
Supplementary Information:

Nexus fermions in topological symmorphic crystalline metals

Guoqing Chang∗,1, 2 Su-Yang Xu∗†,3 Shin-Ming Huang,4 Daniel S. Sanchez,3

Chuang-Han Hsu,1 Guang Bian,3 Zhi-Ming Yu,5, 6 Ilya Belopolski,3

Nasser Alidoust,3 Hao Zheng,3 Tay-Rong Chang,7 Horng-Tay Jeng,7, 8

Shengyuan A. Yang,6 Titus Neupert,9 Hsin Lin†,1, 2 and M. Zahid Hasan†3

1Centre for Advanced 2D Materials and Graphene

Research Centre National University of Singapore,

6 Science Drive 2, Singapore 117546

2Department of Physics, National University of Singapore,

2 Science Drive 3, Singapore 117542

3Laboratory for Topological Quantum Matter and Spectroscopy (B7),

Department of Physics, Princeton University,

Princeton, New Jersey 08544, USA

4Department of Physics, National Sun Yat-Sen University, Kaohsiung 804, Taiwan

5School of Physics, Beijing Institute of Technology, Beijing 100081, China

6Research Laboratory for Quantum Materials,

Singapore University of Technology and Design, Singapore 487372, Singapore

7Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan

8Institute of Physics, Academia Sinica, Taipei 11529, Taiwan

9Princeton Center for Theoretical Science,

Princeton University, Princeton, New Jersey 08544, USA

∗ These authors contributed equally to this work.
† Corresponding authors (emails): suyangxu@princeton.edu, nilnish@gmail.com, mzhasan@princeton.edu

1



This file includes:

SI A. Fermi surface of the new TM

SI B. Class α triply-degenerate fermions in WC Family

SI C. Materials hosting Class β triply-degenerate fermions

SI D. Effective three-band Hamiltonian in the presence of Mz symmetry

SI E. Effective three-band Hamiltonian in the absence of Mz symmetry

SI F. Solution of Landau Levels

Fig. S1 to S5

2



SI A. Fermi surface of the new TM

In order to understand the band structure of the new topological semimetal, we study

its Fermi surface topology. We study the constant energy contours in the (ky,kz) plane at

three different energies E+, E0, and E−, that are above, below, and at the energy of the

triply-degenerate node, respectively. Consider first a pair of type-I triply-degenerate nodes

as shown in Figs. S1a,b. At E+, a large electron pocket (α-pocket) enclosing a pair of

projected triply-degenerate fermions, and a smaller electron pocket surrounding individual

triply-degenerate fermions comprises the Fermi surface. Studying the evolution of both

electron pockets as one tunes the binding energy to E− reveals that both pockets shrink,

as expected. However, now we observe that the α-pocket (red) is in between the pair of

triply-degenerate fermions while a hole pocket (yellow) emerges and surrounds individual

triply-degenerate fermions. At the energy of the triply-degenerate fermions, E0, only a α-

pocket is observed that connects the pair of triply-degenerate fermions. The two observed

pockets always have a point of degeneracy, which is due to the two-fold degenerate band

along the z-axis. To contrast the Fermi surface behavior of emergent type-I triply-degenerate

fermions with those of type-II, we will now study the Fermi surface arising from type-

II triply-degenerate fermions, Fig.S1 c. One clear distinguishing feature in the series of

constant energy contours shown in Fig.S1 d (E+ to E−) is that there are three Fermi

surfaces, which consist of both electron (red) and hole (yellow) pockets at all energies.

Furthermore, by scanning through the binding energies, it becomes evident that the electron

pocket (α-pocket), composed of two closed contours, encloses the pair projected type-II

triply-degenerate fermions at E+ and then shrinks to occupy the space in between the

pair of triply-degenerate fermions at E−. The outer electron pocket is degenerate with the

hole pocket at E+, which then become disconnected below E0, where now the hole pockets

are enclosing the projected type-II triply-degenerate fermions. At energy and momentum

space location of the projected type-II triply-degenerate fermions, the three pockets become

degenerate, which is consistent with the three-fold and type-II nature of these fermions.
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FIG. S1: Fermiology of the new topological metal. a, Band dispersion around a type-I

triply-degenerate node (purple dot). The binding energies of interest are labeled as E+, E0 and

E− and marked by blue dashed lines. b, Constant energy contour calculations for the (kx, kz)

surface. At E0 (middle panel), only one Fermi surface (α-pocket) is observed. At E+ (left panel)

and E− (right panel), two types of contours are observed. Specifically, two electron pockets (red)

are observed at E+ and one hole pocket (yellow) and one electron pocket is observed at E−. Due

to the doubly-degenerate band along the kz-axis, the two pockets are always degenerate at a point.

c, Band dispersion around a type-II triply-degenerate node. d, Similar to (b) but for (c). In

contrast to the two types of constant energy contours observed in (b), (d) clearly shows three types

of constant energy contours, which contain both electron-like and hole-like pockets at E+, E0, and

E−. At E+, two electron pockets (α-pocket) encloses the pair of projected type-II triply-degenerate
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FIG. S1: (purple dots) while the hole pocket is degenerate with the outer electron pocket. The

calculation at E0 (middle panel) reveals that three pockets are degenerate at the location of the

projected type-II triply-degenerate fermion. At E− (right panel), the α-pocket is disconnected

from the electron pocket and a pair of projected type-II triply-degenerate fermions, while the hole

pocket surrounds the projected type-II triply-degenerate fermions.
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SI B. Class α triply-degenerate fermions in the WC Family

Except for WC [1] , we have also found other four semimetals, ZrTe [2], δ-TaN [3], NbN

[4] and VN [5], which host Class α triply-degenerate fermions. They are all in space group of

P 6̄m2 (187) and have the same crystal structure as WC. The electronic structures of ZrTe,

TaN, NbN and VN spin-orbit coupling are plotted in Figs. S2a,c,e,g. The energy dispersions

in the vicinity of triply-degenerate fermions in ZrTe, TaN, NbN and VN are plotted in Figs.

S2b,d,f,h. ZrTe, NbN and VN host both type-I and type-II triply-degenerate fermions,

while TaN only has type-I triply-degenerate fermions near the Fermi level. The WC family

offers a good platform for experimental realization of Class α triply-degenerate fermions for

both type-I and type-II.

FIG. S2: Electronic structure of the WC family. (a, c, e, g) Electronic structure of ZrTe,

TaN, NbN and VN with SOC. Clear band crossings could be observed aling Γ − A in the four

compounds. (b, d, f, h) The zoom-in view of the band crossings highlighted by the red box in

panel (a), (c), (e) and (g). The blue bands are doubly-degenerate.
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SI C. Materials hosting Class β triply-degenerate fermions

Here we present two materials that host Class β triply-degenerate fermions. In space

group P3m1 (156), we found AgAlS2 [10] which contains type-I, Class β triply-degenerate

fermions. In space group P3c1 (158), we found RuCl3 [6], which has type-II, Class β triply-

degenerate fermions.

Material Space group Type Class

WC [1] 187 I and II I

ZrTe [2] 187 I I

δ-TaN [3] 187 I and II I

NbN [4] 187 I and II I

VN [5] 187 I and II I

LiScl3 [7] 188 II I

ε-TaN [8] 189 II I

Li2Sb [9] 190 II I

AgAlS2 [10] 156 I and II II

AuCd [11] 157 I II

RuCl3 [6] 158 II II

Ge3N4 [12] 159 I and II II

TABLE S1: Materials hosting triply-degenerate fermions..
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1.Type-I, Class β triply-degenerate fermions in AgAlS2

AgAlS2 is in the space group P3m1 (156). The crystal structure of AgAlS2 is shown

in Fig. S3a. The experimental lattice constants, a = b = 3.5Å,c = 6.84Å, were used in

calculations. There are one Ag atom, one Al atom, and two S atoms in the unit cell. The

first Brillouin zone of AgAlS2 is plotted in Fig. S3b. This lacks the Mz mirror symmetry.

Therefore it is possible to realize Class β triply-degenerate fermions in AgAlS2.

The first-principles calculated band structures of AgAlS2 in the presence of spin-orbit

coupling are plotted in Fig. S3c. Clear band crossings are observed along Γ−A, as indicated

by the red box. The zoomed-in view of the electronic structures in the red square are plotted

in Fig. S3d. The two band crossings are both of Class β, type I. To confirm the feature of

Class β triply-degenerate fermions, we plotted the energy dispersion in the vicinity of orange

dots along ky direction in Fig. S3e. The linear dispersion at the center together with the

extra band crossing in the red circle confirm the triply-degenerate fermions in AgAlS2 are

Class β.
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FIG. S3: Type-I, Class α triply-degenerate fermions in AgAlS2. (a,) Crystal structure of

AgAlS2 of space group P3m1 (156). (b,) The bulk Brillouin zone of AgAlS2 with three mirror

plane that intersect along the z axis. It lacks of the mirror plane perpendicular to z axis. (c,)

Electronic structure of AgAlS2 with SOC. (d, Zoom-in view of the energy dispersion kz axis, where

the blue bands are doubly-degenerate. Two Type I triply-degenerate fermions are observed. (e,

The energy dispersion of doubly-degenerate bands along ky at a generic points ( the yellow dots in

panel (e)).
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2.Type-II, Class β triply-degenerate fermions in RuCl3

The lattice of RuCl3 has the space group P3m1 (158), point group C3v. The symmetry of

the space group is just enough: a C3 rotation symmetry along z axis and three mirror planes

parallel to z axis. The crystal structure of RuCl3 is shown in Fig. S4a. The experimental

lattice constants, a = b = 6.12 Å,c = 5.658 Å, were used in calculations. There are 2 Ru

atoms and 6 Cl atoms in the unit cell. The first Brillouin zone of RuCl3 is plotted in Fig.

S4b.

The first-principles calculated band structures of RuCl3 in the presence of spin-orbit

coupling are plotted in Fig. S4c. We could observe the band crossings along Γ − A. The

zoom-in view of the electronic structures in the red square are plotted in Fig. S4d. The

doubly-degenerate blue bands and the two single degenerate black bands have the same sign

of velocity. Therefore the triply-degenerate fermions are of type II. We have also plotted

the energy dispersion of the blue bands at kz = 0.18 along ky direction in Fig. S4e. From

the linear dispersion and the extra band crossings, we confirm that the triply-degenerate

fermions in RuCl3 are of Class β.
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FIG. S4: Type-II, Class β triply-degenerate fermions in RuCl3. (a,) Crystal structure of

RuCl3 in space group P3m1 (158). (b,) The bulk Brillouin zone of RuCl3. The high symmetry

points and planes are highlighted. (c,) Electronic structure of RuCl3 with SOC. (d, Zoom-in

view of the energy dispersion kz axis. The blue band (doubly-degenerate) and black bands (single

degenerate) have the same sign of velocity. (e, The linear energy dispersion of doubly-degenerate

bands along ky at a generic points indicates the triply-degenerate fermions in RuCl3 are Class β.
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SI D. Effective three-band Hamiltonain in the presence of Mz

symmetry

1. Constructing k · p Hamiltonain

The symmetries we will consider are 3-fold clockwise rotation C3z, x-reflection Mx, and

TMz (combined symmetry of time-reversal and z-reflection). We introduce three basis

functions, φ0, φ1, φ2, and they have rotation eigenvalues 1, e−i
2π
3 , and ei

2π
3 , respectively.

When doing x-reflection, φ0 → φ0, and φ1 ↔ φ2. As for z-reflection, φ0 → φ0, φ1,2 → φ1,2.

Here we assume φ0 is d3z2−r2-like while φ1,2 are dx2−y2/dxy-like. The three band will constitute

the spinless three-fold degenerate Fermi point for φ0 belonging to the singly-degenerate band

and φ1 and φ2 to the doubly-degenerate band.

Then we introduce spin-orbit coupling. Owing to we have discussed the symmetry trans-

formations on orbital wave functions, here we illustrate the spin part. For up (χ↑) and

down spin (χ↓), they transform as χ↑,↓ → e±iπ/3χ↑,↓ under C3z, and χ↑,↓ → iχ↓,↑ under Mx

and also under TMz. Because of the mirror symmetries, one can find that ψ1 ≡ φ0↑ and

ψ2 ≡ φ0↓ will degenerate as a two-dimensional irreducible representation. Since a linear

combination of φ1↓ and φ2↑ is an eigenstate of C3z symmetry with eigenvalue −1, when they

combine as ψ3,4 ≡ 1√
2

(φ1↓ ± φ2↑), they are also Mx eigenstates with eigenvalues ±i, which

both are one-dimensional irreducible representations. ψ3,4 are also eigenstates of TMz with

eigenvalues ∓i.

We will write down the Hamiltonian of the three orbitals–(ψ1, ψ2, ψ3). In this basis, the

symmetry operators are

C3z =


ei
π
3 0 0

0 e−i
π
3 0

0 0 −1

 , Mx = −TMz =


0 i 0

i 0 0

0 0 i

 , (S1)

and they require the Hamiltonian satisfying

C3zH(q+, q−, qz)C−1
3z = H(e−i

2π
3 q+, e

i 2π
3 q−, qz), (S2)

MxH(q+, q−, qz)M−1
x = H(−q−,−q+, qz), (S3)

TMzH
∗(q+, q−, qz)(TMz)

−1 = H(−q+,−q−, qz), (S4)

where ~q is relative to the band crossing point and q± = qx ± iqy. By taking H =
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
h11 h12 h13

h∗12 h22 h23

h∗13 h∗23 h33

 and symmetry operators into the above equations, we have, for C3z


h11 h12 h13

h22 h23

h33

 (e−i
2π
3 q+, e

i 2π
3 q−, qz) =


h11 ei

2π
3 h12 −ei

π
3 h13

h22 −e−iπ3 h23

h33

 (q+, q−, qz), (S5)

for Mx 
h11 h12 h13

h22 h23

h33

 (−q−,−q+, qz) =


h22 h∗12 h23

h11 h13

h33

 (q+, q−, qz), (S6)

and for TMz 
h11 h12 h13

h22 h23

h33

 (−q+,−q−, qz) =


h22 h12 h∗23

h11 h∗13

h33

 (q+, q−, qz). (S7)

After analysis, the Hamiltonian will look like

H(~q) = tqz +HTB(~q), (S8)

where

HTB(~q) =


∆tqz λq2

+ λ′q+

λq2
− ∆tqz −λ′q−

λ′q− −λ′q+ −∆tqz

 . (S9)

Here all parameters t, ∆t, λ, and λ′ are real.

There is a triply-degenerate nodal point located at ~q = 0 in the band structure of (S8).

Similar to the Weyl (Dirac) semimetals, the degenerate nodal point has important influence

on the low-energy electronic properties and can be classified as type-I or type-II [13], de-

pending on the geometry of constant-energy surfaces around it. If |t| > |∆t|, the node is

type-II; and if, on the other hand, |t| < |∆t|, the node is type-I. In the following, we will

mainly discuss HTB in Eq. (S9) unless stated otherwise.

To solve the eigenvalues of HTD(~q) we answer them for λ = 0 firstly. They are

ε0
1 = ∆tqz, ε

0
2 = En, ε0

3 = −En, (S10)
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and the corresponding eigenfunctions are

ψ0
1 =


1√
2
eiφ

1√
2
e−iφ

0

 , ψ0
2 =


1√
2

cos θ1
2
eiφ

− 1√
2

cos θ1
2
e−iφ

sin θ1
2

 , ψ0
3 =


− 1√

2
sin θ1

2
eiφ

1√
2

sin θ1
2
e−iφ

cos θ1
2

 , (S11)

where eiφ = qx+iqy
q⊥

, E0 =
√

2 (λ′q⊥)2 + (∆tqz)
2, cos θ1

2
=

√
1
2

(
1 + ∆tqz

E0

)
, sin θ1

2
=

sgn(λ′)

√
1
2

(
1− ∆tqz

E0

)
with transverse wave number q⊥ =

√
q2
x + q2

y. We note that when

λ = 0, the first band is dispersionless in q⊥. Then we introduce λ and we can find the

matrix elements of HTB(q) in the basis {ψ0
i=1,2,3} being

〈
ψ0
i |HTB(q)|ψ0

j

〉
=


∆tqz + λq2

⊥ 0 0

0 1
2
λq2
⊥ + E0 − 1

2
cos θ1λq

2
⊥

1
2

sin θ1λq
2
⊥

0 1
2

sin θ1λq
2
⊥

1
2
λq2
⊥ − E0 + 1

2
cos θ1λq

2
⊥


ij

,

(S12)

which indicates the λ term hybridizes ψ0
2 and ψ0

3 and keeps ψ0
1 decoupled. After diagonalizing

Eq. (S12), we have eigenvalues

ε1 = ∆tqz + λq2
⊥, ε2,3 = −1

2
λq2
⊥ ±

√
2 (λ′q⊥)2 +

(
∆tqz −

1

2
λq2
⊥

)2

, (S13)

and their eigenfunctions

ψ1 = ψ0
1, ψ2 = cos

θ2

2
ψ0

2 + sin
θ2

2
ψ0

3, ψ0
3 = − sin

θ2

2
ψ0

2 + cos
θ2

2
ψ0

3, (S14)

with tan θ2 =
(
√

2λ′q⊥)( 1
2
λq2⊥)

∆tqz(∆tqz− 1
2
λq2⊥)+2(λ′q⊥)2

. Note that the bands are dispersive in q⊥ for finite λ

as is evidenced.

2. Topology

Now we discuss topology in these bands. We calculate the Berry connections for these

bands. To make simple, we adopt the differential form notation. The Berry connections are

defined as Aij = 〈ψi|dψj〉 and the Berry curvatures are Fij = dAij. We may need elements
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as below

〈
ψ0

1|dψ0
1

〉
=
〈
ψ0

2|dψ0
2

〉
=
〈
ψ0

3|dψ0
3

〉
= 0,〈

ψ0
3|dψ0

2

〉
= −

〈
ψ0

2|dψ0
3

〉
=

1

2
dθ1,〈

ψ0
1|dψ0

2

〉
= i cos

θ1

2
dφ,〈

ψ0
1|dψ0

3

〉
= −i sin

θ1

2
dφ,

and hence

〈ψ1|dψ1〉 = 〈ψ2|dψ2〉 = 〈ψ3|dψ3〉 = 0 (S15)

〈ψ3|dψ2〉 =
1

2
dθ1 +

1

2
dθ2, (S16)

〈ψ1|dψ2〉 = i cos
θ

2
dφ, (S17)

〈ψ1|dψ3〉 = −i sin
θ

2
dφ. (S18)

In above equations, we define θ = θ1 + θ2 and have used the identities
〈
ψ0
i |ψ0

j

〉
= δij,

cos θ1,2
2
d cos θ1,2

2
+ sin θ1,2

2
d sin θ1,2

2
= 0, and cos θ1,2

2
d sin θ1,2

2
− sin θ1,2

2
d cos θ1,2

2
= 1

2
dθ1,2. The

results send important messages. First, all of three bands are topologically trivial as F11 =

F22 = F33 = 0. Although the Berry connection is not gauge invariant, the Berry curvature is.

Second, to obtain nontrivial topology, hybridizing the bands by breaking symmetry will be

needed. Eq. (S16) answers that hybridizing band-2 and band-3 will not produce non-trivial

topology. However, Eqs. (S17)-(S18) indicate that hybridizing band-1 and band-2 and/or

band-1 and band-3 will be possible since the Chern numbers i
2π

∫
S
F12 = − i

2π

∫
S
F13 ∼

− 1
4π

∫
S
d cos θdφ are nonzero, where the integral is over a compact surface enclosing the node.

To prove this, we do not show their explicit formulas. Instead, we argue from asymptotic

behavior. For a non-trivial homotopic mapping, (qx, qy, qz) 7−→ (φ, θ), there should be a way

to make φ goes from 0 to 2π and also θ from π to 0, such that 1
4π

∫
S
d cos θdφ = 1. We can

find that the behavior exists in the wave functions: When ~q circles around the kz axis, φ goes

a 2π round too. When qz goes from −∞ to +∞, θ2 stays around 0 while θ1 and hence θ go

from π to 0. As a result, a band-crossing node from band-1 and band-2 and a band-crossing

node from band-1 and band-3 will be Weyl nodes taking opposite chiral charge.

We give a simple illustration for the above finding. Let’s neglect the λ term, which is

reasonable when q⊥ is small. In such limit, two Weyl fermions taking opposite chiral charge
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will be visible in the Hamiltonian H(~q),

H(~q) =

(
t+

∆t

3

)
qz (S19)

+


2
3
∆tqz 0 λ′q+

0 0 0

λ′q− 0 −2
3
∆tqz

+


0 0 0

0 2
3
∆tqz −λ′q−

0 −λ′q+ −2
3
∆tqz

 .

Diffrent from a Dirac fermion composing two Weyl fermions, here, two Weyl fermions asMx

mirror partners share a common basis. When a Zeeman exchange field along z is added, say

the perturbation

HZeeman =


Bz 0 0

0 −Bz 0

0 0 0

 (S20)

it breaks both Mx and TMz symmetries and will split the triply-degenerate nodal point

into three at qz = ∓2Bz
∆t

and 0 (relative to the triply-degenerate point). The perturbation

will hybridize ψ1 with ψ2 and ψ3 as

〈ψi |HTB(~q) +HZeeman|ψj〉 =


ε1 δh12 δh13

δh12 ε2 0

δh13 0 ε3


ij

, (S21)

where δh12 = Bz cos θ
2

and δh13 = −Bz sin θ
2
, which suggests the birth of two Wely nodes

taking opposite chiral charge.
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SI E. Effective three-band Hamiltonain in the absence of Mz

symmetry

In this section we consider the case without z-reflection symmetry. Since the Hamiltonian

in Eq. (S9) does not need to obey Eq. (S4), or Eq. (S7) anymore, the Hamiltonian now

becomes

HNR(~q) =


∆tqz λq2

+ + iλRq− λ′q+

λq2
− − iλRq+ ∆tqz −λ′q−
λ′q− −λ′q+ −∆tqz

 , (S22)

in which the Rashba coupling λR appears and λ′ could become a complex number. The

introduction of the Rashba term will extend the double-band crossing out of the rotation

axis kz. On the mirror plane (qx = 0), the Hamiltonian reads

HNR(qx = 0, qy, qz) =


∆tqz −λq2

y + λRqy iλ′qy

−λq2
y + λRqy ∆tqz iλ′qy

−iλ′qy −iλ′qy −∆tqz

 , (S23)

and its eigenvalues are

ε1(qx = 0, qy, qz) = ∆tqz − λRqy + λq2
y, (S24)

ε2,3(qx = 0, qy, qz) =
1

2

(
λRqy − λq2

y

)
±

√
2 (|λ′| qy)2 +

[
∆tqz +

1

2

(
λRqy − λq2

y

)]2

.(S25)

Owing to opposite mirror parities for band-1 (mirror eigenvalue mx = −i) and band-2,3

(mirror eigenvalue mx = i), two bands will cross on the mirror plane to be line nodes, which

positions are determined by ε1 = ε2 (or ε1 = ε3, depending on the sign of qz). When higher

order terms are taken into account, the band-crossing forms a closed loop attaching to the

kz axis on which band-2 and band-3 are degenerate.
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SI F. Solutions of Landau Levels

Under an external magnetic field ( ~B = Bẑ), we make the usual Peierls substitution

~q → ~Π = ~q + e
~
~A. We neglect the Zeeman splitting since it is typically much smaller than

the orbital effect. The Landau level (LL) spectrum and the eigenstates can be obtained by

doing the replacement Π− =
√

2`−1
B a and Π+ = Π†−, where the ladder bosonic operators

obey [a, a†] = 1 and `B =
√
~/eB. We will introduce the number states, |n〉 = 1√

n!

(
a†
)n |0〉,

leading to a |0〉 = 0, a |n〉 =
√
n |n− 1〉, a† |n〉 =

√
n+ 1 |n+ 1〉. For this magnetic field,

the momentum in ẑ remains conserved so qz will be used to label the eigenenergies and

eigenstates. We find that the LLs can be organized into three branches, each labeled by an

integer index n.

Guessing the solution

ψn =


an |n+ 1〉

bn |n− 1〉

cn |n〉

 ,

we come to the eigenvalue problem

Hn


an

bn

cn

 = εn


an

bn

cn

 , (S26)

where

Hn =


∆tqz

√
n(n+ 1)γ

√
n+ 1ωc√

n(n+ 1)γ ∆tqz −
√
nωc

√
n+ 1ωc −

√
nωc −∆tqz

 , (S27)

ωc =
√

2λ′`−1
B and γ = 2λ`−2

B . There are three eigenstates for each n and we use α = +, −,

0 to label them. For λ = 0 the eigenvalues εα,n can be expressed analytically. They are

ε0,n = ∆tqz, ε+,n = En, ε−,n = −En, (S28)

and their corresponding eigenfunctions are

ψ0,n =


√

n
2n+1
|n+ 1〉√

n+1
2n+1
|n− 1〉

0

 , ψ+,n =


√

n+1
2n+1

un |n+ 1〉

−
√

n
2n+1

un |n− 1〉

vn |n〉

 , ψ−,n =


−
√

n+1
2n+1

vn |n+ 1〉√
n

2n+1
vn |n− 1〉

un |n〉


(S29)
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for n ≥ 1 and

ψ0,0 =


|1〉

0

0

 , ψ+,0 =


u0 |1〉

0

v0 |0〉

 , ψ−,0 =


−v0 |1〉

0

u0 |0〉

 (S30)

for n = 0, where En =
√

(2n+ 1)ω2
c + (∆tqz)

2, un =

√
1
2

(
1 + ∆tqz

En

)
, and vn =

sgn(λ′)

√
1
2

(
1− ∆tqz

En

)
. The results show that the 0-th LLs between α = ± are gapped

with 2ωc. We note that the infinite degeneracy in the α = 0 band (ε0,n = ∆tqz regardless of

n), which should be limited by the system size, is the artifice of a q⊥-disersionless band in

our k · p model.

When λ 6= 0, all bands in the k·p model become dispersive in q⊥, such that the degeneracy

will be lifted. However, the matrix Hn will still show a degenerate eigenstate with energy

λ′2/λ regardless of the value of n when

qz = qM ≡
ω2
c

γ∆t

=
λ′2

λ∆t

, (S31)

as the determinant of Hn − E is

det(Hn − E) = 0

= 2n(n+ 1)γ2
(
∆tqz − ω2

c/γ
)

− (E −∆tqz)
[
E (E −∆tqz)− n(n+ 1)γ2 − (2n+ 1)ω2

c

]
.

This argument can be verified by diagonalizing Hn for qz = qM,

E0,n = λ′2/λ, (S32)

E±,0 =
λ′2

2λ
±
√
λ′4

4λ2
+ n(n+ 1)γ2 + (2n+ 1)ω2

c . (S33)

This degeneracy of all the middle LLs (i.e. for En,α=0) for qz = qm is a result of that when

qz = qm, the middle band of the Hamiltonian (S9) is flat in the transverse q⊥ momentum

space. We should not take it too serious as a realistic model might include higher-order

terms to split LLs.

Besides, several distinct signatures of the triply degenerate node are discussed. (1) LL

spectrum have a triplet structure (with α = 0,± for each n). (2) There is LL crossing

between the α = 0 and α = ± sets. (3) For λ = 0, all the LLs with α = 0 are degenerate

19



leading to huge DOS, which potentially will drive the system to broken symmetry states

when interaction effects are considered. (4) The collapse of LLs exists for both type-I and

type-II triply degenerate nodal points (of model (S9)). In contrast, for Weyl semimetals, the

collapse of LLs only appears in for type-II Weyl node [14]. One expects that the magneto-

optical response [15] could also exhibit interesting features induced by the extra linear band.

FIG. S5: λ = 0.0 (λ = 0.05) for the top (bottom) figures , λ′ = 0.12, ∆t = 0.15, `B = 1. Left:

type-I node with t = 0.25. Right: type-II node with t = 0.05. The red lines represent the alpha = 0

0-th LL.
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[2] Örlygsson, G. & Harbrecht, B. The Crystal Structure of WC Type ZrTe. Advantages in

Chemical Bonding as Contrasted to NiAs Type ZrTe. Zeitschrift für Naturforschung B, 54,

1125-1128 (1999).

[3] Fontbonne, A. & Gilles, J. C. Noveaux nitrures de tantale. Nitrure et oxynitrures mixtes de

tantale et de niobium. Rev. Int. Hautes, 6, 181-192 (1969).

[4] Schönberg, N., The tungsten carbide and nickel arsenide structures. Acta Metallurgica, 2,

427-432 (1954).

[5] Ravi, C., First-principles study of ground-state properties and phase stability of vanadium

nitrides. Calphad, 33, 469-477 (2009).

[6] Fletcher, J. M. et al. X-Ray, infrared, and magnetic studies of α-and β-ruthenium trichloride.

Journal of the Chemical Society A: Inorganic, Physical, Theoretical, 1038 (1967).

[7] Lachgar, A. et al. Synthesis and properties of two novel line phases that contain linear scan-

dium chains, LiScI3 and Na0.5ScI3. Inorg. Chem. 30, 3321 (1991)

[8] Christensen, A. N. & Lebech, B. A reinvestigation of the structure of ε-tantalum nitride.

Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 34, 261

(1978).

[9] Müller, W., Notizen: Darstellung und Struktur der Phase Li2Sb Preparation and Crystal

Structure of Li2Sb. Zeitschrift fur Naturforschung B, 32, 357 (1977).

[10] Range, K. J., Engert, G. & Weiss, A. Darstellung und Kristallstruktur der Hochdruck-

phase AgAlS2-II/Preparation and Crystal Structure of the High-pressure Phase AgAlS2-II.

Zeitschrift für Naturforschung B, 29, 186 (1974).

[11] Alasafi, K. M. & Schubert, K. Kristallstruktur von AuCd. Journal of the Less Common Metals,

55, 1 (1977).

[12] Ruddlesden, S. N. & Popper, P. On the crystal structure of the nitrides of silicon and germa-

nium. Acta Crystallographica 11, 465 (1958).

[13] A. A. Soluyanov, D. Gresch, Z. Wang, Q. Wu, M. Troyer, X. Dai, and B. A. Bernevig, Nature

527, 495 (2015).

21



[14] Yu, Z.-M., Yao, Y. & Yang, S. A. Preprint at http://arXiv:1604.04030 (2016).

[15] Malcolm, J. D. & Nicol, E. J., Magneto-optics of massless Kane fermions: Role of the flat

band and unusual Berry phase. Physical Review B , 92, 035118 (2015).

22


