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S-1 Details of simulations

S-1-1 Negative binomial distribution

An integer valued random K is said to follow a negative binomial distribution with param-
eter p(0 < p < 1), s(0 < s) if

Pr(K = k) =

(
k + s− 1

s− 1

)
ps(1− p)k. (1)

This two parametric distribution can alternatively parametrised in terms of mean µ
and size s, called dispersion parameter, via

p =
s

s+ µ
. (2)

where the variance is σ2 = µ + µ2

s . We denote K ∼ NB(µ, s) if the random variable K
follows negative binomial distribution.

S-1-2 Details of simulation I

We generated random trees via generating random tree topologies as follows. Let E =
{ei; i = 1, 2, . . . ,m} be edges of a tree defined as any of the five types defined in Figure
2. We generated random trees via editing edges e. The editing operation, denoted by a
function OP (E,N) where e is edge set and N is the number of the operation per tree
, consists of ”add” and ”delete” the edge, and ”none” (does nothing) that are randomly
chosen. We controlled topological variance by the number of the operations per tree denoted
as N with larger one resulting in larger topological variance. We generated 10 trees for
each classes of tree topology and examined various topological variances N = 2, 3, 4, 5. In
Figure 3, the variance index corresponds to 1

N .
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S-1-3 Details of simulation II & III

We generated random trees via generating random edge length as follows. Let l = (l1, l2, . . . , lm)
be vector of edge lengths of a tree defined as any of the three types of simulation II and the
nine types of simulation III in Figure 2. We generate random trees via generating random
edge length independently using negative binomial distribution. We set size parameter s
and the mean parameter is set for each edge length li as µi = li (i = 1, 2, . . . ,m). We gener-
ate a random tree with edge length (Z1, Z2, . . . , Zm) via Zi ∼ NB(µi, s). In this simulation,
we generated 10 trees for each class and examined various size parameters s = 1, 2, . . . , 10.

S-1-4 External clustering validation indices

Purity (PR) measures accuracy of cluster assignments to the correct classes that are defined
by the majority cluster,

PR(Ω, C) =
1

N

∑
k

max
j
|ωk ∩ cj |, (3)

where {ωk; k = 1, 2, . . . , n} is set of clusters and {cj ; j = 1, 2, . . . ,m} is set of classes. PR
lies in [0, 1] and higher PR is considered as good. However, since PR doesn’t consider the
number of clusters, high PR is easy to achieve when the number of clusters is large, e.g.,
PR is 1 if each object gets its own cluster. PR also doesn’t consider the false positive rate.
The other two indices below incorporate false positive rate or the number of cluster into
their evaluation index.

Rand index (RI) measures the accuracy of the clustering assignments. We consider true
positive (TP), true negative (TN), false positive (FP), and false negative (FN). If a pair of
similar clusters are assigned to the same cluster, the pair is counted as TP and conversely,
if a pair of dissimilar clusters are assigned to the different cluster, the pair is counted as
TN. The FP and FN counts the pairs that are similar and dissimilar clusters to be assigned
to the different and the same clusters, respectively. RI is defined as

RI =
TP + TN

TP + FP + TN + FN
=
TP + TN(

N
2

) . (4)

RI lies in [0, 1] and high RI means high true positive and true negative rate.
Normalized mutual information (NMI) measures cluster assignment accuracy thorough

mutual information entropy,

NMI =
I(Ω, C)

H(Ω)H(C)
, (5)

where I(Ω, C) =
∑

k

∑
j
|ωk∩cj |
N log

|ωk∩cj |
N and H(Ω) = −

∑
k
ωk
N log

ωk
N . NMI lies in [0, 1] and

high NMI means that subgroups of objects forms meaningful clusters, e.g., non random
cluster assignments.



S-2 Sampling effects on the clustering results

We examined how the clustering results of phyC depend on the sampling effects as follows.
We downsampled the number of samples in all patients to be the same (minimum number of
samples among patients) and the cancer evolutionary trees based on the downsampled VAF
profiles were clustered by phyC. In the down sampling, we randomly chose the subsamples
from a patient. To consider the randomness, we took median over the distances of the
trees that are obtained from 100 sets of downsampled VAF profiles and the evolutionary
trees based on each set of VAF profile.

We made the contingency table where rows and columns represent cluster assignments
without downsampling and the assignments with downsampling (Table S4,S5,and S6).

The cluster assignments were the same between those without and with downsampling
in ccRCC and NSCLC datasets, respectively (Table S4 amd S5). In case of the dataset
of ccRCC&NSCLC, only ccRCC-EV005 was classified in the different clusters compared
to the cluster assignments without downsampling (Table S6). There is a long edge in the
branch of ccRCC-EV005, and it is considered to be attribute to the cluster assignments
without downsampling, compared to those with downsampling.

Our method captures both tree topologies and shapes by edge length vector as shown
in equation (2) in the manuscript and this indicates that phyC tends to emphasize the
differences of edge length rather than tree topologies, which is implied in the simulation
II and III in the manuscript. The number of samples may lead to more complex tree
topologies rather than edge length in actual case and it is considered that there was no big
difference in clustering results.

Table A: Clustering result of Downsampling of ccRCC
Cluster 1 (Downsampling) Cluster 2 (Downsampling)

Cluster 1 (Original) 2 0
Cluster 2 (Original) 0 6

Table B: Clustering result of Downsampling of NSCLC
Cluster 1(Downsampling) Cluster 2 (Downsampling)

Cluster 1 (Original) 8 0
Cluster 2 (Original) 0 3



Table C: Clustering result of Downsampling of ccRCC&NSCLC
Cluster 1 (Downsampling) Cluster 2 (Downsampling)

Cluster 1 (Original) 10 0
Cluster 2 (Original) 1 8

S-3 Supplementary tables and figures

Table D: Results of simulation I.
Index phyC TED SPD

simulation 1 PR 0.962 (0.039) 0.607 (0.092) 0.571 (0.071)
(op=2) NMI 0.947 (0.049) 0.186 (0.029) 0.214 (0.037)

RI 0.973 (0.026) 0.576 (0.06) 0.622 (0.04)

simulation 2 PR 0.903 (0.064) 0.613 (0.101) 0.567 (0.073)
(op=3) NMI 0.868 (0.082) 0.188 (0.036) 0.204 (0.038)

RI 0.931 (0.047) 0.571 (0.069) 0.622 (0.043)

simulation 3 PR 0.882 (0.058) 0.557 (0.081) 0.554 (0.07)
(op=4) NMI 0.827 (0.073) 0.178 (0.032) 0.197 (0.036)

RI 0.915 (0.041) 0.614 (0.053) 0.626 (0.044)

simulation 4 PR 0.871 (0.065) 0.518 (0.07) 0.544 (0.062)
(op=5) NMI 0.813 (0.08) 0.173 (0.035) 0.185 (0.034)

RI 0.91 (0.042) 0.632 (0.043) 0.624 (0.04)



Table E: Results of simulation II.
Index phyC BScore

simulation 1 PR 0.746 (0.057) 0.713 (0.099)
(s=1) NMI 0.458 (0.099) 0.167 (0.081)

RI 0.725 (0.049) 0.527 (0.062)

simulation 2 PR 0.806 (0.064) 0.671 (0.1)
(s=2) NMI 0.586 (0.111) 0.19 (0.085)

RI 0.791 (0.057) 0.56 (0.055)

simulation 3 PR 0.836 (0.057) 0.658 (0.097)
(s=3) NMI 0.645 (0.092) 0.195 (0.088)

RI 0.82 (0.051) 0.567 (0.054)

simulation 4 PR 0.875 (0.064) 0.659 (0.097)
(s=4) NMI 0.716 (0.11) 0.207 (0.094)

RI 0.856 (0.065) 0.576 (0.051)

simulation 5 PR 0.888 (0.064) 0.659 (0.096)
(s=5) NMI 0.747 (0.121) 0.215 (0.099)

RI 0.871 (0.065) 0.582 (0.05)

simulation 6 PR 0.895 (0.055) 0.637 (0.084)
(s=6) NMI 0.758 (0.102) 0.192 (0.104)

RI 0.877 (0.057) 0.582 (0.05)

simulation 7 PR 0.919 (0.056) 0.662 (0.085)
(s=7) NMI 0.807 (0.104) 0.222 (0.094)

RI 0.904 (0.058) 0.59 (0.055)

simulation 8 PR 0.922 (0.053) 0.671 (0.084)
(s=8) NMI 0.814 (0.108) 0.247 (0.111)

RI 0.907 (0.058) 0.602 (0.053)

simulation 9 PR 0.936 (0.047) 0.649 (0.093)
(s=9) NMI 0.845 (0.097) 0.23 (0.111)

RI 0.922 (0.054) 0.593 (0.05)

simulation 10 PR 0.947 (0.049) 0.666 (0.095)
(s=10) NMI 0.874 (0.103) 0.235 (0.102)

RI 0.937 (0.055) 0.595 (0.052)



Table F: Results of simulation III.
Index phyC BScore

simulation 1 PR 0.56 (0.041) 0.724 (0.059)
(s=1) NMI 0.508 (0.038) 0.42 (0.058)

RI 0.848 (0.011) 0.671 (0.08)

simulation 2 PR 0.642 (0.046) 0.743 (0.05)
(s=2) NMI 0.599 (0.04) 0.495 (0.049)

RI 0.868 (0.012) 0.729 (0.041)

simulation 3 PR 0.68 (0.045) 0.757 (0.058)
(s=3) NMI 0.643 (0.038) 0.536 (0.064)

RI 0.878 (0.011) 0.752 (0.047)

simulation 4 PR 0.704 (0.053) 0.769 (0.053)
(s=4) NMI 0.667 (0.035) 0.566 (0.053)

RI 0.882 (0.01) 0.771 (0.05)

simulation 5 PR 0.732 (0.053) 0.767 (0.055)
(s=5) NMI 0.698 (0.037) 0.582 (0.056)

RI 0.889 (0.013) 0.787 (0.04)

simulation 6 PR 0.736 (0.054) 0.771 (0.055)
(s=6) NMI 0.701 (0.042) 0.587 (0.058)

RI 0.89 (0.013) 0.787 (0.041)

simulation 7 PR 0.757 (0.05) 0.774 (0.054)
(s=7) NMI 0.722 (0.038) 0.615 (0.05)

RI 0.894 (0.014) 0.81 (0.036)

simulation 8 PR 0.772 (0.046) 0.782 (0.051)
(s=8) NMI 0.732 (0.037) 0.622 (0.051)

RI 0.895 (0.015) 0.814 (0.032)

simulation 9 PR 0.777 (0.053) 0.779 (0.058)
(s=9) NMI 0.738 (0.036) 0.624 (0.059)

RI 0.895 (0.013) 0.817 (0.033)

simulation 10 PR 0.777 (0.055) 0.769 (0.054)
(s=10) NMI 0.741 (0.037) 0.626 (0.048)

RI 0.896 (0.013) 0.823 (0.03)
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Figure A : Dendrogram of the clustering result of ccRCC data
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Figure B : Dendrogram of the clustering result of NSCLC data
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Figure C : Dendrogram of the clustering result of ccRCC&NSCLC data



Cluster 1 Cluster 2

Figure D : Tree averages in the clusters of ccRCC data



Cluster 1 Cluster 2

Figure E : Tree averages in the clusters of NSCLC data



Cluster 1 Cluster 2

Figure F : Tree averages in the clusters of ccRCC&NSCLC data
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Mapping  process
Step  1.  
Mapping  starts  with  the  subtrees  
having  maximum  depth.
i.e.,  a  subtree  of  node  A including  
the  node  B (d=3)  (① –③).

Step  2.
Within  the  subtrees  of  step  1,  
mapping  is  performed  from  a  
edge  with  maximum  total  edge  
length.
i.e.,  the  edge  including  the  node  
C  (l=5+4+3=12)  (①).

Step  4.  
Repeat  step  1  – step  3  for  
subtrees  with  the  next  maximum  
depth.
i.e.,  the  next  subtree  including  
the  node  E  (d=2)  (④).

Step  3.
Repeat  step  2  for  edges  with  the  
next  maximum  total  edge  length.  
i.e.,  the  next  edge  including  node  
D  (l=5+4+2=11)  (②).              

A

B

CD

E

Figure G : Details of mapping process in the registration


