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1 Electromagnetic Design Method

1.1 Problem description

Our goal is to automate the design of all passive photonic structures. Thus, our first
task is to come up with a generic way of defining the functionality of a optical device.
One approach is to describe the coupling between a set of input and output modes,
since any linear optical device can be described in this fashion [1]. This is particularly
useful for waveguide-coupled devices, whose functionality can be defined in terms of
the guided modes of the input and output waveguides.

In our design method, we specify device functionality by describing the mode
conversion efficiency between a set of input modes and output modes. The input
and output modes are specified by the user, and kept fixed during the optimization
process. The input modes i = 1 . . .M are at frequencies ωi, and can be represented
by an equivalent current density distribution Ji. The fields Ei produced by each input
mode satisfy Maxwell’s equations,

∇× µ−1
0 ∇× Ei − ω2εEi = −iωiJi (S.1)

where ε is the permittivity distribution, and µ0 is the permeability of free space.
For each input mode i, we then specify a set of output modes j = 1 . . . Ni, whose

amplitudes are bounded between αij and βij. If our output modes are guided modes
of waveguides with modal electric fields Eij and magnetic fields Hij, this constraint
can be written using a mode orthogonality relationship [2],

αij ≤
∣∣∣∣∫∫ (Ei ×Hij + Eij ×Hi) · n̂ dr⊥

∣∣∣∣ ≤ βij. (S.2)

Here, n̂ is a unit vector pointing in the propagation direction, and r⊥ denotes the
coordinates perpendicular to the propagation direction. We can use Faraday’s law
∇× Ei = −iωµ0Hi to rewrite (S.2) purely in terms of the electric field:

αij ≤
∣∣∣∣∫∫ (Ei ×Hij + Eij ×

i

ωµ0

∇× Ei

)
· n̂ dr⊥

∣∣∣∣ ≤ βij. (S.3)
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More generally, we can specify the output mode amplitude in terms of a linear
functional Lij of the electric field Ei,

αij ≤ |Lij (Ei)| ≤ βij, (S.4)

where V = {E : R3 → C3} is the space of all possible electric field distributions, and
Lij : V → C maps electric field distributions to a complex scalar.

We are thus interested in finding a permittivity distribution ε and electric fields
Ei which simultaneously satisfy (S.1) and (S.4), for all input modes i = 1 . . .M and
output modes j = 1 . . . N . To ensure that the resulting device is fabricable, we will
later impose additional constraints on ε.

1.2 Linear algebra description

Since we will solve Maxwell’s equations numerically, and employ numerical optimiza-
tion techniques to design our devices, it is convenient to recast the design problem in
terms of linear algebra. We do this by discretizing space and making the substitutions

Ei → xi ∈ Cn

ε→ z ∈ Cn

∇× µ−1
0 ∇× → D ∈ Cn×n

−iωiJi → bi ∈ Cn

Lij → cij ∈ Cn. (S.5)

We thus wish to find electric fields xi and a permittivity distribution z which satisfy

Dxi − ω2
i diag(z)xi − bi = 0 (S.6)

αij ≤
∣∣∣c†ijxi∣∣∣ ≤ βij (S.7)

for i = 1 . . .M and j = 1 . . . Ni. Here, diag (v) refers to the diagonal matrix whose
diagonal entries are given by the vector v, and u† is the conjugate transpose of u. For
convenience, we further define the matrices

Ai(z) = D − ω2
i diag(z)

Bi(xi) = −ω2
i diag(xi). (S.8)

This lets us rewrite equation (S.6) as

0 = Ai(z)xi − bi = Bi(xi)z + (Dxi − bi) . (S.9)

The final problem we wish to solve is then

Ai(z)xi − bi = 0 (S.10)

αij ≤
∣∣∣c†ijxi∣∣∣ ≤ βij (S.11)

for i = 1 . . .M and j = 1 . . . Ni.

2



1.3 Parametrizing the structure

As described in the main article, we describe our structure using a two-dimensional
level-set function φ(x, y) : R2 → R , where the permittivity in the design region is
given by

ε(x, y) =

{
ε1 for φ(x, y) ≤ 0

ε2 for φ(x, y) > 0.
(S.12)

For the purposes of numerical optimization, we discretize the level set function in
space, which transforms the level set function into a two dimensional array φ ∈ RU×V .

We parametrize the permittivity distribution z with the level set φ by using a
mapping function m : RU×V → Cn, where

z = m(φ). (S.13)

When the level set boundaries are not perfectly aligned with simulation grid cells,
we render the structure using anti-aliasing. This allows us to continuously vary the
structure, rather than being forced to make discrete pixel-by-pixel changes.

1.4 Formulating the optimization problem

We are finally in a position to construct our optimization problem. Although there
are a variety of ways we could solve (S.10) and (S.11), the particular optimization
problem we choose to solve is

minimize F (x1, . . . , xM)

subject to Ai(z)xi − bi = 0, for i = 1 . . . Ni

z = m(φ). (S.14)

Here, we constrain the fields to satisfy Maxwell’s equations, parameterize the permit-
tivity z with the level set function φ ∈ RU×V , and construct a penalty function

F (x1, . . . , xM) =
M∑
i=1

fi(xi) (S.15)

for violating our field constraints from equation (S.11). The penalty fi(xi) for each
input mode is given by

fi =

Ni∑
j=1

I+

(∣∣∣c†ijxi∣∣∣− αij

)
+ I+

(
βij −

∣∣∣c†ijxi∣∣∣) (S.16)

where I+ (u) is a relaxed indicator function [3],

I+ (u) =

0, u ≥ 0
1

s
|u|q , otherwise.

(S.17)

Typically, we use q = 2 and s = maxi fi(xi).
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1.5 Steepest descent optimization

We solve our optimization problem (S.14) by first ensuring that Maxwell’s equations
(S.10) are always satisfied. This implies that both the fields x1, . . . , xM and the field-
constraint penalty F are a function of the level set φ. We then optimize the structure
using a steepest descent method. Using the chain rule, the gradient of the penalty
function F is given by

dF

dφ
=
dF

dz

dz

dφ
=
dF

dz

d

dφ
m(φ) (S.18)

since z = m(φ). The majority of the computational cost comes from computing the
gradient dF/dz.

As described in the main text, we evolve the level set function φ by advecting it
with a velocity field v ∈ RU×V . To implement gradient descent, we set the velocity
field to be equal to the gradient of the penalty function:

v =
dF

dφ
. (S.19)

1.6 Computing gradient of penalty function F

We now consider how to efficiently compute the gradient of the penalty function F
with respect to the permittivity z, which can be written using (S.15) as

dF

dz
=

M∑
i=1

d

dz
fi(xi). (S.20)

Although fi is not a holomorphic function since fi : Cn → R, we can compute dfi/dz
using the expression

d

dz
fi(xi) = 2 Re

(
∂fi
∂xi

dxi
dz

)
(S.21)

where we have taken the Wirtinger derivative of fi [4]. The Wirtinger derivative with
respect to some complex variable w = u+ iv is defined as

∂

∂w
=

1

2

(
∂

∂u
− i ∂

∂v

)
. (S.22)

Using this definition, the Wirtinger derivatives ∂fi/∂xi are given by

∂fi
∂xi

=

Ni∑
j=1

∂

∂xi
I+

(∣∣∣c†ijxi∣∣∣− αij

)
+

∂

∂xi
I+

(
βij −

∣∣∣c†ijxi∣∣∣) (S.23)
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where

∂

∂xi
I+

(∣∣∣c†ijxi∣∣∣− αij

)
=

1

2

(
c†ijxi

)∗∣∣∣c†ijxi∣∣∣ c†ij ·

0, |c†ijxi| − αij ≥ 0
q

a

∣∣∣|c†ijxi| − αij

∣∣∣q−1

, otherwise

(S.24)

∂

∂xi
I+

(
βij −

∣∣∣c†ijxi∣∣∣) =
1

2

(
c†ijxi

)∗∣∣∣c†ijxi∣∣∣ c†ij ·

0, βij − |c†ijxi| ≥ 0
q

a

∣∣∣βij − |c†ijxi|∣∣∣q−1

, otherwise.

(S.25)

Here, we have used the identity

∂

∂u
|u| = u∗

2 |u|
. (S.26)

Next, we consider how to take the derivative of the electric fields xi with respect
to the permittivity z. If we take the derivative of the discretized Maxwell’s equations
(S.6) with respect to z, we obtain

D
dxi
dz
− ω2

i diag(xi)− ω2
i diag(z)

dxi
dz

= 0(
D − ω2

i diag(z)
) dxi
dz

= ω2
i diag(xi)

Ai(z)
dxi
dz

= −Bi(xi) (S.27)

where we have used our definitions of Ai and Bi from (S.8). Rearranging, we find the
derivative to be

dxi
dz

= −A−1
i (z)Bi(x). (S.28)

We obtain our final expression for dfi/dz by subsitututing (S.28) into (S.21):

d

dz
fi(xi) = 2 Re

(
∂fi
∂xi

dxi
dz

)
= 2 Re

(
−∂fi
∂xi

A−1
i (z)Bi(xi)

)
= 2 Re

(
−
(
A−†i (z)

∂fi
∂xi

†)†
Bi(xi)

)
. (S.29)

Since Ai and Bi are large n × n matrices, we have rearranged the expression in the
final step to require only a single matrix solve rather than n solves. This method for
reducing the computational cost of computing gradients is known as adjoint sensitivity
analysis, and is described in detail elsewhere [5].
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The cost of computing dF/dz is dominated by the cost of solving Maxwell’s equa-
tions. For each input mode i = 1 . . .M , we need to solve both the forward problem

xi = A−1
i b to find the electric field xi, and the adjoint problem A−†i (z) ∂fi

∂xi

†
from equa-

tion (S.29). Both the forward and adjoint problems can be solved by any standard
Maxwell’s equation solver [6, 7, 8]. We use a graphical processing unit (GPU) ac-
celerated implementation of the finite-difference frequency-domain (FDFD) method
[9, 10].
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2 Level set implementation

2.1 Curvature limiting

In the main text, we wrote that we implement curvature limiting by evolving the level
set function φ with

φt − b(κ)κ |∇φ| = 0 (S.30)

using the weighting function

b(κ) =

{
1 for |κ| > κ0

0 otherwise.
(S.31)

In practice, this has terrible convergence since the weighting function falls off infinitely
sharply as the local curvature crosses κ0. To improve the behaviour of our PDE, we
actually use a smoothed weighting function

b(x, y) = exp
(
−κ2

0 d
2(x, y)

)
, (S.32)

where d(x, y) is the Euclidean distance to the nearest element in the set Ω,

d(x, y) = inf
(x̂,ŷ)∈Ω

‖(x, y)− (x̂, ŷ)‖. (S.33)

We choose Ω = {(x, y)|κ(x, y) > κ0} to be the set of points with a local curvature
greater than our threshold κ0. The distance function d(x, y) can be efficiently com-
puted using the Euclidean distance transform commonly included in image processing
libraries.

2.2 Numerical implementation

In our design algorithm, we apply gradient descent using the partial differential equa-
tion

φt + v(x, y) |∇φ| = 0 (S.34)

where v(x, y) is the local velocity, and apply curvature limiting with equation S.30. We
spatially discretize equation S.34 using Godunov’s scheme, and equation S.30 using
central differencing, as is common practice [11]. We discretize in the time dimension
using Euler’s method.

To ensure that our level set equations remain well behaved, we regularly reinitialize
φ to be a signed distance function [11], where |∇φ| ≈ 1. Most reinitialization schemes,
however, result in subtle shifts in the interface locations, which can cause optimization
to fail. We use Russo and Smerka’s reinitialization scheme to avoid these issues [12].
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3 Additional characterization of 1× 3 splitter

3.1 Fabrication robustness

To obtain a better understanding of the fabrication robustness of our 1 × 3 splitter,
we simulated the device for a range of over-etching and under-etching errors, which
correspond to lateral growth or shrinkage of the design. We have presented the results
in figure S1.
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Figure S1: Simulated transmission spectra of the 1 × 3 splitter for a range of
over-etching and under-etching errors, calculated using finite-difference time-domain
(FDTD) simulations. For over-etching and under-etching of 10 nm, the device per-
formance is not impacted except for slight spectral shifts.

3.2 Backreflections

We also simulated the return loss for our 1 × 3 splitter, which we present in figure
S2. The backreflections into the fundamental TE10 mode of the input waveguide are
< 23 dB over the operating bandwidth of our device. Backreflections into the TE20

mode are zero due to reflection symmetry in our device in the horizontal direction,
and mode conversion to TM modes is impossible due to reflection symmetry of our
structure in the vertical direction. Finally, scattering into higher order waveguide
modes is negligible since the input and output waveguides are close to single-mode.
Thus, backreflections into the input waveguide comprise only a small fraction of the
total losses.
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Figure S2: Simulated return loss of the 1×3 splitter back into the fundamental mode
of the input waveguide.
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