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Supplementary Note 1: Derivation of Eq. (6) of the main paper

We provide a brief derivation of the fluctuation-dissipation theorem1,2 (FDT) for fluctuations of the charge density
in the frequency domain. We start by considering a system characterized by its charge density operator ρ(r, t) in the
Heisenberg picture and described through the Hamiltonian H = H0 +H1, where H0 is the unperturbed term, while

H1 =

∫
d3r ρ(r, t)φ(r, t) (1)

accounts for the time-dependent interaction between ρ and an external electric potential φ(r, t). Using first-order
perturbation theory under the assumption that H1 vanishes in the t→ −∞ limit, we can write the eigenstates of the
perturbed system as

|ψm(t)〉 ≈ |m〉 − i

h̄

∫ t

−∞
dt′H1(t′) |m〉 , (2)

where |m〉 is the eigenstate of H0 with energy Em (i.e., H0 |m〉 = Em |m〉). Summing the contributions from all
perturbed states |ψm(t)〉, we obtain the expectation value of the charge density induced by H1 as

ρind(r, t) = 〈ρ(r, t)− ρ(r,−∞)〉 =

∫
dt′
∫
d3r′ χ(r, r′, t− t′)φ(r′, t′),

where

χ(r, r′, t− t′) = − i
h̄
θ(t− t′)

∑
m

e−Em/kBT

Z
〈m| [ρ(r, t), ρ(r′, t′)] |m〉

(3)

is the electric susceptibility of the system and Z =
∑
m e−Em/kBT is the partition function at temperature T . The

former can be expressed in the frequency domain by considering a harmonic potential φ with a e−iωt time dependence
that is directly transmitted to the induced charge. We find

χ(r, r′, ω) =

∫
dt′ χ(r, r′, t− t′)e−iω(t′−t) =

1

Z

∑
m,n

〈m| ρ(r) |n〉 〈n| ρ(r′) |m〉 e−Em/kBT − e−En/kBT

h̄ω + Em − En + i0+
, (4)

where we have used ρ(r, t) = eiH0t/h̄ρ(r)e−iH0t/h̄ as well as the closure relation
∑
n |n〉 〈n| = I.

At this point, we follow a similar procedure for calculating the self correlations of the fluctuating charge density ρfl.
We obtain

〈ρfl(r, ω)ρfl(r′, ω′)〉 =

∫
dt

∫
dt′ eiωteiω

′t′ 〈ρfl(r, t)ρfl(r′, t′)〉

=
1

Z

∫
dt

∫
dt′ eiωteiω

′t′
∑
m,n

e−Em/kBT ei(Em−En)(t−t′)/h̄ 〈m| ρ(r) |n〉 〈n| ρ(r′) |m〉

= 2πδ(ω + ω′)S(ω), (5)

where

S(ω) =
2πh̄

Z

∑
m,n

e−Em/kBT 〈m| ρ(r) |n〉 〈n| ρ(r′) |m〉 δ(h̄ω + Em − En). (6)

Comparing this expression with Eq. (4), we obtain S(ω) = −2h̄ [n(ω)+1] Im{χ(r, r′, ω)}, where n(ω) = [eh̄ω/kBT−1]−1

is the Bose-Einstein distribution function. We conclude that

〈ρfl(r, ω)ρfl(r′, ω′)〉 = −4πh̄δ(ω + ω′) [n(ω) + 1] Im{χ(r, r′, ω)}. (7)

Additionally, interchanging ρ(r, ω) and ρ(r′, ω′), we find

〈ρfl(r′, ω′)ρfl(r, ω)〉 = −4πh̄δ(ω + ω′) n(ω) Im{χ(r, r′, ω)}, (8)

where we have used the properties χ(r, r′, ω) = χ(r′, r, ω), χ(r, r′,−ω) = χ∗(r, r′, ω), and n(−ω)+1 = −n(ω). Finally,
the expectation value of the physically meaningful symmetrized correlation becomes

〈ρfl(r′, ω′)ρfl(r, ω)〉sym =
1

2

[
〈ρfl(r, ω)ρfl(r′, ω′)〉+ 〈ρfl(r′, ω′)ρfl(r, ω)〉

]
= −4πh̄δ(ω + ω′) [n(ω) +

1

2
] Im{χ(r, r′, ω)}.

(9)
This is the FDT used in the main paper [see Eq. (6) there], where we drop the ’sym’ subscript for clarity.
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Supplementary Note 2: Derivation of Eqs. (7) and (8) of the main paper

We start from Eq. (4) of the main paper, which we recast as

P1←2 = i

∫∫
dωdω′

(2π)2
ω e−i(ω+ω′)t

∫
d3r

∫
d3r′

〈[(
ρfl

2(ω)
)T ·∆T(ω) · v · χ1(ω) · v ·∆(ω′) · ρfl

2(ω′)
] ∣∣∣∣

r,r′

〉
. (10)

This expression can be conveniently rewritten by moving
(
ρfl

2(ω)
)T

to the right end as

P1←2 = i

∫∫
dωdω′

(2π)2
ω e−i(ω+ω′)t

∫
d3r

∫
d3r′

[
∆T(ω) · v · χ1(ω) · v ·∆(ω′) ·

〈
ρfl

2(ω′) ·
(
ρfl

2(ω)
)T〉] ∣∣∣∣

r,r′
. (11)

Here, ρfl
2(ω′) ·

(
ρfl

2(ω)
)T

is a matrix formed by the product of column and row vectors. Charge fluctuations are readily
evaluated using the FTD [Eq. (6) of the main paper] together with the identity χ`(ω) = χ∗` (−ω). We find

P1←2 =
−ih̄
π

∫
ω dω (n2 + 1/2) Tr

[
∆T · v · χ1 · v ·∆∗ · Im{χ2}

]
=
−ih̄
π

∫
ω dω (n2 + 1/2) Tr

[
Im{χ2} ·∆† · v · χ1 · v ·∆

]
, (12)

where the second line is obtained from the first one by applying the matrix trace identity Tr[A] = Tr[AT] as well
as v = vT and χ` = χT

` . We note that a dependence of χ`, ∆, and n2 on ω is understood. We now split the

integral as
∫
dω →

∫∞
0
dω +

∫ 0

−∞ dω and change ω to −ω in the negative frequency term. Using the property

[n`(ω) + 1/2] = −[n`(−ω) + 1/2], we obtain

P1←2 =
−ih̄
π

∫ ∞
0

ω dω (n2 + 1/2) Tr
[
Im{χ2} ·∆† · v · χ1 · v ·∆− Im{χ2} ·∆T · v · χ∗1 · v ·∆∗

]
. (13)

Taking the transpose of the second term and using the above matrix properties together with Tr[A · B] = Tr[B · A],
Eq. (13) reduces to

P1←2 =
−ih̄
π

∫ ∞
0

ω dω (n2 + 1/2) Tr
[
Im{χ2} ·∆† · v · χ1 · v ·∆−∆† · v · χ∗1 · v ·∆ · Im{χ2}

]
=
−ih̄
π

∫ ∞
0

ω dω (n2 + 1/2) Tr
[
∆† · v · χ1 · v ·∆ · Im{χ2} −∆† · v · χ∗1 · v ·∆ · Im{χ2}

]
=
−ih̄
π

∫ ∞
0

ω dω (n2 + 1/2) Tr
[
∆† · v · (χ1 − χ∗1) · v ·∆ · Im{χ2}

]
=

2h̄

π

∫ ∞
0

ω dω (n2 + 1/2) Tr
[
∆† · v · Im{χ1} · v ·∆ · Im{χ2}

]
, (14)

which is Eq. (7) of the main paper. A similar argument can be followed to prove that P1←2 is indeed a real number.
When interchanging the subindices 1 ⇔ 2, upon inspection of the definition of ∆ [Eq. (5) of the main paper], we

have v ·∆⇔ ∆T ·v. Using this transformation, as well as the trace properties noted above, we find that the expression
in the square brackets of Eq. (7) of the main paper remains the same upon index interchange. This directly leads to
Eq. (8) of the main paper for the difference P2←1 − P1←2.

Supplementary Note 3: Computation of vjj′ for coaxial disks

In this section, we provide a computationally efficient expression to calculate the Coulomb interaction matrix
elements vjj′ [Eq. (14) of the main paper] for coaxial disks [i.e., with the plasmon wave functions (PWFs) of Eqs. (16)
of the main paper]. We start by rewriting the Coulomb potential as3

1

|r− r′|
= 4π

∞∑
l=0

l∑
m=−l

1

2l + 1

rl<
rl+1
>

Ylm(Ωr)Y
∗
lm(Ωr′), (15)
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where YL are spherical harmonics, r< = min{r, r′}, and r> = max{r, r′}. Specifying Eq. (14) of the main paper for

two PWFs ρκmν(~θ) and ρκ
′

m′ν′(~θ′), where κ and κ′ are either c or s for cos and sin azimuthal dependences, respectively,

and using Eq. (15), we can perform the azimuthal integrals of ~θ and ~θ′ analytically by choosing the spatial origin at a
point along the axis of revolution symmetry in between the two disks. Upon detailed examination, we find vjj′ to be
zero unless m = m′ and κ = κ′. Therefore, PWFs of different azimuthal symmetry do not interact. It should be also
noted that only κ = c contributes to m = 0. The remaining nonzero elements are independent of κ, but they depend
on m, ν, and ν′ as

vmνν′ = (1 + δm0)
8π3D2

1D
2
2

ε

∞∑
l=m

1

2l + 1

∫ 1/2

0

θ dθ ρmν(θ)

∫ 1/2

0

θ′dθ′ ρmν′(θ′)
rl<
rl+1
>

Ylm(θ1, 0)Ylm(θ2, 0), (16)

where we take r = D1θ and r′ = D2θ
′. Additionally, the spherical harmonics in this expression are evaluated at zero

azimuthal angle, while the polar angles are θ1 = tan−1(D1θ/d1) and θ2 = π − tan−1(D2θ
′/d2), where d1 and d2 are

the distances from the disks to the origin (i.e., d1 + d2 = d), a convenient choice being d1 = d and d2 = 0, so that
(r</r>)l goes rapidly down for large l, particularly at large separations. Equation (16) gives the (νν′) elements of
the matrix vm entering Eq. (1) of the main paper. This expression is also useful to normalize the PWFs via Eq. (13)
of the main paper, whose integral corresponds to vmνν′ with ε = 1, D1 = D2, and d = 0.

Supplementary Note 4: Radiative heat transfer between extended graphene films

The lack of translational invariance in graphene disks prevents us from including nonlocal effect in the classical
description of their optical response. In order to assess the relative contribution of such effects, we consider extended
graphene films, for which the nonlocal conductivity admits analytical expressions4,5. The radiative heat transfer power
can then be decomposed in components associated with different parallel wave vectors k‖. We argue that the relative
importance of nonlocal contributions for a disk of diameter D is roughly the same as for the k‖ = 2π/D component
in the extended films. An expression for the transfer power between films can be obtained by starting from Eq. (8)
of the main paper, replacing the trace by the sum

∑
k‖
→ (A/4π2)

∫
d2k‖, where A is the film area, and writing

v → (2π/k‖)e−k‖d for the Coulomb interaction in k‖ space. Additionally, from a direct analysis of the electrostatic
problem, we have v ·χ` → −r`, where r` = 1/(1− iω/2πk‖σ`) is the graphene reflection coefficient for TM polarization
(notice that the reflection for TE polarization vanishes in the quasistatic limit), while σ` is the conductivity of the
layer ` = 1, 2. Putting these elements together, the transfer power per unit area becomes

∫∞
0
dk‖P (k‖)/A, where

1

A
P (k‖) =

h̄k‖
π2

∫ ∞
0

ωdω(n1 − n2)e−2k‖d
Im{r1}Im{r2}∣∣1− r1r2 exp(−2k‖d)

∣∣2 , (17)

in agreement with the c→∞ limit of the well-known expression for the transfer power between two planar structures6.
We plot this quantity in Supplementary Fig. 4 using the full nonlocal RPA (broken curves) and the local-RPA (solid
curves) models for the conductivity. The agreement between these results indicates that nonlocal effects only play a
marginal role in this study.
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Supplementary Figure 1: Influence of dielectric environment on the radiative heat transfer power (HTP).
We show the dependence of the HTP on the separation distance d between two graphene nanodisks (20 nm diameter) for
different values of T1 (see legend) and fixed T2 = 300 K. The disks are doped to a Fermi energy EF = 0.2 eV in (a) and 0.8 eV
in (b). We consider homogeneous media of permittivity ε = 1 (vacuum, solid curves) or ε = 3.24 (broken curves) at the
thermal wavelengths under consideration. The graphene is described using the local-RPA conductivity. A damping energy
h̄τ−1 = 10 meV is assumed in all figures, unless otherwise stated.
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Supplementary Figure 2: Influence of nonlocal effects in the response of graphene: absorption cross-section.
Absorption cross-section of individual (blue) and closely spaced (red) graphene disks calculated using either classical (local-
RPA conductivity, solid curves) or quantum-mechanical (tight-binding combined with full RPA, as described elsewhere7, broken
curves) models. We assume a Fermi energy of 2 eV and a damping of 0.05 eV.
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Supplementary Figure 3: Dependence of the HTP on the model used for the graphene conductivity. (a)
Dependence of the HTP on the separation distance d between two graphene nanodisks (20 nm diameter, 0.2 eV Fermi energy)
plotted for different values of T1 (see legend) and fixed T2 = 300 K. Solid (dashed) curves are obtained with the local-RPA
(Drude) model for the graphene conductivity. The temperature-dependent local-RPA is given by Eq. (25) of the main paper,
while the Drude model is obtained by neglecting the integral term in that equation. (b) Same as (a) for 0.8 eV Fermi energy.
(c-f) Absorption cross-section of a 20 nm graphene disk as a function of photon energy h̄ω and temperature T calculated
for different values of the Fermi energy using the two models considered for the conductivity (see labels). The temperature
dependence enters through the conductivity [see Eq. (25) of the main paper]. The dashed lines correspond to Wien’s law,
h̄ω ≈ 2.82 kBT . (g,h) Spectral dependence of the HTP for 20 nm graphene disks. The vertical axis shows the value of the
integrand in Eq. (8) of the main paper. The hot (cold) disk is at temperature T1 = 3000 K (T2 = 300 K). We consider different
values of the disk separation d and Fermi energies (see labels). The dipole-dipole approximation is shown for d = 100 nm
(dashed curves).
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Supplementary Figure 4: Influence of nonlocal effects in the response of graphene: radiative heat transfer. We
show the heat transfer power per unit area P (k‖)/A between two closely spaced extended graphene films resolved in parallel
wave-vector components for combinations of two different Fermi energies and separations (see labels). We assume temperatures
T1 = 1000 K and T2 = 300 K in the layers. The conductivity of graphene is described in the full RPA (broken curves) and in
the local-RPA limit (solid curves) for a damping of 0.01 eV. The temperature-depencence of the conductivity is neglected for
simplicity. The vertical dashed lines at k‖ = 2π/D qualitatively indicate the region where a maximum contribution is expected
for disks of diameter D = 20 nm.
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Supplementary Figure 5: Influence of multiple scattering in the optical interaction between graphene disks on
the HTP. (a) HTP under the same conditions as in Supplementary Fig. 3(a) (local-RPA) calculated with [solid curves, Eq. (1)
of the main paper] and without [dashed curves, same equation with ∆m = I] inclusion of multiple scattering in the interaction
between the disks. (b) Same as (a) for 0.8 eV Fermi energy.
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as in Supplementary Fig. 3(a) (local-RPA) calculated with the full formalism [solid curves, Eq. (1) of the main paper] and in
the dipole-dipole approximation [dashed curves, Eq. (9) of the main paper].
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Supplementary Figure 11: Size and separation dependence of the heat transfer dynamics. I. Same as Fig. 3(b)
of the main paper for different combinations of the disk diameters D` and the separation d: (a) D1 = D2 = 20 nm, d = 1 nm
[same as Fig. 3(b)]; (b) D1 = D2 = 20 nm, d = 3 nm (larger spacing); (c) D1 = D2 = 40 nm, d = 1 nm (larger disks); (d)
D1 = 24 nm, D2 = 20 nm, d = 1 nm (dissimilar disks). The doping level is EF = 0.2 eV in all cases.
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Supplementary Figure 12: Size and separation dependence of the heat transfer dynamics. II. Same as Supple-
mentary Fig. 11 for EF = 0.5 eV and different initial temperatures.
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Supplementary Figure 13: Temperature and size dependence of the characteristic time associated with radiative
heat transfer. We plot the heat transfer time under the same conditions as in Supplementary Fig. 10.


