXR KO			WT			FXR KO					
	CD		WD		CD		WD		CD		WD		CD		WD	
	Ave	SD	Ave	SD	Ave	SD	Ave	SD	Ave	SD	Ave	SD	Ave	SD	Ave	SD
Actinobacteria	0.36	0.46	0.09	0.11	0.03	0.10	0.13	0.47	0.06	0.10	1.76	1.40	0.00	0.00	0.00	0.00
Bacteroidetes	23.33	10.59	14.65	10.65	18.16	5.11	13.20	4.14	28.95	11.69	14.60	6.28	17.98	4.20	15.67	4.06
Deferribacteres	0.00	0.00	0.00	0.00	0.35	0.43	1.58	0.80	0.00	0.00	0.00	0.00	0.53	0.45	2.13	1.11
Firmicutes	73.88	9.15	69.05	14.64	22.62	5.27	17.95	5.08	59.84	10.86	75.95	5.96	20.08	3.43	10.74	3.43
Proteobacteria	1.70	2.22	12.13	16.72	57.88	6.50	66.25	9.07	4.91	2.69	0.05	0.04	60.09	4.52	71.13	8.41
Tenericutes	0.00	0.00	0.08	0.08	0.05	0.09	0.01	0.01	0.00	0.00	0.00	0.00	0.01	0.01	0.00	0.01
Verrucomicrobia	0.73	0.77	4.00	5.91	0.71	0.62	0.68	0.43	5.81	3.85	7.47	1.69	1.31	0.88	0.28	0.27
Other	0.00	0.00	0.00	0.00	0.20	0.18	0.20	0.12	0.43	0.69	0.16	0.11	0.01	0.01	0.06	0.09

Supplementary Table S3. Fold change of phenotypes and hepatic bile acids in Western diet-fed wild type mice and control diet-fed FXR KO mice of both genders.

Dhanatura	WD-fed WT vs. CD-fed FXR KO					
Phenotype	Male	Female				
ALT	0.67*	0.92				
Hepatic cholesterol	1.77*	1.69*				
LPS	0.65*	1.21				
Body weight	2.00*	2.18*				
Bile acid						
ТСА	0.33*	0.35*				
Τ-α,β-ΜCΑ	0.85	0.58*				
α-MCA	1.01	1.80*				
UDCA	1.04	2.79*				
HDCA	0.85	2.12*				
DCA	0.63*	0.70				
β-ΜCΑ	0.46*	0.56*				
LCA	1.07	0.96				
TCDCA	0.89	1.46				
СА	1.01	1.06				
CDCA	1.41	0.97				

TLCA ^a	0.72	NA
-------------------	------	----

*: Fold change \geq 1.5 or \leq 0.67, and *p*<0.05.

^a: TLCA was under the limit of detection in CD-fed FXR KO female mice.

Supplementary Table S4. List of primers used in this study to determine functional microbial genes.

Target genes and primers	Sequence (5' – 3')	Annealing temperature	Reference	
Functional gene for secondary bile acids				
baiJF	TCAGGACGTGGAGGCGATCCA	60°C	1	
baiJR	TACRTGATACTGGTAGCTCCA			
Functional gene for butyrate producer				
bcoAF	GCIGAICATTTCACITGGAAYWSITGGCAYATG	60°C	2, 3	
bcoAR	CCTGCCTTTGCAATRTCIACRAANGC			
Functional gene for hydrogen sulfide				
dsrAF	GCCGTTACTGTGACCAGCC	60°C	4	
dsrAR	GGTGGAGCCGTGCATGTT			
Functional gene for BA de-conjugation				
bshF	ATGGGCGGACTAGGATTACC	54°C	5,6	
bshR	TGCCACTCTCTGTCTGCATC			

Supplementary Figures

Fig. S1.Liver fat score (A) and representative H&E-stained ileum sections (B). n = 6 per group. Data are expressed as mean ± SD. One-way ANOVA with Tukey's correction. * p<0.05, ** p<0.01, *** p<0.001 for diet comparison; * p<0.05, ** p<0.01, *** p<0.001 for genotype comparison; * p<0.05, ** p<0.01, *** p<0.001 for gender comparison. Magnification, ×40.

Fig. S2. Tight junction gene expression in the ileum. * p<0.05, ** p<0.01, *** p<0.001 for diet comparison; * p<0.05, ** p<0.01, *** p<0.001 for diet comparison; * p<0.05, ** p<0.001 for genotype comparison;

Fig. S3. Microbiota alteration based on diet, genotype, and gender at family level. (A) Relative abundance of cecal microbiota at family levels in control diet (CD) and Western diet (WD)-fed WT and FXR KO mice of both genders. Mean value was shown. (B) Relative abundance of cecal microbiota at family level in eight groups (Kruskal-Wallis test). Box plots display the median, 25th percentile, and 75th percentile; whiskers display minimum and maximum values. n = 16 in male groups, n = 6 in female groups. * p<0.05, ** p<0.01, *** p<0.001 for genotype comparison; * p<0.05, ** p<0.001 for gender comparison.

Fig. S4. Spearman's correlation analysis between the abundance of bacterial families and mouse phenotypes. * *p*<0.05.

Fig. S5. Spearman's correlation analysis between the abundance of bacterial families and hepatic bile acids. * p<0.05.

Fig. S6. Spearman's correlation analysis between mouse phenotypes and hepatic bile acids. * *p*<0.05.

Fig. S7. Spearman's correlation analysis between the abundance of bacterial families and gene expression. * *p*<0.05.

REFERENCES

- 1 Yoshimoto, S. *et al.* Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. *Nature* **499**, 97-101 (2014).
- 2 Louis, P., Flint, H.J. Development of a semiquantitative degenerate real-time PCR-based assay for estimation of numbers of butyryl-coenzyme A (CoA) CoA transferase genes in complex bacterial samples. *Appl Environ Microb* **73**, 2009-2012 (2007).
- 3 O'Keefe, S.J. *et al.* Fat, fibre and cancer risk in African Americans and rural Africans. *Nat Commun* **6**, 6342 (2015).
- 4 Ijssennagger, N. *et al.* Gut microbiota facilitates dietary heme-induced epithelial hyperproliferation by opening the mucus barrier in colon. *Proc Natl Acad Sci USA* **112**, 10038-10043 (2015).
- 5 Duary RK, Batish VK, Grover S. Relative gene expression of bile salt hydrolase and surface proteins in two putative indigenous Lactobacillus plantarum strains under in vitro gut conditions. *Mol Biol Rep* **39**, 2541-52 (2012).
- 6 Chandran A, Duary RK, Grover S, *et al.* Relative expression of bacterial and host specific genes associated with probiotic survival and viability in the mice gut fed with Lactobacillus plantarum Lp91. *Microbiol Res* **168**,555-62 (2013).