1	Supplemental Information
2	
3	Establishment of induced pluripotent stem cells from normal B cells and inducing AID
4	expression in their differentiation into hematopoietic progenitor cells
5	
6	Fumihiko Kawamura ¹ , Makoto Inaki ² , Atsushi Katafuchi ¹ , Yu Abe ¹ , Naohiro Tsuyama ¹ ,
7	Yumiko Kurosu ¹ , Aki Yanagi ¹ , Mitsunori Higuchi ³ , Satoshi Muto ³ , Takumi Yamaura ³ ,
8	Hiroyuki Suzuki ³ , Hideyoshi Noji ⁴ , Shinichi Suzuki ⁵ , Mitsuaki A Yoshida ⁶ , Megumi
9	Sasatani ⁷ , Kenji Kamiya ⁷ , Masafumi Onodera ² , Akira Sakai ¹
10	
11	¹ Dept. of Radiation Life Sciences, Fukushima Medical University School of Medicine,
12	Fukushima, Japan
13	² Dept. of Genetics, National Research Institute for Child Health and Development,
14	Tokyo, Japan
15	³ Dept. of Regenerative Surgery, Fukushima Medical University School of Medicine,
16	Fukushima, Japan
17	⁴ Dept. of Medical Oncology, Fukushima Medical University School of Medicine,
18	Fukushima, Japan
19	⁵ Dept. of Thyroid and Endocrinology, Fukushima Medical University School of
20	Medicine, Fukushima, Japan
21	⁶ Dept. of Radiation Biology, Institute of Radiation Emergency Medicine, Hirosaki
22	University, Hirosaki, Japan
23	⁷ Dept. of Experimental Oncology, Research Institute for Radiation Biology and
24	Medicine, Hiroshima University, Hiroshima, Japan
25	
26	Correspondence:
27	Akira Sakai, M.D., Ph.D.
28	Dept. of Radiation Life Sciences
29	Fukushima Medical University School of Medicine
30	1 Hikarigaoka, Fukushima, 960-1295 Japan
31	TEL: +81-24-547-1703
32	FAX: +81-24-547-1704
33	E-mail: sakira@fmu.ac.jp

34	Materials and Methods
35	
36	Plasmid construction
37	The retroviral vector GCsap (myeloproliferative sarcoma virus (MPSV)) was
38	generated by deleting the NcoI site in GCsap (MPSV). ¹ The open reading frames of human
39	Oct3/4, Sox2, Klf4, and c-Myc were amplified from pMXs-hOct3/4, pMXs-hSox2, pMXs-hKlf4,
40	and pMXs-hc-Myc, retrospectively, using RT-PCR. ² PCR products were digested with NotI and
41	BamHI and cloned into GCsap (MPSV).
42	The lentiviral vector pRRL sin hEF1a-hCD40L-IRES-KO-cPPT was constructed via
43	the following procedures: the hEF1a promoter was amplified by genomic-PCR using the
44	primers 5'- AACGCTAGCGGCTCCGGTGCCCGTCA-3' (Forward primer with an NheI site)
45	and 5'- GACGATATCGAATTCGGATCCTCACGACACCTGAAATGGAA-3' (Reverse primer
46	with a BamHI site and an EcoRI site). The genomic DNA of Jurkat was used as the PCR
47	template. The PCR products were digested with EcoRI and phosphorylated with T4
48	polynucleotide kinase (NEB, Tokyo, Japan). The DNA fragments were then ligated into pRRL
49	sin hCMV-MCS-cPPT digested with HpaI and EcoRI to generate pRRL sin hEF1a-MCS. The
50	ligated plasmids were transformed into the Stbl3 strain of Escherichia coli (Life Technologies,

51 Funabashi, Japan).

52	The cPPT sequence was amplified by PCR using the primers 5'-
53	CTAG <u>TCTAGA</u> TTTTAAAAGAAAAGGGGGGGGATTG -3' (Forward primer with an XbaI site)
54	and 5'- GGAATTCCTAGCAAAATTTTGAATTTTGTAATTTGTTT -3' (Reverse
55	primer with an NheI site). pRRL sin hCMV-MCS-cPPT was used as the PCR template. The
56	PCR products were digested with XbaI and NheI. The DNA fragments were then ligated into
57	pRRL sin hEF1a-MCS digested with NheI to generate pRRL sin hEF1a-MCS-cPPT.
58	The IRES-Kusabira-Orange (IRES-KO) sequence was amplified by PCR using the
59	primers: 5'-CCCTCAAAGTAGACGGCATCGC—3' (Forward primer) and 5'-
60	GGATATCTTAGCAGTGGGCCACGGCGT-3' (Reverse primer with an EcoRV site). A
61	retroviral vector pGCDN-IRES-KO was used as the PCR template. The PCR products were
62	digested with EcoRI and EcoRV. The DNA fragments were then ligated into pRRL sin
63	hEF1a-MCS-cPPT digested with EcoRI and EcoRV to generate pRRL sin
64	hEF1a-MCS-IRES-KO-cPPT.
65	To modify the multi-cloning site (MCS), pRRL sin hEF1a-MCS-IRES-KO-cPPT was

66 digested with BamHI and EcoRI, and treated with bacterial alkaline phosphatase (TaKaRa,

67	Kusatsu, Japan). Subsequently, 5 μ l of each of the synthesized sense and antisense
68	oligonucleotides (100 μM each) were mixed with 40 μl of 150 mM NaCl, denatured at 95 $^{\circ}C$
69	for 3 min and annealed by cooling to 37 °C for 2 h. The following oligonucleotides were used:
70	5'- GATCGGAATTCTCTAGAGGATCCC-3' (sense oligonucleotides with an EcoRI site, an
71	XbaI site and a BamHI site) and 5'- AATTGGGATCCTCTAGAGAATTCC-3' (antisense
72	oligonucleotides). The annealed oligonucleotides were phosphorylated by T4 polynucleotide
73	kinase (Takara) and ligated into the digested pRRL sin hEF1a-MCS-IRES-KO-cPPT to generate
74	pRRL sin hEF1a-MCS2-IRES-KO-cPPT.
75	Human CD40L (hCD40L) was amplified by RT-PCR using the primers: 5'-
76	GCTCTAGACACCATGATCGAAACATACAACCAAAC-3' (Forward primer with an XbaI
77	site) and 5'- CGGGATCCTCAGAGTTTGAGTAAGCCAAAG-3' (Reverse primer with a
78	BamHI site). The cDNA of human activated T cells was used as the RT-PCR template. The
79	PCR products were digested with XbaI and BamHI. The DNA fragments were then ligated into
80	pRRL sin hEF1a-MCS2-IRES-KO cPPT to generate pRRL sin
81	hEF1a-h <i>CD40L</i> -IRES-KO-cPPT.
82	pEF-1 α Tet-Off-IRES neo was constructed as follows. The tTA2 ^s -IRES neo DNA
83	fragment was PCR amplified using the pRetroX-Tet-Off Advanced vector as a template

84	(Clontech, Mountain View, CA, USA), KOD plus DNA polymerase (TOYOBO, Osaka, Japan)
85	and the primers: tTA IRES neo-XbaI/F2, 5'-ACTCTAGAACCATGTCAAGACTGGAC-3' and
86	tTA IRES neo-XbaI/R2, 5'-CCTCTAGATGGGTGGTGAGCAGCTC-3'. The DNA amplimer
87	was digested with XbaI and cloned into the XbaI site of pEF-BOS. pEF-1a Tet-Off-IRES neo
88	was then transfected into BiPSC-13 and MIB2-6 cells using ViaFect (Promega, Madison, WI,
89	USA) according to the manufacturer's instructions. G418 resistant cells of both cell lines were
90	isolated and used for further doxycycline-controlled activation-induced cytidine deaminase
91	(AID) expression.

93 Establishment of the PG13/OSKMG cell line

94	The Retroviral producing cell line (PG13/OSKMG) was established as follows: First,
95	the retroviral plasmid described above or GCsapEGFP (MPSV) 1 was cotransfected with the
96	10A1 env expression plasmid (pCL-10A1) into 293gp cells by CaPO4 coprecipitation. The
97	293gp cells were cultured in DMEM-high glucose (Nacalai Tesque, Kyoto, Japan)
98	supplemented with 10% FBS (Equitech-Bio, Kerrville, TX, USA), 1 mM sodium pyruvate
99	(Thermo Fisher Scientific, Yokohama, Japan), 50 U/ml Penicillin and 50 µg/ml Streptomycin
100	(Nacalai Tesque) at 37°C in 10% CO ₂ . The supernatant from the transfected 293gp cells was
101	harvested and filtered (0.45 µm pore-size, Millipore, Merck Millipore, Darmstadt, Germany).

102	The filtered supernatant was concentrated by PEG precipitation (see below under
103	"Concentration of PG13 retrovirus") ³ and resuspended in serum-free DMEM-high glucose
104	medium. The concentrated retrovirus was used to transduce PG13 cells to express the
105	GaLV-envelope. The PG13 cells were cultured in DMEM-high glucose supplemented with 10%
106	FBS, 50 U/ml Penicillin and 50 µg/ml Streptomycin (D10 medium) at 37°C in 10%CO ₂ .
107	Transduction was performed three times, each time by spin-infection (1000×g, 1 h) in the
108	presence of 8 µg/ml polybrene (Nacalai Tesque, Kyoto, Japan) and 20 mM HEPES (Sigma,
109	Tokyo, Japan). After transduction, GFP-positive PG13 cells were sorted using a BD FACS Aria
110	(BD Biosciences, Tokyo, Japan) into 96-well plates. Highly-proliferative cells were amplified
111	and harvested. Proviral cDNA expression was confirmed by RT-PCR. Total RNA was extracted
112	using RNeasy (Qiagen, Tokyo, japan), and the cDNA was synthesized using the Transcriptor
113	High Fidelity cDNA Synthesis Kit (Roche, Tokyo, Japan). PCR was performed with the ExTaq
114	Hot Start Version (Takara). All reactions were carried out with 25 ng cDNA (total RNA
115	equivalent) and 0.5 U of ExTaq Hot Start Version (Takara) in a volume of 20 $\mu l.$ The final
116	concentrations of the other reactants were: 1x ExTaq Buffer, 0.2 mM each dNTP, 5% DMSO
117	and 0.5 μ M of each primer (forward primer 5'-CCCTCAAAGTAGACGGCATCGC-3' and

118 reverse primer 5'- TACAGGTGGGGTCTTTCATTCCC-3'). The PCR cycling conditions were

as follows: initial denaturation at 94°C for 2 min followed by 40 c	cycles of 94°C for 20 s,	72°C
---	--------------------------	------

- 120 for 90 s, and a final extension at 72°C for 5 min. Amplification was performed using a PCR
- 121 Thermal Cycler Dice (Takara). The PCR products were analyzed by 1.5% agarose gel
 122 electrophoresis in TBE buffer. In this manner, PG13/OSKMG cell lines that have all proviral
- 123 DNAs (*Oct3/4*, *Sox2*, *Klf4*, *c-Myc* and *GFP*) were established.

124

125 **Concentration of PG13 retrovirus**

126Established PG13/OSKMG cells were cultured in DMEM-high glucose 127supplemented with 20% FBS, 50 U/ml Penicillin and 50 µg/ml Streptomycin (D20 medium) at 128 37°C in 10% CO₂. PG13/OSKMG cells were seeded in 15 cm dishes at a density of 6.75×10^6 129 cells/dish. After 3 days of culture, the medium was replaced with fresh medium (D10 medium) 130 for virus production. After 12 h of incubation, the supernatant was harvested and filtered. The 131 supernatant was incubated on ice for 30 min. The chilled supernatant was diluted three times 132with 4×PEG solution (32% PEG6000 (TOHO Chemical Industry, Tokyo, Japan)/400 mM 133 NaCl/40 mM HEPES, pH7.4) and incubated at 4°C for 3 h. After this incubation, the

134	supernatant was centrifuged at 2000×g for 30 min. The supernatant was discarded and the pellet
135	was centrifuged at 2000×g for 5 min again to remove residual supernatant. The final supernatant
136	was removed, and the pellet was resuspended in $1/100^{\text{th}}$ of the original volume of DMEM and
137	stored at -80°C.
138	
139	Establishment of the 293FT/CD40L cell line and preparation of a highly concentrated
140	CD40L supernatant
141	Self-inactivating lentiviral vectors were produced by transient transfection of 293FT
142	cells with the vector plasmid pRRLsin hEF1a-CD40L-IRES Kusabira Orange cPPT, the
143	lentiviral packaging constructs pRSV/REV and pMDLG/pRRE, and the vesicular stomatitis
144	virus glycoprotein (VSV-G)-expressing plasmid pcDNA3-VSVG using the calcium phosphate
145	method. 293FT cells were transduced with concentrated lentiviruses in the presence of 8 μ g/ml
146	polybrene. After 5 days, Kusabira Orange-positive cells were sorted using a
147	fluorescence-activated cell sorter and were inoculated into a 96 well plate coated with
148	poly-L-lysine (Cellvis, Mountain View, CA, USA).
149	Established 293FT/CD40L-IRES-KO cells were cultured in DMEM-high glucose

150	supplemented with 10% FBS, 50 U/ml Penicillin and 50 μ g/ml Streptomycin (D10 medium) at
151	37°C in 10%CO ₂ . 293FT/CD40L-IRES-KO cells were seeded in 15 cm dishes at a density of
152	6.75×10^6 cells/dish. After 3 days of culture, the medium was replaced with fresh medium (D10
153	medium) for virus production. After 24 h of incubation, the supernatant was harvested and
154	filtered. The supernatant was incubated on ice for 30 min. The chilled supernatant was diluted
155	three times with $4 \times PEG$ solution (32% PEG6000/ 400 mM NaCl/ 40 mM HEPES, pH7.4) and
156	incubated at 4°C for 3 h. After this incubation, the supernatant was centrifuged at $2000 \times g$ for 30
157	min. The supernatant was discarded and the pellet was centrifuged at $2000 \times g$ for 5 min again to
158	remove residual supernatant. The final supernatant was removed, and the pellet was
159	resuspended in $1/100^{\text{th}}$ of the original volume of the B cell medium (see below) and stored at
160	-80°C.
161	
162	Generation of the BiPSC, MIB2-6, from peripheral B cells
163	Peripheral blood (30 ml) was obtained from healthy donors and mononuclear (MNC)

165 Healthcare, Tokyo, Japan). MNCs were cultured in Iscove's Modified Dulbecco's Medium

164

cells were separated by density-gradient centrifugation using Ficoll-Paque PLUS (GE

166	(IMDM) (Life Technologies, Funabashi, Japan) supplemented with 10% fetal bovine serum
167	(FBS) (Equitech-Bio, Kerrville, TX, USA)/PS: Penicillin (50 U/ml) and Streptomycin (50
168	µg/ml) (Nacalai Tesque, Kyoto, Japan)/L-glutamine (4 mM) (Life Technologies, Funabashi,
169	Japan) (B cell medium) in the presence of IL-4 (4 ng/ml, Peprotech) and cyclosporine A
170	(0.7µg/ml) (Tokyo Chemical Industry, Tokyo, Japan). B cells were purified using
171	magnetic-activated cell sorting CD19 Micro Beads (Miltenyi Biotec, Auburn, CA, USA)
172	according to the manufacturer's instructions. The procedure for the generation of BiPSC after
173	the purification of B cells to generate BiPSC is described in the Materials and Methods section
174	of manuscript. In this way, Inaki et al. established the B cell derived induced pluripotent stem
175	cells (iPSCs), MIB2-6.
176	
177	Dicentric chromosome assay (DCA)
178	Two different BiPSC cultures in which AID expression was controlled by the
179	Tet-Off system were cultured in BiPSC medium with doxycycline in 6-well plates. After
180	two rounds of washing with PBS and incubation in BiPSC medium for 2 h, duplicate
181	BiPSC cultures were then incubated for 10 days in BiPSC medium without doxycycline.

182	Colcemid (final concentration, 0.05 μ g/ml; Life Technologies) was added 4 h before cell
183	harvesting. BiPSCs were dissociated into single cells by treatment with Accumax
184	(Funakoshi, Tokyo, Japan) and a cell strainer, and then cell harvesting and Giemsa
185	staining was performed according to our previously reported methods. ⁴
186	
187	Cell proliferation assay
188	The Cell Counting Kit-8 (called the 'WST-8 assay' in this paper) (Dojindo
189	Laboratories, Kumamoto, Japan) was used for the assay of cell proliferation, according to the
190	manufacturer's instructions. Cells were seeded at a density of 1.0×10^{5} /ml, in a final volume of
191	100 μ l in 96-well flat-bottom plates (CORNING, Corning, NY, USA) in triplicate. The plates
192	were incubated at 37° C in a 5% CO ₂ incubator for 1 to 7 days. At the end of the incubation, 10
193	μl of the WST-8 reagent was added to each well and the plates were incubated for 4 h.
194	Absorbance for 450 nm was then measured using a plate reader (Multiskan FC; Thermo Fisher
195	Scientific, Tokyo, Japan).
196	

197 Analysis of EBV infection

198 PCR analysis of the DNA extracted from the BiPSCs was performed with SL18 and

- 199 SL19 primers to the tandem repeat region of the gene for latent membrane 1 (LMP-1) to detect
- 200 EBV infection as previously reported.⁵

202		References
203		
204	1.	Kaneko, S., Onodera, M., Fujiki, Y., Nagasawa, T. & Nakauchi, H. Simplified retroviral
205		vector gcsap with murine stem cell virus long terminal repeat allows high and continued
206		expression of enhanced green fluorescent protein by human hematopoietic progenitors
207		engrafted in nonobese diabetic/severe combined immunodeficient mice. Hum Gene Ther.
208		12, 35-44 (2001).
209	2.	Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by
210		defined factors. Cell. 131, 861-72 (2007).
211	3.	Inaki, M., Kato, D., Utsugi, T., Onoda, F., Hanaoka, F. & Murakami, Y. Genetic analyses
212		using a mouse cell cycle mutant identifies magoh as a novel gene involved in Cdk
213		regulation. Genes Cells. 16, 166-78 (2011).
214	4.	Abe, Y. et al. Increase in dicentric chromosome formation after a single CT scan in adults.
215		Sci Rep. 5, 13882 (2015).
216	5.	Shibata, D., Weiss, L. M., Nathwani, B. N, Brynes, R. K. & Levine, A. M. Epstein-Barr
217		virus in benign lymph node biopsies from individuals infected with the human
218		immunodeficiency virus is associated with concurrent or subsequent development of
219		non-Hodgkin's lymphoma. Blood. 77, 1527-33 (1991).
220		

221	Legends
222	
223	Table S1. Primer sequences.
224	
225	Figure S1. Characterization of the B cell derived iPSC, MIB2-6.
226	(a) Colony-formation of MIB2-6.
227	(b) Normal G-banding karyotype of MIB2-6.
228	(c) Hematoxylin-eosin stained teratoma derived from MIB2-6.
229	
230	Figure S2. Detection of monoclonal immunoglobulin heavy (IgH) gene rearrangements in
231	MIB2-6 cells.
232	Monoclonal VDJ rearrangements of the IgH gene (arrows) were detected in MIB2-6
233	using PCR.
234	
235	Figure S3. Phenotype analysis of BiPSCs.
236	The cell phenotypes of (a) BiPSC13 and (b) MIB2-6 were analyzed using flow cytometry and
237	the indicated antibodies.
238	
239	Figure S4. qRT-PCR analysis of AID expression in MIB2-6 induced by the
240	doxycycline-controlled (Tet-off) system.
241	AID expression in MIB2-6#17 in the absence (a) and the presence (b) of doxycycline was
242	measured using qRT-PCR. The numbers on the Y axis are the expression of AID mRNA
243	standardized by the expression of GAPDH relative to the expression of AID mRNA of CD19^+
244	normal B cells. Data were analyzed in triplicates and normalized to glyceraldehyde
245	3-phosphate dehydrogenase.
246	
247	Figure S5. AID expression depending on the number of days after removeing doxycycline
248	by immunofluorescence staining.
249	Expression of AID was detected in BiPSC13#1 at 2 days (a) and in MIB2-6#17 at 3 days,
250	respectively.
251	
252	Figure S6. Effect of the absence or presence of doxycycline on cell proliferation.
253	The cell proliferation of (a) BiPSC13#2 and (b) MIB2-6#17 was measured in the presence

254 (white circles) or absence (black circles) of doxycycline. Results are expressed as mean \pm SD

255 of triplicate experiments.

256

Figure S7. Hematopoietic differentiation from MIB2-6 with AID expression induced using the doxycycline-controlled (Tet-off) system.

(a) Flow cytometric analysis of the cell phenotype after differentiation of MIB2-6#17-AID into
HSCs. The population of CD34-positive cells is surrounded by a dotted line. (A)
MIB2-6#17-AID were cultured in the presence of doxycycline, (B) MIB2-6#17-AID were
cultured in the presence of doxycycline and then doxycycline was withdrawn 10 days before
sorting of the CD34-positive cells, and (C) MIB2-6#17-AID were cultured in the absence of

- $264 \qquad \text{doxycycline to express AID constitutively.}$
- (b) Immunofluorescence analysis of the expression of AID in the sorted CD34-positive cells.
- AID expressed cells were detected in (B) and (C). Arrow heads and arrows indicate

AID-positive or -negative cells, respectively. Culture condition of (A), (B), and (C) are as described in (a).

Table S1. Primer Sequences								
Primer (Exo from plasmid vector)	Sequence (5' to 3')	Applications						
hOCT3/4-S944	CCC CAG GGC CCC ATT TTG GTA CC	OCT3/4 Tg genomic and RT-PCR						
hSOX2-S691	GGC ACC CCT GGC ATG GCT CTT GGC TC	SOX2 Tg genomic and RT-PCR						
hKLF4-S1128	ACG ATC GTG GCC CCG GAA AAG GAC C	Tg genomic and RT-PCR						
hMYC-S1011	CAA CAA CCG AAA ATG CAC CAG CCC CAG	c−MYC Tg genomic and RT−PCR						
pGCsap-AS1	GGG TCT TTC ATT CCC CCC TTT TTC TGG AGA C	Tg genomic and RT-PCR						
Primer (Endogenous RNA)	Sequence (5' to 3')	Applications						
GAPDH-F	GGT GAA GGT CGG AGT CAA CG	Endo GAPDH RT-PCR						
GAPDH-R	AAT TTG CCA TGG GTG GAA TC	Endo GAPDH RT-PCR						
hOCT3/4-S1165	GAC AGG GGG AGG GGA GGA GCT AGG	Endo OCT3/4 RT-PCR						
hOCT3/4-AS1283	CTT CCC TCC AAC CAG TTG CCC CAA AC	Endo OCT3/4 RT-PCR						
hSOX2-S1430	GGG AAA TGG GAG GGG TGC AAA AGA GG	Endo SOX2 RT-PCR						
hSOX2-AS1555	TTG CGT GAG TGT GGA TGG GAT TGG TG	Endo SOX2 RT-PCR						
hKlf4–sk F	CCC ACA CAG GTG AGA AAC CT	Endo Klf4 RT-PCR						
hKlf4–sk R	ATG TGT AAG GCG AGG TGG TC	Endo Klf4 RT-PCR						
hMYC-S253	GCG TCC TGG GAA GGG AGA TCC GGA GC	Endo c-MYC RT-PCR						
hMYC-AS555	TTG AGG GGC ATC GTC GCG GGA GGC TG	Endo c-MYC RT-PCR						
AIDrtPCR-F	AAA ATG TCC GCT GGG CTA AG	Endo AICDA RT-PCR						
AIDrtPCR-R	AGG TCC CAG TCC GAG ATG TAG	Endo AICDA RT-PCR						
Pax-S	AAT GAC ACC GTG CCT AGC GT	Endo PAX RT-PCR						
Pax-AS	GGT GGT GAA GAT GTC TGA GT	Endo PAX RT-PCR						

(a)

(b)

Gut-like epithelium

Cartilage

Pigmented epithelium

(a)

0 c	lay	1 day	2 day	3 day	5 day	10 day
		AN ANY	A Rep.			
AID						
		ality of	A.			
DAPI						
		Aller A	Set all	1,4383		
merge						

