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SI.1 THEORETICAL BACKGROUND FOR THE CHANNEL SELECTION

We describe the background material needed for the proposed two-channel fECG algorithm. The algorithm1
is composed of three essential components. The first component is estimating the maternal cardiac activity2
in the aECG (maECG) by applying the dsSTFT [1], the beat tracking and the nonlocal median [2], and get a3
rough fECG from any given linear combination of the two provided aECG signals. The second component4
is the channel selection by applying the lag map [3, 4, 5] and diffusion map (DM) [6] for the sake of5
determining the best linear combination of the two channels, which lead to the optimal rough fECG. The6
third component is getting the fECG and fetal R peaks information from the optimal rough fECG by again7
the dsSTFT and the beat tracking.8

SI.1.1 Linear combination9

The main motivation behind the algorithm is motivated by the physiological knowledge of the ECG signal10
that among all linear combinations of two channels, with a high probability we could find a combination11
that is optimal for the fetal ECG extraction.12

Before describing the linear combination idea, recall the well-know vectocardiogram (VCG) and its
relationship with the ECG signals. It has been well known that the ECG signal, denoted as a continuous
time series E : [0, T ] → R, where T > 0 is the observation time, is the projection of the representative
dipole current of the electrophysiological cardiac activity on a predesigned direction [7]. Denote the dipole
current as a three dimensional continuous time series d : [0, T ]→ R3. If we could record d(t), it is called
the VCG signal. Physiologically, for a normal subject, d(t) is oscillatory with the period τ > 0, which is
about 1 second, in the sense that d(t) ∼ d(t + τ) for all t ∈ [0, T − τ ]. Suppose tl, l = 1, . . . ,m, where
m is the number of cardiac cycles over the period [0, T ], is the timestamp corresponding to the maximal
amplitude point of the l-th cardiac cycle. We call the vector

c =
1

m

m∑
l=1

d(tl) (S.1)

the cardiac axis. For a given ECG signal, there is an associated projection direction v ∈ R3 so that E is13
the projection of d(t) on v; that is, E(t) = vTd(t). It has been well known that depending on v, we could14
acquire different aspects of the cardiac information. We mention that in general, v changes according to15
time due to the cardiac axis deviation caused by the respiratory activity and other physical movements. To16
simplify the discussion, we do not take these facts into account.17

Denote dm to be the mother’s VCG and df to be the fetus’ VCG. Denote cm to be the mother’s cardiac
axis and cf to be the fetus’ cardiac axis. Fix two abdominal lead placements and record two aECG signals,
denoted as x1 and x2. Denote vm,i ∈ R3 and vf,i ∈ R3 to be the projection directions of the mother’s VCG
and fetus’ VCG corresponding to xi, where i = 1, 2. Obviously, we have xi = vTm,idm + vTf,idf , where
i = 1, 2, and it is possible that the fetal cardiac activity is relatively weak in both x1 and x2. To resolve this
problem, we consider the following linear combination scheme. Take a linear combination of x1 and x2 by

xθ = θx1 +
√

1− θ2x2 (S.2)

= θvTm,1dm + θvTf,1df +
√

1− θ2vTm,2dm +
√

1− θ2vTf,2df

= [θvTm,1 +
√

1− θ2vTm,2]dm + [θvTf,1 +
√

1− θ2vTf,2]df ,
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where θ ∈ (−1, 1]. If these two abdominal leads are placed on two different locations, we know vf,1 6= vf,218
and vm,1 6= vm,2, and hence the set19

A := {θvf,1 −
√

1− θ2vf,2}θ∈(−1,1] (S.3)

contains all linear combinations of vf,1 and vf,2 if we do not distinguish θvf,1−
√

1− θ2vf,2 and −θvf,1 +20 √
1− θ2vf,2. Note that the set {(θ,

√
1− θ2)}θ∈(−1,1] is the 1-dimensional real projective space (identifying21

antipodal points of the unit circle, S1 := {x ∈ R2|‖x‖ = 1}, embedded in R2), and it topologically22
equivalent to the unit circle S1, which is an one dimensional manifold. Based on the above-mentioned23
relationship between ECG and VCG, although the fetus could rotate inside the uterus, we know that unless24
the cardiac axis cf of the fetal cardiac activity is perpendicular or almost perpendicular to both vf,1 and25
vf,2, we could find an θ so that xθ contains a strong fetal cardiac activity. Since the chance that the fetal26
cardiac axis is perpendicular to the 2-dim affine subspace corresponding to the two chosen abdominal leads27
is low, we could thus conclude that the chance that we could obtain a good signal with strong fECG via the28
linear combination scheme is high.29

SI.1.2 Lag map30

The lag map is a well-known method widely applied to study a given time series, and its theoretical31
foundation has been well established in [3, 8, 9]. In brief, it allows us to reconstruct the structure underlying32
the time series. For a given time series f of length N ∈ N, the lag map is a mapping from f to a set of33
L-dim points, where L is chosen by the user, via34

Ψf ,L : i 7→ (f(i), . . . ,f(i+ L))T ∈ RL+1, (S.4)

where i = 1, . . . , N − L and the superscript T means taking the transpose. The map Ψf ,L is called the35
L-step lag map. It has been shown in [3] that if f is an observation of a dynamical process whose trajectory36
is supported on a d dimensional manifold and L is large enough, then under some weak mathematical37
conditions, Ψf ,L could recover the manifold up to a diffeomorphism. Since the cardiac activity is periodic,38
the corresponding “underlying manifold” is a one-dimensional circle representing the cardiac dynamics39
that is diffeomorphic to the unit circle S1, and the lag map of the cardiac activity time series leads to a40
point cloud supported on another one-dimensional simple closed curve.41

The above-mentioned important property of the lag map allows up to examine the quality of the42
reconstructed fECG. If f ∈ RN is the true fECG signal, or a good estimation of the fECG signal,43
we obtain an one-dimensional simple closed curve by the point cloud Xf ,L := {Ψf ,L(i)}N−Li=1 ∈ RL+1.44
On the other hand, if the tempted fECG estimator f ∈ RN fails to be a good estimator of the fECG signal,45
the point cloud Xf ,L might be away from any one-dimensional simple closed curve. Another important46
fact is that when f is the fECG signal, the point cloud Xf ,L is in general non-uniformly sampled from the47
one-dimensional circle. This fact comes from the diffeomorphic relationship between the reconstructed48
simple closed curve and the underlying simple closed curve via the lag map.49

SI.1.3 Graph Laplacian and diffusion map50

To take this important fact into account to examine the quality of the reconstructed fECG via the L-step51
lag map, we apply the graph Laplacian (GL), which is the building block of several dimension reduction52
algorithms, like the diffusion map (DM) [6, 10]. For a general introduction of GL and DM, we refer readers53
to [6, 11, 10]. Here we only provide the necessary steps for our purpose. Fix the given embedded point54
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cloud Xf ,L. Build a complete affinity graph G = (V,E, ω) with vertices V = Xf ,L by viewing any pairs55
of points in Xf ,L as edges; that is E = {(Ψf ,L(i),Ψf ,L(j))| i 6= j}. The affinity function ω : E → R+ is56
then defined by57

ω(Ψf ,L(i),Ψf ,L(j)) = exp
{
−
‖Ψf ,L(i)−Ψf ,L(j)‖2

ε

}
, (S.5)

for i, j = 1, . . . , N − L, i 6= j, and ε > 0 is the kernel bandwidth chosen by the user. Here, the affinity58
between Ψf ,L(i) and Ψf ,L(j) is reversely proportional to the distance between Ψf ,L(i) and Ψf ,L(j). Note59
that while we could choose a more general kernel, here we focus on the Gaussian kernel to simplify60
the discussion. We mention that in practice the Gaussian kernel performs well and the dependence on61
the chosen kernel is marginal. In general, the point cloud might not be uniformly sampled from the62
geometric object we have interest, and the nonuniform sampling effect might generate a negative impact63
on the upcoming analysis. To resolve this issue, the α-normalization technique is introduced in [6]. Take64
0 ≤ α ≤ 1, we could define an α-normalized affinity function defined on E, denoted as ω(α), by65

ω(α)(Ψf ,L(i),Ψf ,L(j)) =
ω(Ψf ,L(i),Ψf ,L(j))

dαi d
α
j

, (S.6)

where d is the degree function defined on the vertex set as66

di =
N−L∑
j=1

ω(α)(Ψf ,L(i),Ψf ,L(j)), (S.7)

for i = 1, . . . , N − L. As is shown in [6, 10], when α = 1, this α-normalized affinity could effectively67
alleviate the impacts introduced by the nonuniform sampling. In our fECG application, as discussed above,68
Xf ,L is in general non-uniformly sampled from the one-dimensional simple closed curve, so we apply this69
α-normalization technique.70

We are now ready to define the GL. Define an α-normalized affinity matrix W (α) ∈ R(N−L)×(N−L) by71

W
(α)
ij := ω(α)(Ψf ,L(i),Ψf ,L(j)), (S.8)

for i, j = 1, . . . , N − L, define a diagonal α-normalized degree matrix D(α) ∈ R(N−L)×(N−L) by72

D
(α)
ii =

N−L∑
j=1

Wij , (S.9)

for i = 1, . . . , N − L. and the α-normalized graph Laplacian is then defined by73

L(α) := I −D(α)−1W (α). (S.10)

Since L is similar to the symmetric matrix I − D(α)−1/2W (α)D(α)−1/2, it has a complete set of right74
eigenvectors φ1, . . . , φN−L with corresponding eigenvalues 0 = λ1 < λ2 ≤ · · · ≤ λN−L ≤ 1. Note75

that φ1 = (1, 1 . . . , 1)T since D(α)−1W (α) is a transition matrix defined on the graph G. It has been76
shown in [6, 10] that if X is sampled from a low dimensional Riemannian manifold, when α = 1 and77
N →∞, asymptotically the eigenvectors φi converges pointwisely and spectrally to the i-th eigenfunction78
of the Laplace-Beltrami operator of the Riemannian manifold. In general, this allows us to reconstruct79
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the manifold by applying the diffusion geometry and the spectral embedding theory, which is commonly80
known as the DM algorithm [6]. The robustness of the GL and DM has been studied in [12, 11].81

In our problem, due to the periodic oscillation intrinsic to the fECG we have interest, the α-normalized82
graph Laplacian associated with Xf ,L gives us the Laplace-Beltrami operator over a simple closed curve.83
It follows that asymptotically, the first two non-trivial eigenvectors are the sine and cosine functions. We84
could thus take this fact into account and design the signal quality index for the channel selection purpose.85
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