

Supplementary Figure 1. Regiochemistry determination for compound 18. Determination of *in situ* click chemistry reaction regiochemistry by LCMS-SIM analysis. a) Pure *anti*-triazole (**18**) prepared by Cu (I) catalyzed reaction between **14** and **6c**; b) *in situ* click chemistry reaction; c) co-injection of *anti*-triazole and *in situ* click chemistry reaction; d) co-injection of mixture of *syn* and *anti*-triazole and *in situ* click chemistry reaction e) mixture of *syn* and *anti*-triazole.

Supplementary Figure 2. Regiochemistry determination for compound 21. Determination of *in situ* click chemistry reaction regiochemistry by LC-MS-SIM analysis. a) Pure *anti*-triazole (**21**) prepared by Cu (I) catalyzed reaction between **14** and **15a**; b) *in situ* click chemistry reaction; c) co-injection of *anti*-triazole and *in situ* click chemistry reaction; e) mixture of *syn* and *anti*-triazole.

Supplementary Figure 3. Stability in human and rat serum. Stability of compound 5, 14, 18, 21, 27 and 24 in a) human serum and b) rat serum ($n = 3, \pm s.e.m.$).

Supplementary Figure 4. *In-vivo* anti-inflammatory activity studies. *In-vivo* anti-inflammatory activity data for compound 18 ($n = 4, \pm s.e.m.$). a) Change in in paw volume at after the treatment with compound 18 at 0.3, 1, 3 and 10 mg kg⁻¹ p.o. at 3 h time point; b) change in in paw volume at after the treatment with compound 18 at 0.3, 1, 3 and 10 mg kg⁻¹ p.o. at 5 h time point; c) control d)-g) images showing the anti-inflammatory effect of compound 18 at 0.3, 1, 3 and 10 mg kg⁻¹ p.o. at 3 h time point; c) control d)-g) images showing the anti-inflammatory effect of compound 18 at 0.3, 1, 3 and 10 mg kg⁻¹ p.o. at 3 h time point.

Supplementary Figure 5. *In-vivo* anti-inflammatory activity studies. *In-vivo* anti-inflammatory activity data for compound 21 ($n = 5, \pm s.e.m.$). a) Change in in paw volume at after the treatment with compound 21 at 0.3, 1, 3 and 10 mg kg⁻¹ p.o. at 3 h time point; b) change in in paw volume at after the treatment with compound 21 at 0.3, 1, 3 and 10 mg kg⁻¹ p.o. at 5 h time point; c) control d)-f) images showing the anti-inflammatory effect of compound 21 at 0.3, 1, and 3 mg kg⁻¹ p.o. at 3 h time point.

Supplementary Figure 6. Molecular docking results. Molecular docking of 5-azido-pyrazole compound (14), alkynes (6c and 15a) in the binding site of COX-2 (PDB ID: 6COX). CPK view to highlight the deep insertion of 5-azido-pyrazole (14) into the COX-2 secondary pocket region. Hydrogen atoms of amino acid residues are omitted for clarity.

Supplementary Figure 7. Molecular docking results. Molecular docking of 5-azido-pyrazole compounds (5, 27 and 31) in the binding site of COX-2 (PDB ID: 6COX). Hydrogen atoms of amino acid residues are omitted for clarity.

Supplementary Figure 8. Inhibitory activity and energy of intermolecular interactions. Comparison of COX-2 IC₅₀ (μ M) and energy of intermolecular interactions (E_{intermolecular}) between ligand and COX-2 isozyme amino acid residues.

Supplementary Figure 9. Molecular docking in COX-2 enzyme. Molecular docking of compound a) **18** and b) **21** in the binding site of COX-2 (PDB ID: 6COX). Hydrogen atoms of amino acid residues are omitted for clarity.

Supplementary Figure 10. ¹H NMR spectrum of 5-azido-pyrazole 14.

Supplementary Figure 11. ¹³C NMR spectrum of 5-azido-pyrazole 14.

Supplementary Figure 12. ¹H NMR spectrum of *in situ* click chemistry hit compound 18.

Supplementary Figure 13. ¹³C NMR spectrum of *in situ* click chemistry hit compound 18.

Supplementary Figure 14. ¹H NMR spectrum of *in situ* click chemistry hit compound 21.

Supplementary Figure 15. ¹³C NMR spectrum of *in situ* click chemistry hit compound **21**.

Supplementary Figure 16. COX-2 enzyme activity. Summary of COX-2 activity observed at 4 °C, 27 °C and 37 °C at various time intervals.

Supplementary Figure 17. Calibration curve for compound 18 and 21. Calibration curve by LC-MS-SIM showing a linear correlation between compound (18/21) concentration and LC-MS-SIM measured peak area.

Supplementary Table 1. Isothermal titration calorimetry (ITC) data for the titration of azido pyrazole **14** with human COX-2 protein.

Thermodynamic property	Compound 14
Binding stoichiometry, N	1.02±0.0259
Association constant, K _a	2.20 x10 ⁻⁶ M ⁻¹
Enthalpy Change, ΔH	-34.51 kJ mol ⁻¹
Entropy Change at temperature 298.15 K, TΔS	1.69 kJ mol ⁻¹
Free energy Change, ΔG	-36.20 kJ mol ⁻¹

Compound	\mathbf{R}^{1}	X	COX-2 E _{intermolecular} (kcal mol ⁻¹)	COX-1 E _{intermolecular} (kcal mol ⁻¹)
7	Н	Н	-10.5	-9.7
8	Cl	Н	-11.5	-7.9
9	F	Н	-11.7	-8.3
10	OCH ₃	Н	-5.4	-9.4
11	CH ₃	Н	-5.9	-6.7
12	CH ₂ CH ₃	Н	-4.7	-5.4
16	Н	SO ₂ CH ₃	-7.2	-6.9
17	Cl	SO ₂ CH ₃	-6.9	-5.3
18	F	SO ₂ CH ₃	-15.9	-6.9
19	OCH ₃	SO ₂ CH ₃	-5.9	-7.2
20	CH ₃	SO ₂ CH ₃	-7.7	-7.4
21	NH ₂	SO ₂ CH ₃	-16.8	-6.9
22	CF ₃	SO ₂ CH ₃	-10.9	-7.8
23	-	SO ₂ CH ₃	-8.8	-6.5
24	-	SO ₂ CH ₃	-11.3	-5.4
25	-	SO ₂ CH ₃	-8.5	-5.8
28	F	SO ₂ CH ₃	-12.1	-6.1
29	NH ₂	SO ₂ CH ₃	-7.4	-5.9
32	F	Н	-5.2	-9.7
33	NH ₂	Н	-6.3	-8.2
5	-	SO ₂ CH ₃	-10.1	-7.6
14	-	Н	-7.5	-7.2
1	Cele	coxib	-14.9	-7.3

Supplementary Table 2. The energy of intermolecular interactions (E_{intermolecular}) between ligand and enzyme (COX-2/COX-1) amino acid residues.

Supplementary Table 3. Summary of LC-MS data *in situ* click chemistry screen of 5-azido-1,3-diphenyl-1H-pyrazole (5) with alkynes (**6a-6f**, **15a** and **15b**) in presence of COX-2 isozyme.

Timo		Alkyne										
Time	LC-MS run	6a	6b	6c	6d	6e	6f	15a	15b			
After 6 h	Run 1 (MS response)	0.2211	0.3455	0.5412	0.8911	0.9854	1.9972	0.9856	1.4225			
	Run 2 (MS response)	0.1805	0.4353	0.5232	0.9075	1.1231	1.8902	0.9456	1.5622			
	Run 3 (MS response)	0.1989	0.4011	0.5956	0.9301	1.0212	1.6501	0.9012	1.3265			
	Average (MS response)	0.2001	0.3939	0.5533	0.9095	1.0428	1.8458	0.9441	1.4370			
	Standard Deviation	0.0203	0.0453	0.0376	0.0195	0.0715	0.1777	0.0422	0.1185			
	Run 1 (MS response)	0.2981	0.4569	0.6123	0.9456	1.2654	2.1909	0.8569	1.5369			
	Run 2 (MS response)	0.2804	0.5026	0.6345	0.9856	1.2546	2.0311	0.9013	1.4891			
After 9 h	Run 3 (MS response)	0.3199	0.5102	0.6234	0.9021	1.0235	2.1113	0.9845	1.5125			
	Average (MS response)	0.2994	0.4899	0.6234	0.9444	1.1811	2.1107	0.9142	1.5128			
	Standard Deviation	0.0197	0.0288	0.0111	0.0417	0.1366	0.0804	0.0647	0.0239			
	Run 1 (MS response)	0.2434	0.5963	0.6034	0.8756	0.9953	1.9721	0.8725	1.2354			
	Run 2 (MS response)	0.3001	0.6523	0.6462	0.9561	1.0234	2.1936	0.8012	1.1123			
After 12 h	Run 3 (MS response)	0.3142	0.6012	0.5773	0.9654	1.1102	2.211	0.8945	1.3268			
	Average (MS response)	0.2859	0.6166	0.6089	0.9323	1.0429	2.1255	0.8560	1.2248			
	Standard Deviation	0.0374	0.0310	0.0347	0.0493	0.0598	0.1331	0.0487	0.1076			
	Run 1 (MS response)	0.2701	0.6521	0.4593	0.8963	1.0238	1.9721	0.9156	1.4562			
	Run 2 (MS response)	0.2878	0.651	0.5012	0.9129	1.0259	2.1936	0.9812	1.5891			
After 15 h	Run 3 (MS response)	0.3129	0.6021	0.5215	0.9915	1.1263	2.2111	0.9783	1.5689			
	Average (MS response)	0.2902	0.6350	0.494	0.9335	1.0586	2.1256	0.9583	1.5380			
	Standard Deviation	0.0215	0.0285	0.0258	0.0508	0.0585	0.1332	0.0370	0.0716			

Time	I C-MS run	Alkynes											
Time	LC-MS Tull	6a	6b	6c	6d	6e	6f	15 a	15b	15c	15d	15e	
After 3 h	Run 1 (MS response)	0.8592	0.4589	8.2589	0.9978	0.9753	1.5895	8.7956	1.5718	1.2365	1.9456	2.356	
	Run 2 (MS response)	0.8503	0.4236	9.5623	0.9123	1.0126	1.5245	9.2356	1.5245	1.2568	1.8956	2.2831	
	Run 3 (MS response)	0.8013	0.4125	5.5689	0.9013	1.0356	1.5014	7.8939	1.5123	1.3568	1.856	2.3021	
	Average (MS response)	0.8369	0.4316	7.7967	0.9371	1.0076	1.5384	8.6417	1.5362	1.2833	1.8990	2.3137	
	Standard Deviations	0.0311	0.0242	2.0364	0.0528	0.0303	0.0456	0.6839	0.0314	0.0644	0.0449	0.0378	
	Run 1 (MS response)	0.9912	0.4789	14.1459	0.9658	1.4587	1.8759	22.1601	1.5012	1.4263	1.995	2.1012	
After	Run 2 (MS response)	0.9012	0.4893	18.5893	0.9978	1.3012	1.8012	18.165	1.5483	1.4012	1.9025	2.3259	
6 h	Run 3 (MS response)	0.9125	0.5123	16.2568	0.9947	1.3201	1.8654	19.1243	1.5478	1.4907	1.9679	2.3925	
	Average (MS response)	0.9349	0.4935	16.3306	0.9861	1.3623	1.8475	19.8164	1.5324	1.4394	1.9551	2.2732	
	Standard Deviations	0.0490	0.0170	2.2226	0.0176	0.0859	0.0404	2.0855	0.0270	0.0461	0.0388	0.1526	
	Run 1 (MS response)	0.8678	0.5213	49.1989	0.8975	1.3256	1.9014	95.586	1.4796	1.4562	2.0123	1.9923	
After	Run 2 (MS response)	0.8564	0.4589	46.1569	0.9013	1.0259	1.8956	93.2563	1.4201	1.4027	2.2258	1.9569	
9 h	Run 3 (MS response)	0.9012	0.4912	43.1039	0.8942	1.3125	1.9257	91.121	1.4589	1.4014	2.3654	2.0123	
	Average (MS response)	0.8751	0.4904	46.1532	0.8976	1.2213	1.9075	93.3211	1.4528	1.4201	2.2011	1.9871	
	Standard Deviations	0.0232	0.0312	3.0475	0.0035	0.1693	0.0159	2.2332	0.0302	0.0312	0.1778	0.0280	
	Run 1 (MS response)	0.9562	0.5487	86.1145	0.9785	1.3365	1.9654	93.5126	1.5012	1.5023	2.0459	2.1239	
After 12	Run 2 (MS response)	0.9865	0.5125	77.5692	0.9365	1.3518	1.9017	95.2256	1.5246	1.4812	2.1278	2.3212	
h	Run 3 (MS response)	0.9975	0.5013	78.4562	0.9253	1.3956	1.9987	93.1527	1.5019	1.5823	2.1987	2.2019	
	Average (MS response)	0.9800	0.5208	80.7133	0.9467	1.3613	1.9552	93.9636	1.5092	1.5219	2.1241	2.2156	
	Standard Deviations	0.0213	0.0247	3.8363	0.0280	0.0306	0.0492	1.10761	0.0133	0.0533	0.0764	0.0993	

Supplementary Table 4. Summary of LC-MS data *in situ* click chemistry screen of 5-azido-1-(4-methanesulfonyl-phenyl)-3-methyl-1H-pyrazole (14) with alkynes (**6a-6f** and **15a-15e**) in presence of COX-2 isozyme.

Supplementary Table 5. Summary of LC-MS data *in situ* click chemistry screen of 5-azido-1,3-diphenyl-1H-pyrazole (**5**), 5-azido-1-(4-methanesulfonyl-phenyl)-3-methyl-1H-pyrazole (**14**), 5-azido-1-(4-methanesulfonyl-phenyl)-3-phenyl-1H-pyrazole (**27**), 5-azido-3-methyl-1-phenyl-1H-pyrazole (**31**) with alkynes (**6a-6f**, **15a** and **15b**) pool in presence of COX-2 isozyme.

Azide	Alkyne	Run 1 (MS response)	Run 2 (MS response)	Run 3 (MS response)	Average (MS response)	Standard Deviation	
5	6a	0.2123	0.2409	0.1759	0.2097	0.0325	
5	6b	0.4895	0.3825	0.4325	0.4348	0.0535	
5	6с	0.4459	0.4058	0.4856	0.4457	0.0399	
5	6d	1.4091	1.5645	1.5025	1.4920	0.0782	
5	6e	2.2561	2.3626	2.3156	2.3114	0.0533	
5	6f	2.4591	2.5125	2.5698	2.5138	0.0553	
5	15a	3.2156	3.1456	3.3256	3.2289	0.0907	
5	15b	0.5256	0.4058	0.5689	0.5001	0.0844	
5	15c	1.3591	1.2314	1.2012	1.2639	0.0838	
5	15d	1.5248	1.4256	1.5941	1.5148	0.0846	
5	15e	2.2048	2.4521	2.3012	2.3193	0.1246	
14	6a	0.3452	0.3526	0.3521	0.3499	0.0041	
14	6b	0.4589	0.4895	0.4587	0.4690	0.0177	
14	6c	88.4891	89.123	91.0914	89.567	1.3569	
14	6d	1.8094	1.8644	1.8045	1.8261	0.0332	
14	6e	2.5401	2.5621	2.4856	2.4856 2.5292		
14	6f	2.9875	2.8789	2.9123	2.9262	0.0556	
14	15a	92.9231	95.9957	97.5893	95.5027	2.3718	
14	15b	1.5323	1.3568	1.5025	1.4638	0.0939	
14	15c	1.5689	1.4789	1.5019	1.5165	0.0467	
14	15d	2.5893	2.5212	2.5437	2.5514	0.0346	
14	15e	2.2758	2.3242	2.3124	2.3041	0.0252	
27	6a	0.2158	0.1859	0.2014	0.2010	0.0149	
27	6b	2.4589	2.5459	2.5651	2.5233	0.0565	
27	6c	2.6598	2.6658	2.6654	2.6636	0.0033	
27	6d	3.5231	3.5562	3.5481	3.5424	0.0172	
27	6e	2.5012	2.5354	2.5689	2.5351	0.0338	
27	6f	2.5481	2.5012	2.5678	2.5390	0.0342	
27	15a	0.2126	0.1889	0.2351	0.2122	0.0231	
27	15b	0.1289	0.1568	0.1645	0.1500	0.0187	
27	15c	4.2123	4.2103	4.2569	4.2265	0.0263	
27	15d	1.3231	1.3321	1.3122	1.3224	0.0099	

27	15e	0.3281	0.3235	0.30125	0.3176	0.0143
31	6a	1.2349	1.2012	1.1991	1.2117	0.0200
31	6b	5.2359	5.4523	5.2589	5.3157	0.1188
31	6c	1.1478	1.2356	1.2012	1.1948	0.0442
31	6d	3.5012	3.5261	3.5986	3.5419	0.0506
31	6e	0.3012	0.3331	0.3235	0.3192	0.0163
31	6f	2.6231	2.6542	2.5891	2.6221	0.0325
31	15a	1.5123	1.5698	1.5789	1.5536	0.0361
31	15b	0.4021	0.4356	0.4512	0.4296	0.0250
31	15c	1.2351	1.2561	1.2012	1.2308	0.0277
31	15d	2.5012	2.5789	2.5541	2.5447	0.0396
31	15e	1.8012	1.8562	1.8451	1.8341	0.0290

7 31	LOMOD	Alkynes									
Time	LC-MS Run	6a	6b	6c	6d	6e	6f	15 a	15b		
After 6 h	Run 1 (MS response)	0.3332	1.1231	0.9756	0.8752	0.9756	1.2758	1.3212	1.5426		
	Run 2 (MS response)	0.3562	1.1481	0.9012	0.8456	1.0231	1.2364	1.3014	1.5012		
	Run 3 (MS response)	0.3254	1.1912	0.9312	0.8012	1.0912	1.3012	1.2656	1.4895		
	Average (MS response)	0.3382	1.1541	0.936	0.8406	1.0299	1.2711	1.2960	1.5111		
	Standard Deviations	0.0160	0.0344	0.03743	0.0372	0.0581	0.0326	0.0281	0.0279		
	Run 1 (MS response)	0.5856	1.0121	0.8956	0.7896	1.1243	1.2564	2.0123	1.1123		
	Run 2 (MS response)	0.5254	1.0197	0.8785	0.7012	1.1945	1.2978	2.0978	1.0756		
After 9 h	Run 3 (MS response)	0.6213	1.123	0.8212	0.7912	1.1023	1.3312	2.0123	1.0326		
	Average (MS response)	0.5774	1.0516	0.8651	0.7606	1.1403	1.2951	2.0408	1.0735		
	Standard Deviations	0.0484	0.0619	0.0389	0.0515	0.0481	0.0374	0.0493	0.0398		
	Run 1 (MS response)	0.2356	0.8925	0.5642	0.7895	0.7912	0.9783	1.0123	1.4985		
	Run 2 (MS response)	0.3021	0.8759	0.6017	0.7045	0.8621	0.9945	1.0856	1.5429		
After 12 h	Run 3 (MS response)	0.3256	0.8045	0.6009	0.8234	0.8517	0.9911	1.0425	1.5913		
	Average (MS response)	0.2877	0.8576	0.58893	0.7724	0.8353	0.98796	1.0468	1.5442		
	Standard Deviations	0.0466	0.0467	0.0214	0.0612	0.0382	0.0085	0.0368	0.0464		
	Run 1 (MS response)	0.4589	0.7956	0.7589	0.6654	0.9897	1.4512	1.8759	1.023		
After 15 h	Run 2 (MS response)	0.5012	0.7895	0.7986	0.6245	0.9956	1.5014	1.9201	1.1132		
AIUT IS II	Run 3 (MS response)	0.5124	0.7563	0.7256	0.6012	0.9012	1.5312	1.9013	1.1142		
	Average (MS response)	0.4908	0.7804	0.76103	0.6303	0.9621	1.4946	1.8991	1.0834		
	Standard Deviations	0.0282	0.0211	0.0298	0.0324	0.0528	0.0404	0.0221	0.0523		

Supplementary Table 6. Summary of LC-MS data *in situ* click chemistry screen of 5-azido-1,3-diphenyl-1H-pyrazole (5) with alkynes (**6a-6f**, **15a** and **15b**) in presence of COX-1 isozyme.

75 1		Alkynes											
Time	LC-MS Run	6a	6b	6c	6d	6e	6f	15a	15b	15c	15d	15e	
After 6 h	Run 1 (MS response)	0.3569	1.2451	1.5695	2.0123	1.6581	0.8965	1.2351	1.4225	0.9875	1.3325	2.012	
	Run 2 (MS response)	0.3698	1.2458	1.5458	2.1231	1.7895	0.9865	1.2756	1.5622	0.9863	1.2212	2.1121	
	Run 3 (MS response)	0.3658	1.2369	1.6012	2.0458	1.7841	0.9458	1.3012	1.3265	0.9952	1.2983	1.9911	
	Average (MS response)	0.3641	1.2426	1.5721	2.0604	1.7439	0.9429	1.2553	1.4370	0.9896	1.284	2.0384	
	Standard Deviations	0.0066	0.0049	0.0277	0.0568	0.0743	0.0450	0.0286	0.1185	0.0048	0.0570	0.0646	
	Run 1 (MS response)	0.5879	1.3981	1.2356	2.1236	1.8759	0.7956	1.3201	1.5369	0.9012	1.1253	1.9984	
After	Run 2 (MS response)	0.5458	1.4012	1.3312	2.1545	1.8012	0.8561	1.3017	1.4891	0.9754	1.8793	1.9975	
9 h	Run 3 (MS response)	0.5211	1.3584	1.3013	2.1795	1.8965	0.8756	1.2894	1.5125	0.9215	1.9453	1.9942	
	Average (MS response)	0.5516	1.3859	1.2893	2.1525	1.8578	0.8424	1.3037	1.5128	0.9327	1.6499	1.9967	
	Standard Deviations	0.0337	0.0238	0.0489	0.0280	0.0501	0.0417	0.0154	0.0239	0.0383	0.3719	0.0022	
	Run 1 (MS response)	0.8694	1.4251	1.4587	2.0123	1.7589	0.9012	1.2456	1.2354	0.9645	1.3201	1.9856	
After	Run 2 (MS response)	0.9326	1.4012	1.4012	2.0456	1.7956	0.9758	1.2756	1.1123	0.8893	1.3304	1.9985	
12 h	Run 3 (MS response)	0.9012	1.4142	1.3578	2.0356	1.7642	0.9356	1.3014	1.3268	0.9012	1.2893	1.9456	
	Average (MS response)	0.9010	1.4135	1.4059	2.0311	1.7729	0.9375	1.2742	1.2248	0.9183	1.3132	1.9765	
	Standard Deviations	0.0316	0.0119	0.05061	0.0170	0.0198	0.0373	0.0279	0.1076	0.0404	0.0213	0.0275	
	Run 1 (MS response)	0.9875	1.3256	1.7583	1.9914	1.8012	0.8365	1.2231	1.4562	1.0125	1.4251	2.1231	
After	Run 2 (MS response)	0.9012	1.2563	1.8245	2.0127	1.8421	0.8014	1.2014	1.5891	1.0101	1.3856	2.1237	
15 h	Run 3 (MS response)	0.9425	1.3216	1.8456	2.0128	1.8301	0.8457	1.2781	1.5689	0.9956	1.3547	2.097	
	Average (MS response)	0.9437	1.3011	1.8094	2.0056	1.8244	0.8278	1.2341	1.5380	1.0060	1.3884	2.1146	
	Standard Deviations	0.0431	0.0389	0.0371	0.0123	0.0210	0.0233	0.0394	0.0716	0.0091	0.0352	0.0152	

Supplementary Table 7. Summary of LC-MS data *in situ* click chemistry screen of 5-azido-1-(4-methanesulfonyl-phenyl)-3-methyl-1H-pyrazole (14) with alkynes (**6a-6f** and **15a-15e**) in presence of COX-1 isozyme.

Supplementary Methods

In situ click chemistry screening in presence of COX-1 isozyme for binary reagent mixtures. A similar method was employed as described for *in situ* click screening in presence of COX-2 isozyme, except of COX-2 isozyme, COX-1 isozyme (Cayman Chemical Item Number 60100) was used. After 6, 9, 12, 15, 18, 21 and 24 h each sample was analyzed in triplicate by injecting (10 μ l) into the LC/MS instrument with selected–ion-monitoring (SIM) mode (Water's Micromass ZQTM 4000 LC-MS instrument, operating in the ESI negative mode, equipped with a Water's 2795 separation module).

Calibration curve for compound 18 and 21. Calibration was performed using authentic compound **18** and **21** under same condition to those used for COX-2 templated *in situ* click chemistry reactions and LCMS-SIM analysis, was also performed in similar fashion (Water's Micromass ZQTM 4000 LCMS instrument, equipped with a Water's 2795 separation module), showed a linear correlation between concentration and response (Supplementary Figure 1). Comparison of the integration values from the *in situ* click chemistry reactions (after 15 h for compound **18** and after 12 h for compound **21** with those from the calibration curve revealed that approximately 0.45 % product **18** and 0.51 % product **21** was formed with respect to the amount of COX-2 enzyme used.

Regioselectivity determination of the *in situ* **click chemistry reaction.** Upon comparing the retention times of the *in situ* click product (**18/21**) with authentic samples, it was revealed that the *in situ* products are *anti*-isomers (Supplementary Figure 2 and 3). Chromatographic and analytical method (LC-MS-SIM) employed for determining the regioisomer distribution was same as it was described monitoring the *in situ* click chemistry reaction.

COX-2 isozyme stability. Both COX isoforms converts arachidonic acid to a prostaglandin G2 (PGG2) intermediate, amount of PGG2 formed is a direct indicator of enzyme activity. The reaction between PGG2 and fluorogenic substrate 10-acetyl-3,7-dihydroxphenoxazine (ADHP) results a fluorescent compound resorufin, amount of resorufin formed can indicate the activity of COX-1/2 enzymes. Here in this experiment, all reagent solutions were prepared by following manufacturer's instructions described in COX fluorescent inhibitor screening assay kit (catalog no. 700100, Cayman Chemical, Ann Arbor, MI). To the 600 μ l of assay buffer (100 mM Tris-HCl, pH 8.0) 40 μ l of heme and 40 μ l COX-2 enzyme was added and samples were stored at 4°C, 23 °C, and 37 °C. At various time intervals, 50 μ l of samples were removed and incubated with 10 μ l of fluorometric substrate and 10 μ l of arachidonic acid (solution prepared by following manufacture's procedure).

Fluorescence emission was measured and relative COX-2 enzyme stability at different temperatures and time intervals was calculated by comparing it with freshly prepared sample. The results, summarized in supplementary figure 4 indicate that COX-2 maintains its activity till 19 h and 21 h at room temperature and 4 °C respectively, however after that COX-2 starts losing its activity. While at 37 °C the COX-2 isozyme was denatured rapidly.

Stability of compound 5, 14, 18 and 21 in human serum and rat serum. Stock solutions of compounds 5, 14, 18 and 21 (10 mM) were prepared in DMSO for molecular biology. A Solution of each compound (10 mM) was added to freshly thaw human serum (from human male AB plasma, USA origin, sterile-filtered, Sigma-Aldrich) at 37 °C; the final concentration of the compound was 100 μ M. The resulting solution was incubated at 37 °C and at various time intervals (0 to 30 h) 200 μ L reaction mixture samples was taken and added to 200 μ L of acetonitrile containing 0.1% trifluoroacetic acid in order to deproteinize the proteins. Into each sample mixture, 10 μ L of an internal standard solution (2 mM solution in methanol) was added. Sample mixture was sonicated, vortexed and then centrifuged for 15 min. at 2150 × g. The clear supernatant was transferred into the fresh tube for LCMS analysis, with a similar method described for the *in situ* click LC-MS studies.

Cellular IC₅₀. Based on the in-vitro COX-2 inhibitory data, compound 5, 7, 8, 9, 11, 14, 17, 18, 22, 24, 25, 28, 29, 32, 33 and Celecoxib (1) were evaluated of cellular COX-2 inhibitory activity in COX-2 overexpressing live HCA-7 cells (colorectal cancer cell line, COX-2 expression is confirmed with immunoblotting). The HCA-7 cells were cultured in T75 flasks using DMEM/F12 (1:1) medium supplemented with 10% (v/v) fetal bovine serum (GIBCO, 12483), 2 mM L-glutamine (GIBCO, 25030), 1% penicillin/streptomycin and 20 mM HEPES buffer (GIBCO, 15630) and were kept in a 37 °C humidified incubator with supply of 5% CO2 in air. Cells were washed three times for 5 min with 1 ml PBS. Cells were negatively tested for mycoplasma contamination either by the vendor or in house. The cells were incubated with test compounds, reference drug celecoxib (1), or vehicle (solvent) at concentration range of 10^{-9} M to 10^{-3} M. After 30 min incubation the reaction was stopped on ice and supernatants were taken and COX-2 mediated production of PGE2 was immediately determined using prostaglandin E metabolite ELISA kit (514010, Cayman Chemical, Ann Arbor, MI, USA). The PGE2 concentration is quantified by following manufacturer assay procedure. All experiments were done three times and \pm s.e.m. were calculated. The known selective COX-2 inhibitor celecoxib was used as a control and for a competition experiment cells were pre-treated with 100 μ M celecoxib before the treatment of test compounds. The PRISM5 software was used to calculate IC₅₀ values.

Molecular docking procedure. Coordinates from the X-ray crystal structure of COX-1 (ovine, 1EQG, ibuprofen bound in the active site) and COX-2 (murine, 6COX, SC558 bound in the active site) were taken from the RCSB Protein Data Bank server. Compounds were constructed with the builder toolkit of the software package ArgusLab 4.0.1, and energy minimized using the semi-empirical quantum mechanical method PM3. The monomeric structure of the enzyme was chosen, and the active site was defined as 15 Å around the ligand. The molecule to be docked in the enzyme active site was inserted into the workspace carrying the structure of the enzyme. The docking program implements an efficient grid-based docking algorithm, which approximates an exhaustive search within the free volume of the binding site cavity. The conformational space was measured by the geometry optimization of the flexible ligand (rings are treated as rigid) in combination with the incremental construction of the ligand torsions. Thus, docking occurred between the flexible ligand parts of the compound and enzyme. The ligand orientation was determined by a shape scoring function based on A_{score} and the final positions were ranked by lowest interaction energy values. The E_{interaction} value is the sum of the energies involved in hydrogen bond interactions, hydrophobic interactions, and van der Waals interactions. Each molecular docking experiment was repeated three times to confirm the reproducibility. Hydrogen bond and hydrophobic interactions between the compound and enzyme were explored by distance measurements.

Experimental data

Melting points were determined with a Thomas–Hoover capillary apparatus and are uncorrected. ¹H NMR (600 MHz) and ¹³C NMR (150 MHz) spectra were recorded on a Bruker AM-600 NMR spectrometer using CDCl₃ or DMSO- d_6 as solvent. Chemical shifts are given in parts per million (ppm) with tetramethylsilane (TMS) as an internal reference and *J* (coupling constant) values were estimated in Hertz (*Hz*). The following notation is used: br – broad, s – singlet, d – doublet, t – triplet, q – quartet, quin – quintet, m – multiplet, dd – doublet of doublets, ddd – doublet of doublets of doublets, dt – doublet of triplets, td – triplet of doublets. Mass spectra (MS) were recorded on a Water's Micromass ZQ 4000 mass spectrometer using the ESI ionization mode. The purity of the compounds was established by elemental analyses, which were performed for C, H, and N by the Microanalytical Service Laboratory, Department of Chemistry, University of Alberta. All target compounds (**7**-**12** and **16**-**25**) showed a single spot on Macherey–Nagel Polygram Sil G/UV254 silica gel plates (0.2 mm) using a low, medium, and highly polar solvent system, and no residue remained after combustion, indicating a purity >98%. Column chromatography was performed on a Combiflash Rf system using a gold silica column. All other reagents, purchased from the Aldrich Chemical Co. (Milwaukee, WI, USA), were used without further purification. Compounds **3-5** were synthesized by using previously reported procedures.¹

General procedure for copper catalyzed alkyne azide cycloaddition (Procedure A). 5-azido-pyrazole (5/14/27/31) (0.5 mmol) and alkyne (0.5 mmol) were stirred together in ethanol and water (v/v = 2:1, 5 mL). To this reaction mixture was added copper (II) sulfate dissolved in water (0.5 M, 1 mol %) and aqueous sodium ascorbate (0.1 M, 10 mol %). The reaction mixture was stirred vigorously at room temperature and reaction progress was monitored by TLC. After the completion, the ethanol was removed under reduced pressure and the resulting residue was dissolved ethyl acetate (15 mL) and washed with brine (5 mL). The organic fraction was dried over anhydrous MgSO₄ and evaporated under reduced pressure. The crude products were purified by flash column chromatography using a mixture of 2-6 % MeOH in CH₂Cl₂ as eluent to furnish pure title triazole compounds (7-12, 16-25, 28, 29, 32 and 33).

1-(2,5-Diphenyl-2H-pyrazol-3-yl)-4-phenyl-1H-[1,2,3]triazole¹ (**7**). By use of procedure A, the reaction of 5azido-1,3-diphenyl-1H-pyrazole (**5**, 130 mg, 0.5 mmol) with ethynyl-benzene (**6a**, 0.5 mmol) gave compound **7** in 87% yield as a white solid; mp 122-123 °C (lit.^[1] 120 - 121°C). ¹H (600 MHz, CDCl₃): δ 6.89 (s, 1H, C*H* of pyrazole ring), 7.10-7.25 (m, 6H, Ar-H), 7.27-7.32 (m, 5H, Ar-H), 7.69 (d, J = 8.4 Hz, 2H, Ar-H), 7.80 (d, J =8.4 Hz, 2H, Ar-H), 7.92 (s, 1H, C*H* of triazole ring); ¹³C NMR (150 MHz, CDCl₃): δ 103.11 (*C*H of triazole ring), 119.32, 124.64, 126.23, 127.34, 128.54, 129.27, 129.45, 129.89, 129.93, 130.12, 131.21, 132.12, 135.91, 137.93, 147.99, 151.93; ESI-MS: 364.4 [M+H]⁺; Anal. Calcd for C₂₃H₁₇N₅: C, 76.01; H, 4.71; N, 19.27; Found: C, 76.10; H, 4.70; N, 19.23.

4-(4-Chloro-phenyl)-1-(2,5-diphenyl-2H-pyrazol-3-yl)-1H-[1,2,3]triazole (**8**). By use of procedure A, the reaction of 5-azido-1,3-diphenyl-1H-pyrazole (**5**, 130 mg, 0.5 mmol) with 1-chloro-4-ethynyl-benzene (**6b**, 0.5 mmol) gave compound **8** in 88.5% yield as a white solid; mp 134-136 °C; ¹H (600 MHz, CDCl₃): δ 6.38 (s, 1H, C*H* of pyrazole ring), 6.92 (d, *J* = 7.8 Hz, 2H, Ar-H), 7.06-7.29 (m, 6H, Ar-H), 7.35-7.58 (m, 3H, Ar-H), 7.63 (d, *J* = 8.4 Hz, 2H, Ar-H), 7.84 (d, *J* = 8.4 Hz, 2H, Ar-H); ¹³C NMR (150 MHz, CDCl₃): δ 104.50 (*C*H of triazole ring), 117.55, 126.16, 126.89, 127.46, 128.13, 128.87, 128.97, 129.71, 129.96, 132.43, 133.29, 134.89, 135.71, 136.92, 147.25, 151.85; ESI-MS: 398.1 [M(³⁵Cl)+H]⁺; 400.1 [M(³⁷Cl)+H]⁺; Anal. Calcd for C₂₃H₁₆ClN₅: C, 69.43; H, 4.05; N, 17.60; Found: C, 69.38; H, 4.09; N, 17.69.

1-(2,5-Diphenyl-2H-pyrazol-3-yl)-4-(4-fluoro-phenyl)-1H-[1,2,3]triazole (**9**). By use of procedure A, the reaction of 5-azido-1,3-diphenyl-1H-pyrazole (**5**, 130 mg, 0.5 mmol) with 1-ethynyl-4-fluoro-benzene (**6c**, 0.5 mmol) gave compound **9** in 84.5 % yield as a white solid; mp 129-131 °C; ¹H (600 MHz, CDCl₃): δ 6.98 (s, 1H, CH of pyrazole ring), 7.03-7.07 (m, 2H, Ar-H), 7.26-7.34 (m, 6H, Ar-H), 7.38-7.41 (m, 2H, Ar-H), 7.69 - 7.72 (m, 2H, Ar-H), 7.85 (d, *J* = 8.4 Hz, 2H, Ar-H), 7.97 (s, 1H, CH); ¹³C NMR (150 MHz, CDCl₃): δ 102.30 (CH of

triazole ring), 116.05 (d, $J_{CCF} = 22.5$ Hz), 121.46, 123.86, 125.70, 125.80, 127.72, 127.77, 128.65, 128.84 (d, $J_{CCCF} = 7.6$ Hz), 129.50, 131.99, 135.40, 137.62, 147.22, 151.88, 163.01 (d, $J_{CF} = 246$ Hz); ESI-MS: 382.4 [M+H]⁺; Anal. Calcd for C₂₃H₁₆FN₅: C, 72.43; H, 4.23; N, 18.36; Found: C, 72.39; H, 4.27; N, 18.39.

1-(2,5-Diphenyl-2H-pyrazol-3-yl)-4-(4-methoxy-phenyl)-1H-[1,2,3]triazole (10). By use of procedure A, the reaction of 5-azido-1,3-diphenyl-1H-pyrazole (5, 130 mg, 0.5 mmol) with 1-ethynyl-4-methoxy-benzene (6d, 0.5 mmol) gave compound 7 in 83% yield as a white solid; mp 117-120 °C; ¹H (600 MHz, CDCl₃): δ 3.76 (s, 3H, OCH₃), 6.88 (d, *J* = 8.4 Hz, 2H, Ar-H), 6.96 (s, 1H, C*H*), 7.25-7.30 (m, 4H, Ar-H), 7.32 (d, *J* = 8.1 Hz, 2H, Ar-H), 7.38 (d, *J* = 7.8 Hz, 2H, Ar-H), 7.58 (d, *J* = 8.4 Hz, 2H, Ar-H), 7.84 (d, *J* = 8.4 Hz, 2H, Ar-H), 7.92 (s, 1H, C*H*); ¹³C NMR (150 MHz, CDCl₃): δ 56.60 (OCH₃), 102.24 (CH of triazole ring), 114.40, 120.87, 122.10, 123.81, 125.80, 127.28, 128.57, 128.78, 128.87, 129.46, 132.07, 135.59, 137.68, 147.95, 151.81, 160.07; ESI-MS: 394.4 [M+H]⁺; Anal. Calcd for C₂₄H₁₉N₅O: C, 73.27; H, 4.87; N, 17.80; Found: C, 73.20; H, 4.81; N, 17.84.

1-(2,5-Diphenyl-2H-pyrazol-3-yl)-4-*p***-tolyl-1H-[1,2,3]triazole** (**11**). By use of procedure A, the reaction of 5azido-1,3-diphenyl-1H-pyrazole (**5**, 130 mg, 0.5 mmol) with 1-ethynyl-4-methyl-benzene (**6e**, 0.5 mmol) gave compound **11** in 79.5 % yield as a white solid; mp 125-127 °C; ¹H (600 MHz, CDCl₃): δ 2.32 (s, 3H, C*H*₃), 6.98 (s, 1H, C*H* of pyrazole ring), 7.17 (d, *J* = 7.8 Hz, 2H, Ar-H), 7.26-7.35 (m, 6H, Ar-H), 7.39-7.41 (m, 2H, Ar-H), 7.63 (d, *J* = 8.4 Hz, 2H, Ar-H), 7.85 (d, *J* = 8.4 Hz, 2H, Ar-H), 7.98 (s, 1H, C*H*); ¹³C NMR (150 MHz, CDCl₃): δ 20.73 (*C*H₃), 103.50 (*C*H of triazole ring), 117.53, 124.23, 125.86, 125.70, 126.32, 127.13, 128.71, 128.81, 129.65, 129.77, 131.99, 134.10, 135.13, 138.62,147.21, 151.11; ESI-MS: 378.4 [M+H]⁺; Anal. Calcd for C₂₄H₁₉N₅: C, 76.37; H, 5.07; N, 18.55; Found: C, 76.39; H, 5.03; N, 18.58.

1-(2,5-Diphenyl-2H-pyrazol-3-yl)-4-(4-ethyl-phenyl)-1H-[1,2,3]triazole (12). By use of procedure A, the reaction of 5-azido-1,3-diphenyl-1H-pyrazole (5, 130 mg, 0.5 mmol) with 1-ethyl-4-ethynyl-benzene (6f, 0.5 mmol) gave compound 12 in 86.5 % yield as a white solid; mp 130-133 °C; ¹H (600 MHz, CDCl₃): δ 1.18 (t, *J* = 7.8 Hz, 3H, CH₃), 2.61 (q, *J* = 7.8 Hz, 2H, CH₂), 6.98 (s, 1H, CH of pyrazole ring), 7.19 (d, *J* = 7.8 Hz, 2H, Ar-H), 7.25-7.35 (m, 6H, Ar-H), 7.38-7.41 (m, 2H, Ar-H), 7.65 (d, *J* = 8.4 Hz, 2H, Ar-H), 7.85 (d, *J* = 8.4 Hz, 2H, Ar-H), 7.97 (s, 1H, CH); ¹³C NMR (150 MHz, CDCl₃): δ 15.57 (CH₃), 28.72 (CH₂), 102.29 (CH of triazole ring), 121.39, 123.82, 125.80, 125.96, 126.80, 127.42, 128.60, 128.80, 128.87, 129.51, 132.03, 135.54, 137.61, 145.22, 148.14, 151.83; ESI-MS: 392.4 [M+H]⁺; Anal. Calcd for C₂₅H₂₁N₅: C, 76.70; H, 5.41; N, 17.89; Found: C, 76.72; H, 5.40; N, 17.88.

2-(4-Methanesulfonyl-phenyl)-5-methyl-2H-pyrazol-3-ylamine (13). 4-Methanesulfonyl-phenyl)-hydrazine (1 g, 4.50 mmol) was dissolved in ethanol (15 mL) and 3-amino-but-2-enenitrile (0.36 g, 4.50 mmol) was added into the clear solution. The resulting reaction mixture was refluxed for 7 h. The solvent was removed under vacuum; the residue was redissolved in ethyl acetate (200 mL) and washed twice with saturated aqueous NaHCO₃ solution (75 ml). The organic layer was dried over anhydrous Na₂SO₄, filtered and solvent was removed under vacuum. The residue was purified by flash chromatography (ethyl acetate : hexane = 7:3) to give pure compound **13** in 95 % yield as light yellow solid; mp 112-114 °C; ¹H (600 MHz, CD₃OD): δ 2.19 (s, 3H, CH₃), 3.17 (s, 3H, SO₂CH₃), 5.50 (s, 1H, CH of pyrazole ring), 7.86 (d, *J* = 8.4 Hz, 2H, Ar-H), 8.06 (d, *J* = 8.4 Hz, 2H, Ar-H); ¹³C NMR (150 MHz, CD₃OD): δ 13.61 (CH₃), 49.42 (SO₂CH₃), 91.94, 124.36, 128.70, 134.32, 142.82, 149.63, 152.05 (C-CH₃); ESI-MS: 252.3 [M+H]⁺; Anal. Calcd for C₁₁H₁₃N₃O₂S: C, 52.57; H, 5.21; N, 16.72; S, 12.76; Found: C, 52.51; H, 5.25; N, 16.69; S, 12.74.

5-Azido-1-(4-methanesulfonyl-phenyl)-3-methyl-1H-pyrazole (14). 2-(4-Methanesulfonyl-phenyl)-5-methyl-2H-pyrazol-3-ylamine (**13**, 0.50 g, 2 mmol) was dissolved in 5 mL of trifluoroacetic acid and freshly prepared solution of NaNO₂ (0.66 g, 9.5 mmol) in 1 mL of H₂O was added at 0 °C. After stirring for 15 min, a solution of NaN₃ (1.38 g, 21 mmol) in 5 mL of H₂O was added, and the reaction mixture was stirred for 2 h at 20 °C, subjected to extraction with ethyl acetate (3 x 40 mL), washed with H₂O, dried over anhydrous Na₂SO₄, filtered and solvent was removed under vacuum. The residue was purified by flash chromatography (ethyl acetate: hexane = 1:1) to give pure azido compound **14** in 76 % yield as light yellow solid mp 131-133 °C; ¹H (600 MHz, CD₃OD): δ 2.24 (s, 3H, CH₃), 3.01 (s, 3H, SO₂CH₃), 6.01 (s, 1H, CH of pyrazole ring), 7.69 (d, *J* = 8.4 Hz, 2H, Ar-H), 7.98 (d, *J* = 8.4 Hz, 2H, Ar-H); ¹³C NMR (150 MHz, CD₃OD): δ 14.17 (CH₃), 44.65 (SO₂CH₃), 97.24 (CH of pyrazole ring), 123.30, 128.65, 137.83, 138.90, 142.59, 151.03 (*C*-CH₃); ESI-MS: 278.3 [M+H]⁺; Anal. Calcd for C₁₁H₁₁N₅O₂S: C, 47.64; H, 4.00; N, 25.26; S, 11.56; Found: C, 47.60; H, 4.05; N, 25.23; S, 11.52.

1-[2-(4-Methanesulfonyl-phenyl)-5-methyl-2H-pyrazol-3-yl]-4-phenyl-1H-[1,2,3]triazole (**16**). By use of procedure A, the reaction of 5-azido-1-(4-methanesulfonyl-phenyl)-3-methyl-1H-pyrazole (**14**, 138 mg, 0.5 mmol) with ethynyl-benzene (**6a**, 0.5 mmol) gave compound **16** in 86.5 % yield as white solid; mp 146-148 °C; ¹H (600 MHz, CDCl₃): δ 2.37 (s, 3H, CH₃), 2.95 (s, 3H, SO₂CH₃), 6.51 (s, 1H, CH of pyrazole ring), 7.31 (m, 3H, Ar-H), 7.39 (d, *J* = 8.4 Hz, 2H, Ar-H), 7.78 (d, *J* = 8.4 Hz, 2H, Ar-H), 7.83 (d, *J* = 8.4 Hz, 2H, Ar-H), 7.93 (s, 1H, CH of triazole ring); ¹³C NMR (150 MHz, CDCl₃): δ 14.07 (CH₃), 44.48 (SO₂CH₃), 106.38 (CH of pyrazole ring), 123.10, 124.90, 125.97, 128.49, 128.63, 128.74, 129.08, 134.78, 139.35, 141.94, 148.51, 150.84

(*C*-CH₃); ESI-MS: 380.1 [M+H]⁺; Anal. Calcd for C₁₉H₁₇N₅O₂S: C, 60.14; H, 4.52; N, 18.46; S, 8.45; Found: C, 60.10; H, 4.49; N, 18.49; S, 8.41.

4-(4-Chloro-phenyl)-1-[2-(4-methanesulfonyl-phenyl)-5-methyl-2H-pyrazol-3-yl]-1H-[1,2,3]triazole (17). By use of procedure A, the reaction of 5-azido-1-(4-methanesulfonyl-phenyl)-3-methyl-1H-pyrazole (14, 138 mg, 0.5 mmol) with 1-chloro-4-ethynyl-benzene (**6b**, 0.5 mmol) gave compound **17** in 90.5 % yield as a white solid; mp 145-148 °C; ¹H (600 MHz, CDCl₃): δ 2.37 (s, 3H, CH₃), 2.96 (s, 3H, SO₂CH₃), 6.50 (s, 1H, CH of pyrazole ring), 7.31 (d, J = 8.4 Hz, 2H, Ar-H), 7.36 (d, J = 8.4 Hz, 2H, Ar-H), 7.71 (d, J = 8.4 Hz, 2H, Ar-H), 7.82 (d, J = 8.4 Hz, 2H, Ar-H), 7.94 (s, 1H, CH); ¹³C NMR (150 MHz, CDCl₃): δ 11.72 (CH₃), 44.49 (SO₂CH₃), 106.40 (CH of pyrazole ring), 121.88, 123.25, 127.21, 127.80, 128.62, 129.53, 134.92, 136.59, 139.41, 141.90, 147.46, 150.87 (*C*-CH₃); ESI-MS: 414.1 [M(³⁵Cl)+H]⁺; 416.1 [M(³⁷Cl)+H]⁺; Anal. Calcd for C₁₉H₁₆ClN₅O₂S: C, 55.14; H, 3.90; N, 16.92; S, 7.75; Found: C, 55.17; H, 3.92; N, 16.90; S, 7.71.

4-(4-Fluoro-phenyl)-1-[2-(4-methanesulfonyl-phenyl)-5-methyl-2H-pyrazol-3-yl]-1H-[1,2,3]triazole (18). By use of procedure A, the reaction of 5-azido-1-(4-methanesulfonyl-phenyl)-3-methyl-1H-pyrazole (14, 138 mg, 0.5 mmol) with 1-ethynyl-4-fluoro-benzene (6c, 0.5 mmol) gave 18 in 89.5 % yield as a white solid; mp 129-131 °C; ¹H (600 MHz, CDCl₃): δ 2.37 (s, 3H, CH₃), 2.96 (s, 3H, SO₂CH₃), 6.51 (s, 1H, CH of pyrazole ring), 7.07-7.10 (m, 2H, Ar-H), 7.32 (d, *J* = 8.4 Hz, 2H, Ar-H), 7.74-7.78 (m, 2H, Ar-H), 7.82 (d, *J* = 8.4 Hz, 2H, Ar-H), 7.74-7.78 (m, 2H, Ar-H), 7.82 (d, *J* = 8.4 Hz, 2H, Ar-H), 7.92 (s, 1H, CH); ¹³C NMR (150 MHz, CDC l₃): δ 14.06 (CH₃), 44.49 (SO₂CH₃), 106.38 (CH of pyrazole ring), 116.17 (d, *J*_{CCF} = 21.0 Hz), 121.48, 123.23, 125.30, 127.80 (d, *J*_{CCCF} = 7.5 Hz), 128.92, 134.70, 139.40, 141.91, 147.64, 150.87 (C-CH₃), 163.12 (d, *J*_{CF} = 246 Hz); ESI-MS: 398.43 [M+H]⁺; Anal. Calcd for C₁₉H₁₆FN₅O₂S: C, 57.42; H, 4.06; N, 17.62; S, 8.07; Found: C, 57.40; H, 4.03; N, 17.60; S, 8.03.

1-[2-(4-Methanesulfonyl-phenyl)-5-methyl-2H-pyrazol-3-yl]-4-(4-methoxy-phenyl)-1H-[1,2,3]triazole (19). By use of procedure A, the reaction of 5-azido-1-(4-methanesulfonyl-phenyl)-3-methyl-1H-pyrazole (**14**, 138 mg, 0.5 mmol) with 1-ethynyl-4-methoxy-benzene (**6d**, 0.5 mmol) gave **19** in 86 % yield as a white solid; mp 124-127 °C; ¹H (600 MHz, CDCl₃): δ 2.44 (s, 3H, CH₃), 3.00 (s, 3H, SO₂CH₃), 3.86 (s, 3H, OCH₃), 6.57 (s, 1H, CH of pyrazole ring), 6.98 (d, *J* = 7.8 Hz, 2H, Ar-H), 7.39 (d, *J* = 7.8 Hz, 2H, Ar-H), 7.76 (d, *J* = 7.8 Hz, 2H, Ar-H), 7.89 (d, *J* = 7.8 Hz, 2H, Ar-H), 8.01 (s, 1H, CH); ¹³C NMR (150 MHz, CDCl₃): δ 14.06 (CH₃), 44.51 (SO₂CH₃), 55.40 (OCH₃), 106.31 (CH of pyrazole ring), 114.49, 121.67, 123.18, 127.33, 128.49, 128.91, 134.88, 139.29, 141.96, 148.38, 150.82 (C-CH₃) 160.26 (ArC-OCH₃); ESI-MS: 394.1 [M+H]⁺; Anal. Calcd for C₂₀H₁₉N₅O₂S: C, 61.05; H, 4.87; N, 17.80; S, 8.15; Found: C, 61.09; H, 4.81; N, 17.89; S, 8.10. **1-[2-(4-Methanesulfonyl-phenyl)-5-methyl-2H-pyrazol-3-yl]-4-p-tolyl-1H-[1,2,3]triazole** (**20**). By use of procedure A, the reaction of 5-azido-1-(4-methanesulfonyl-phenyl)-3-methyl-1H-pyrazole (**14**, 138 mg, 0.5 mmol) with 1-ethynyl-4-methyl-benzene (**6e**, 0.5 mmol) gave compound **16** in 82 % yield as a white solid; mp 144-146 °C; ¹H (600 MHz, CDCl₃): δ 2.32 (s, 3H, CH₃), 2.37 (s, 3H, CH₃), 2.96 (s, 3H, SO₂CH₃), 6.50 (s, 1H, CH of pyrazole ring), 7.19 (d, J = 7.8 Hz, 2H, Ar-H), 7.31 (d, J = 8.4 Hz, 2H, Ar-H), 7.65 (d, J = 7.8 Hz, 2H, Ar-H), 7.82 (d, J = 8.4 Hz, 2H, Ar-H), 7.98 (s, 1H, CH); ¹³C NMR (150 MHz, CDCl₃): δ 11.91 (CH₃), 21.29 (CH₃), 44.51 (SO₂CH₃), 106.34 (CH of pyrazole ring), 121.43, 123.18, 125.86, 126.24, 128.64, 129.76, 134.85, 139.11, 139.30, 141.96, 148.59, 150.82 (C-CH₃); ESI-MS: 394.1 [M+H]⁺; Anal. Calcd for C₂₀H₁₉N₅O₂S: C, 61.05; H, 4.87; N, 17.80; S, 8.15; Found: C, 61.09; H, 4.81; N, 17.89; S, 8.10.

4-{1-[2-(4-Methanesulfonyl-phenyl)-5-methyl-2H-pyrazol-3-yl]-1H-[1,2,3]triazol-4-yl}-phenylamine (21). By use of procedure A, the reaction of 5-azido-1-(4-methanesulfonyl-phenyl)-3-methyl-1H-pyrazole (**14**, 138 mg, 0.5 mmol) with 4-ethynyl-phenylamine (**15a**, 0.5 mmol) gave compound **21** in 87.5 % yield as a white solid; mp 177-180 °C; ¹H (600 MHz, CDCl₃): δ 2.36 (s, 3H, *CH*₃), 3.00 (s, 3H, SO₂*CH*₃), 6.48 (s, 1H, *CH* of pyrazole ring), 6.65 (d, *J* = 8.4 Hz, 2H, Ar-H), 7.31 (d, *J* = 8.4 Hz, 2H, Ar-H), 7.83 (d, *J* = 8.4 Hz, 2H, Ar-H), 7.84 (d, *J* = 8.4 Hz, 2H, Ar-H), 8.10 (s, 1H, *CH*); ¹³C NMR (150 MHz, CDCl₃): δ 14.07 (*C*H₃), 42.52 (SO₂*C*H₃), 106.26 (*C*H of pyrazole ring), 115.25, 119.36, 121.52, 123.49, 128.22, 132.41, 135.36, 139.73, 141.94, 147.25, 148.87, 150.78 (*C*-CH₃); ESI-MS: 395.1 [M+H]⁺; Anal. Calcd for C₁₉H₁₈N₆O₂S: C, 57.85; H, 4.60; N, 21.31; S, 8.13; Found: C, 57.82; H, 4.65; N, 21.34; S, 8.10.

1-[2-(4-Methanesulfonyl-phenyl)-5-methyl-2H-pyrazol-3-yl]-4-(4-trifluoromethyl-phenyl)-1H-

[1,2,3]triazole (22). By use of procedure A, the reaction of 5-azido-1-(4-methanesulfonyl-phenyl)-3-methyl-1H-pyrazole (14, 138 mg, 0.5 mmol) with 1-ethynyl-4-trifluoromethyl-benzene (15b, 0.5 mmol) gave compound 22 in 87.5 % yield as a light yellow solid; mp 209-211 °C; ¹H (600 MHz, CD₃OD): δ 2.46 (s, 3H, CH₃), 3.14 (s, 3H, SO₂CH₃), 6.81 (s, 1H, CH of pyrazole ring), 7.14-7.38 (m, 2H, Ar-H), 7.46-7.48 (m, 2H, Ar-H), 7.78-7.88 (m, 2H, Ar-H), 7.98-8.11 (m, 2H, Ar-H), 8.14 (s, 1H, CH); ¹³C NMR (150 MHz, CD₃OD): δ 12.39 (CH₃), 42.74 (SO₂CH₃), 105.57 (CH of pyrazole ring), 119.12 (q, ¹J_{C,F} = 269 Hz, CF₃), 123.57, 124.50, 125.62, 127.06 128.92, 136.9 (q, ²J_{CCF} = 15 Hz, C-CF₃), 137.5, 140.25, 141.09, 146.52, 150.89, 151.87 (C-CH₃); ESI-MS: 398.43 [M+H]⁺; Anal. Calcd for C₂₀H₁₆F₃N₅O₂S: C, 53.69; H, 3.60; N, 15.65; S, 7.17; Found: C, 53.64; H, 3.64; N, 15.60; S, 7.19.

4-Isobutyl-1-[2-(4-methanesulfonyl-phenyl)-5-methyl-2H-pyrazol-3-yl]-1H-[1,2,3]triazole (23). By use of procedure A, the reaction of 5-azido-1-(4-methanesulfonyl-phenyl)-3-methyl-1H-pyrazole (14, 138 mg, 0.5

mmol) with 4-methylpent-1-yne (**15c**, 0.5 mmol) gave compound **23** in 79 % yield as a white solid; mp 150-153 °C; ¹H (600 MHz, CD₃OD): δ 0.94 (d, *J* = 6.6 Hz, 6H, 2xC*H*₃), 1.97 (m, 1H, C*H*), 2.43 (s, 3H, C*H*₃), 2.63 (d, *J* = 6.6 Hz, 2H, C*H*₂), 3.13 (s, 3H, C*H*₃), 6.74 (s, 1H, C*H* of pyrazole ring), 7.34-7.37 (m, 2H, Ar-H), 7.95-7.97 (m, 2H, Ar-H), 8.03 (s, 1H, C*H*); ¹³C NMR (150 MHz, CD₃OD): δ 13.87 (CH₃), 22.35 (CH₃), 22.46 (CH₃), 29.81 (CH), 35.04 (CH₂), 44.21 (SO₂CH₃), 106.85 (CH of pyrazole ring), 124.82, 126.62, 129.82, 136.83, 141.30, 143.20, 148.92, 152.22 (*C*-CH₃); ESI-MS: 360.1 [M+H]⁺; Anal. Calcd for C₁₇H₂₁N₅O₂S: C, 56.80; H, 5.89; N, 19.48; S, 8.92; Found: C, 56.85; H, 5.84; N, 19.45; S, 8.96.

4-{1-[2-(4-Methanesulfonyl-phenyl)-5-methyl-2H-pyrazol-3-yl]-1H-[1,2,3]triazol-4-ylmethyl}-morpholine

(24). By use of procedure A, the reaction of 5-azido-1-(4-methanesulfonyl-phenyl)-3-methyl-1H-pyrazole (14, 0.13 g, 0.5 mmol) with 4-(prop-2-ynyl)morpholine (15d, 0.5 mmol) gave compound 24 in 78.5 % yield as a white solid; mp 172-174 °C; ¹H (600 MHz, CDCl₃): δ 2.43 (s, 3H, CH₃), 2.51-2.76 (m, 4H, 2xCH₂), 3.06 (s, 3H, CH₃), 3.47-3.50 (m, 6H, 3xCH₂), 6.58 (s, 1H, *CH* of pyrazole ring), 7.27 (d, *J* = 8.4, 2H, Ar-H), 7.89 (d, *J* = 8.4, 2H, Ar-H), 8.11 (s, 1H, *CH*); ¹³C NMR (150 MHz, CDCl₃): δ 14.04 (*C*H₃), 44.49 (SO₂*C*H₃), 53.06 (*C*H₂), 64.06 (*C*H₂), 75.82 (*C*H₂), 106.36 (*C*H of pyrazole ring), 123.34, 126.72, 129.00, 134.73, 139.46, 141.82, 148.72, 150.85 (*C*-CH₃); ESI-MS: 403.1 [M+H]⁺; Anal. Calcd for C₁₈H₂₂N₆O₃S: C, 53.72; H, 5.51; N, 20.88; S, 7.97, Found: C, 53.78; H, 5.48; N, 20.82; S, 7.94.

1-{1-[2-(4-Methanesulfonyl-phenyl)-5-methyl-2H-pyrazol-3-yl]-1H-[1,2,3]triazol-4-ylmethyl}-piperidine

(25). By use of procedure A, the reaction of 5-azido-1-(4-methanesulfonyl-phenyl)-3-methyl-1H-pyrazole (14, 138 mg, 0.5 mmol) with 1-prop-2-ynyl-piperidine (15e, 0.5 mmol) gave compound 25 in 80 % yield as a colorless thick liquid; ¹H (600 MHz, CDCl₃): δ 1.57-1.59 (m, 2H, CH₂), 1.77-1.79 (m, 4H, 2xCH₂), 2.43 (s, 3H, CH₃), 2.84-2.88 (m, 4H, 2xCH₂), 3.06 (s, 3H, CH₃), 4.06 (s, 2H, CH₂), 6.57 (s, 1H, CH of pyrazole ring), 7.31 (d, *J* = 8.4, 2H, Ar-H), 7.88 (d, *J* = 8.4, 2H, Ar-H), 8.00 (s, 1H, CH); ¹³C NMR (150 MHz, CD₃OD): δ 14.13 (CH₃), 22.76 (CH₂), 23.88 (CH₂), 44.50 (SO₂CH₃), 52.25 (CH₂), 53.56 (CH₂), 106.38 (CH of pyrazole ring), 123.68, 127.92, 128.75, 129.17, 134.44, 139.48, 141.77, 150.88 (C-CH₃); ESI-MS: 401.1 [M+H]⁺; Anal. Calcd for C₁₉H₂₄N₆O₂S: C, 56.98; H, 6.04; N, 20.98; S, 8.01, Found: C, 56.94; H, 6.08; N, 20.93; S, 8.06.

2-(4-Methanesulfonyl-phenyl)-5-phenyl-2H-pyrazol-3-ylamine (**26**). 1-Amino-1-phenylacrylonitrile¹ (**3**) (0.72 g, 5 mmol) was suspended in 2.5 N HCl (10 mL, 5 mmol) and heated to 50 °C for 5 min. [4-(Methylsulfonyl)phenyl]hydrazine hydrochloride (1.3 g, 6 mmol) was added, followed by 12 N HCl (2.5 mL, 30 mmol), and the mixture was heated to 110 °C for 20 min. The reaction mixture was cooled and 14 N NH₄OH was added dropwise until the solution became basic (7 mL, 100 mmol). Extracted with ethyl acetate (3x100

mL), washed with water and organic layer were combined and dried over (Na₂SO₄), the solvent was evaporated to give crude. Recrystallization from *i*-Pr₂O (15 mL) gave compound **26** in 49 % yield as light yellow solid; mp 113-115 °C; 1H (600 MHz, DMSO-*d*₆): δ 2.86 (s, 3H, SO₂CH₃), 5.90 (s, 1H, CH of pyrazole ring), 7.28-7.39 (m, 3H, Ar-H), 7.42-7.47 (m, 2H, Ar-H), 7.50 (d, *J* = 7.8, 2H, Ar-H), 7.92 (d, *J* = 7.8, 2H, Ar-H); ¹³C NMR (150 MHz, DMSO-*d*₆): δ 46.42 (SO₂CH₃), 90.52 (CH of pyrazole ring), 124.41, 127.53, 128.65, 129.27, 130.18, 134.32, 138.64, 146.42, 149.25, 152.05 (*C*-CH₃); ESI-MS: 314.1 [M+H]⁺.

5-Azido-1-(4-methanesulfonyl-phenyl)-3-phenyl-1H-pyrazole (**27**). 2-(4-Methanesulfonyl-phenyl)-5-phenyl-2H-pyrazol-3-ylamine (**26**, 1.31 g, 4.2 mmol) was dissolved in 5 mL of trifluoroacetic acid and a solution of NaNO₂ (1.31 g, 19 mmol) in 2 mL of H₂O was added at 0 °C. After stirring the reaction mixture for 15 min, a solution of NaN₃ (2.76 g, 42 mmol) in 8 mL of H₂O was added, and the mixture was stirred for 40 min at 20 °C. The reaction mixture was extracted with ethyl acetate (3x30 mL), washed with H₂O and brine, dried over Na₂SO4. The combined organic layers were evaporated and purified by flash chromatography in hexanes-ethyl acetate (7:3) to give title compound in 76 % yield as light yellow solid; mp 132-134 °C; ¹H (600 MHz, DMSO-*d*₆): δ 2.90 (s, 3H, CH₃), 6.10 (s, 1H, C*H* of pyrazole ring), 7.23-7.33 (m, 3H, Ar-H), 7.45-7.49 (m, 2H, Ar-H), 7.50 (d, *J* = 7.8, 2H, Ar-H), 7.90 (d, *J* = 7.8, 2H, Ar-H); ¹³C NMR (150 MHz, DMSO-d6): δ 46.42 (SO₂CH₃), 105.21(*C*H of pyrazole ring), 123.31, 126.42, 129.61, 130.23, 130.81, 134.59, 138.89, 146.97, 149.21, 151.23 (*C*-CH₃); ESI-MS: 340.1 [M+H]⁺.

4-(4-Fluoro-phenyl)-1-[2-(4-methanesulfonyl-phenyl)-5-phenyl-2H-pyrazol-3-yl]-1H-[1,2,3]triazole (28). By use of procedure A, the reaction of 5-azido-1-(4-methanesulfonyl-phenyl)-3-phenyl-1H-pyrazole (27, 0.19 g, 0.5 mmol) with 1-ethynyl-4-fluoro-benzene (**6c**, 0.5 mmol) gave compound **28** in 79 % yield as a colorless thick liquid; ¹H (600 MHz, CDCl₃): δ 2.93 (s, 3H, SO₂CH₃), 6.43 (s, 1H, CH of pyrazole ring), 7.07-7.10 (m, 2H, Ar-H), 7.26-7.36 (m, 3H, Ar-H), 7.40-7.45 (m, 2H, Ar-H), 7.49-7.57 (m, 4H, Ar-H), 7.86-7.90 (m, 2H, Ar-H), 8.04 (s, 1H, CH of triazole ring); ¹³C NMR (150 MHz, CDCl₃): δ 46.64 (SO₂CH₃), 106.04 (CH of pyrazole ring), 116.28 (d, *J*_{CCCF} = 21.0 Hz), 120.31, 125.36 126.72, 126.99 (d, *J*_{CCCF} = 7.5 Hz), 128.34, 128.85, 129.56, 130.11, 131.01, 134.56, 136.59, 139.34, 146.89, 150.87 (C-CH₃), 163.14 (d, *J*_{CF} = 246 Hz); ESI-MS: 460.1[M+H]⁺. Anal. Calcd for C₂₄H₁₈FN₅O₂S: C, 62.73; H, 3.95; N, 15.24; S, 6.98; Found: C, 62.70; H, 3.93; N, 15.28; S, 6.91.

4-{1-[2-(4-Methanesulfonyl-phenyl)-5-phenyl-2H-pyrazol-3-yl]-1H-[1,2,3]triazol-4-yl}-phenylamine (29). By use of procedure A, the reaction of 5-azido-1-(4-methanesulfonyl-phenyl)-3-phenyl-1H-pyrazole (27, 0.19 g, 0.5 mmol) with 4-ethynyl-phenylamine (15a) gave compound 29 in 81 % yield as a thick yellow liquid; ¹H (600 MHz, CDCl₃): δ 2.95 (s, 3H, CH₃), 6.49 (s, 1H, C*H* of pyrazole ring), 6.79 (d, *J* = 8.4 Hz, 2H, Ar-H), 7.23 (d, *J* = 8.4 Hz, 2H, Ar-H), 7.27-7.34 (m, 3H, Ar-H), 7.43-7.49 (m, 2H, Ar-H), 7.51-7.58 (m, 2H, Ar-H), 7.82-7,89 (m, 2H, Ar-H), 8.05 (s, 1H, C*H*); ¹³C NMR (150 MHz, CDCl₃): δ 46.24 (SO₂CH₃), 105.85 (*C*H of pyrazole ring), 115.60, 119.31, 123.36 126.72, 127.04, 127.89, 128.85, 129.56, 130.11, 131.01, 134.56, 136.59, 139.34, 146.89, 148.72, 150.87 (*C*-CH₃); ESI-MS: 457.1 [M+H]⁺. Anal. Calcd for C₂₄H₂₀N₆O₂S: C, 63.14; H, 4.42; N, 18.41; S, 7.02; Found: C, 63.10; H, 4.47; N, 18.47; S, 7.08.

5-Methyl-2-phenyl-2H-pyrazol-3-ylamine² (**30**). By following same procedure as described for the synthesis of compound **26**, the reaction of 1-amino-1-phenylacrylonitrile (**3**) with phenyhydrazine hydrochloride gave compound **30** in 52 % yield as white solid, mp 113-114 °C (lit.² mp : 111-112 °C); ¹H (600 MHz, CDCl₃): δ 2.28 (s, 3H, CH₃), 5.78 (s, 1H, CH of pyrazole ring), 7.30-7.40 (m, 3H, Ar-H), 7.56 (d, *J* = 7.8, 2H, Ar-H); ESI-MS: 174.1 [M+H]⁺.

5-Azido-3-methyl-1-phenyl-1H-pyrazole (**31**). By following same procedure as described for the synthesis of compound **27**, the reaction of 5-methyl-2-phenyl-2H-pyrazol-3-ylamine (**30**) with NaNO₂ and NaN₃ gave compound **31** in 56 % yield as white solid, mp 123-125 °C. ¹H (600 MHz, CDCl₃): δ 2.41 (s, 3H, CH₃), 6.09 (s, 1H, CH of pyrazole ring), 7.28-7.43 (m, 3H, Ar-H), 7.59 (d, J = 7.8, 2H, Ar-H). ESI-MS: 200.1 [M+H]⁺.

4-(4-Fluoro-phenyl)-1-(5-methyl-2-phenyl-2H-pyrazol-3-yl)-1H-[1,2,3]triazole (**32**). By use of procedure A, the reaction of 5-azido-3-methyl-1-phenyl-1H-pyrazole (**31**, 0.09 g, 0.5 mmol) with 1-ethynyl-4-fluoro-benzene (**6c**, 0.5 mmol) gave compound **32** in 81 % yield as colorless thick liquid; (600 MHz, CDCl₃): δ 2.49 (s, 3H, CH₃), 6.68 (s, 1H, CH of pyrazole ring), 6.96 (d, *J* = 8.4 Hz, 2H, Ar-H), 7.32-7.36 (m, 3H, Ar-H), 7.39-7.44 (m, 2H, Ar-H), 7.48 (d, *J* = 8.4 Hz, 2H, Ar-H), 7.94 (s, 1H, CH); ¹³C NMR (150 MHz, CDCl₃): δ 13.41 (CH₃), 107.01 (CH of pyrazole ring), 116.21 (d, *J*_{CCF} = 21.0 Hz), 119.38, 123.36 126.72, 127.75 (d, *J*_{CCCF} = 7.5 Hz), 127.99, 128.85, 129.86, 134.97, 137.34, 150.77 (C-CH₃), 163.19 (d, *J*_{CF} = 246.1 Hz); ESI-MS: 320.1 [M+H]⁺. Anal. Calcd for C₁₈H₁₄FN₅: C, 67.70; H, 4.42; N, 21.93; Found: C, 67.64; H, 4.47; N, 21.88.

4-[1-(5-Methyl-2-phenyl-2H-pyrazol-3-yl)-1H-[1,2,3]triazol-4-yl]-phenylamine (**33**). By use of procedure A, the reaction of 5-azido-3-methyl-1-phenyl-1H-pyrazole (**31**, 0.09 g, 0.5 mmol) with 4-ethynyl-phenylamine (**15a**, 0.5 mmol) gave compound **33** in 82 % yield as colorless thick liquid; ¹H (600 MHz, CDCl₃): δ 2.43 (s, 3H, CH₃), 6.61 (s, 1H, CH of pyrazole ring), 6.84 (d, J = 8.4 Hz, 2H, Ar-H), 7.21 (d, J = 8.4 Hz, 2H, Ar-H), 7.29-7.34 (m, 3H, Ar-H), 7.37-7.42 (m, 2H, Ar-H), 7.95 (s, 1H, CH); ¹³C NMR (150 MHz, CDCl₃): δ 13.01 (CH₃), 107.01 (CH of pyrazole ring), 115.81, 118.88, 124.26 126.72, 127.05, 128.14, 128.11, 129.99, 131.01,

137.34, 147.2, 150.19 (*C*-CH₃); ESI-MS: 317.1 [M+H]⁺. Anal. Calcd for C₁₈H₁₆N₆: C, 68.34; H, 5.10; N, 26.56; Found: C, 68.30; H, 5.12; N, 26.58.

Supplementary References

- de Paulis, T. *et al.* Substituent effects of *N*-(1,3-diphenyl-1*H*-pyrazol-5-yl)benzamides on positive allosteric modulation of the metabotropic glutamate-5 receptor in rat cortical astrocytes. *J. Med. Chem.* 49, 3332-3344, (2006).
- 2 Ganesan, A. & Heathcock, C. H. Synthesis of unsymmetrical pyrazines by reaction of an oxadiazinone with enamines. *J. Org. Chem.* **58**, 6155-6157, (1993).