Differential Oxygen Response of Photosynthesis in Soybean and Panicum milioides

Received for publication April 5, 1976 and in revised form July 2, 1976

ROBERT W. KECK¹ Department of Agronomy, University of Illinois, Urbana, Illinois 61801 WILLIAM L. OGREN Agricultural Research Service, United States Department of Agriculture, Urbana, Illinois 61801

ABSTRACT

The carbon dioxide compensation concentration of Panicum milioides was less than that of soybean over the range of 15 to 35 C. In soybean (Glycine max [L.] Merr. cv. Wayne), the compensation concentration was directly proportional to O2 concentration. In P. milioides, the compensation concentration was near zero up to 10% O2 and then increased linearly with higher O2, although the slope of the response was less than that in soybean. Leaf extracts of P. milioides contained 3-fold higher phosphoenolpyruvate carboxylase activity than soybean leaf extracts. Oxygen inhibition of photosynthesis and carboxylation efficiency was less in P. milioides than that observed in soybean. The affinity of P. millioides ribulose-1,5-di-P carboxylase for CO₂ appeared to be slightly greater than that of soybean. The affinity of both enzymes for O₂ was similar. The reduced response of the compensation concentration and photosynthesis to O_2 in *P*. milioides may be explained by photosynthetic phosphoenolpyruvate carboxylase fixation and by an apparent increased affinity of ribulose-1,5-di-P carboxylase for CO₂.

Two distinctions between C_3 and C_4 photosynthesis are O_2 sensitivity and the CO_2 compensation concentration $-CO_2$ concentration where the rates of photosynthesis and respiration are equal. Photosynthesis at 300 μ l/l CO_2 in C_3 plants is about 45% higher in 2% O_2 than in 21% O_2 , whereas C_4 photosynthesis is only slightly stimulated in 2% O_2 (9). The CO_2 compensation concentration of C_3 plants at 25 C and 21% O_2 is about 40 μ l/l CO_2 , and that of C_4 plants is about zero μ l/l CO_2 (9). Recently, plant species with intermediate O_2 sensitivity of photosynthesis (3) and intermediate Γ^2 (3, 12) have been described.

Previous reports from this laboratory (1, 2, 13, 15, 16) have established the concept that O₂ sensitivity of C₃ photosynthesis and Γ in C₃ plants are determined by the kinetic properties of RuDP carboxylase with respect to its two mutually competitive substrates, CO₂ and O₂. In C₄ plants, O₂ sensitivity of photosynthesis and Γ are thought to be reduced to near zero because the C₄ cycle acts to concentrate CO₂ in the bundle sheath, the site of RuDP carboxylase, allowing CO₂ to compete more effectively against O₂ for RuDP (4, 6, 15). The high PEP carboxylase activity in the C₄ mesophyll cells can refix photorespiratory CO₂ which might be produced before it can escape from the leaf. In plants with an intermediate Γ , it has been suggested that the reduced O_2 sensitivity is due to increased PEP carboxylase fixation of CO_2 (8, 11). The investigations reported here were undertaken to characterize further the reduced O_2 sensitivity of photosynthesis and Γ in *Panicum milioides*, compared to C_3 plants, and relate these characteristics to our understanding of the regulation of the O_2 response in C_3 and C_4 photosynthesis.

MATERIALS AND METHODS

Plant Material. Soybean (*Glycine max* [L.] Merr. cv. Wayne) and maize (*Zea mays* [L.] cv. WF9×M14) seeds were germinated and grown in vermiculite in growth chambers (30 C day/20 C night, 14 hr photoperiod, 550 μ einstein m⁻² sec⁻¹) and subirrigated with modified Hoagland solution. Seeds of *P. milioides* (P.I. 310042) were germinated on a paper wick and, after 10 to 14 days, transplanted into vermiculite. Subsequent growth conditions were identical to those for soybean and maize. Experiments were conducted with the most recent fully expanded soybean trifoliate leaf, 10- to 14-day-old maize leaves, and 4- to 5-week-old leaves of *P. milioides*.

Gas Exchange Measurements. Net photosynthesis and Γ were measured with excised leaves at 25 C. In Figure 1, experiments were done at 15, 20, 25, 30, and 35 C. The closed system used in these measurements has been described elsewhere (13). In experiments using variable O₂ concentrations, desired gas mixtures were made from cylinders of N₂, O₂, and 1% CO₂ in N₂. Carboxylation efficiency was calculated as described previously (13).

Enzyme Measurements. Crude leaf extracts were prepared by grinding about 200 mg (fresh weight) of leaf tissue in a Ten-Broeck homogenizer for 2 min in ice, in a grinding medium of 50 mM tris-Cl, pH 8, 10 mM MgCl₂, 5 mM dithiothreitol, 5 mM isoascorbate, and 0.1 mM EDTA. The homogenizer was rinsed with additional grinding medium and added to the extract to bring the final volume to 10 ml. The crude extract was assayed for RuDP carboxylase (13) and PEP carboxylase (5) activities.

Partially purified RuDP carboxylase, for the determination of Km and Ki values, was prepared as follows. About 1 g (fresh weight) of leaf tissue was ground in a TenBroeck homogenizer in ice, in 5 mM K phosphate, pH 7.6, 5 mM mercaptoethanol, 0.1 mM EDTA, and 6% PVP. After grinding, the extract was centrifuged at 18,000g for 10 min, and the pellet discarded. Cold, saturated $(NH_4)_2SO_4$ solution was slowly added to the supernatant to give 35% saturation. After stirring for 20 min in ice bath, the suspension was centrifuged at 10,000g for 10 min, and the pellet discarded. Saturated $(NH_4)_2SO_4$ was added to bring the supernatant to 50% saturation. After stirring for 20 min, and the supernatant to 50% saturation. After stirring for 20 min, the suspension was centrifuged at 18,000g for 10 min, and the supernatant discarded. The pellet was dissolved in 1 ml of 25 mM tris-Cl, pH 8, 10 mM MgCl₂, and 0.25 mM EDTA, and added to a Sephadex G-25 column (1 × 10 cm) equilibrated with

¹ Permanent address: Department of Biology, Indiana University-Purdue University at Indianapolis, Indiana 46205.

² Abbreviations: RuDP: ribulose 1,5-diphosphate; PEP: phosphoenolpyruvate; Γ : CO₂ compensation concentration. Abbreviations used in equations are defined in the text.

the same buffer. The column was eluted with the same buffer and RuDP carboxylase was collected in the first 2 ml after the void volume. After dilution to 10 ml with suspension buffer, the enzyme solution was stored on ice for 2 hr. $Km(CO_2)$ and $Ki(O_2)$ values were determined as described previously (13) under N₂, 50% O₂, and 100% O₂ at pH 8.

RESULTS

The Γ in *P. milioides* was substantially less than in soybean at all temperatures between 15 and 35 C, ranging from 8 to 36 μ l/l CO₂ over this temperature range for *P. milioides*, and from 26 to 69 μ l/l CO₂ for soybean (Fig. 1).

The Γ of *P. milioides* was also less than that in soybean over the range of 2 to 100% O₂ at 25 C (Fig. 2). Two significant differences in the response of Γ to increasing O₂ concentration were observed. In soybean, Γ was directly proportional to O₂ concentration. In *P. milioides*, however, the plot of Γ as a function of O₂ concentration was curvilinear, with a break at about 10% O₂ (Fig. 2). At less than 10% O₂, Γ was close to zero. At O₂ concentrations between 10% and 100% O₂, Γ was proportional to O₂, but the slope was considerably less than that observed with soybean.

The curvilinear response curve in *P. milioides* suggests to us that at less than 10% O₂, much of the CO₂ was fixed in a carboxylation reaction not linked to photorespiration. At about 10% O₂, this CO₂ fixation system became saturated. The low Γ observed in C₄ species has been attributed to an increased PEP carboxylase activity in the mesophyll, which concentrates CO₂ in the bundle sheath, thereby reducing synthesis of photorespiratory substrate, and refixes any photorespiratory CO₂ that is produced (4, 6, 15). The PEP carboxylase activity in extracts of *P. milioides* leaves was found to be intermediate to the activity in leaf extracts of soybean, a C₃ plant, and maize, a C₄ plant (Table I; refs. 8 and 11). The intermediate PEP carboxylase activity in *P. milioides* may explain in part the intermediate Γ observed for this species.

Above 10% O₂, Γ in *P. milioides* increased linearly with increasing O₂ concentration, but the slope of the line was considerably less than that observed with soybean (Fig. 2). The reduced slope of *P. milioides* indicates that photosynthesis in *P. milioides* is less sensitive to O₂ than is photosynthesis in soybean, and that photorespiration, relative to photosynthesis, is reduced in *P. milioides*. To examine further differences in O₂ sensitivity of photosynthesis in *P. milioides* and soybean, a more complete analysis of gas exchange characteristics in these two species was made. The O₂ inhibition of photosynthesis at 300 μ l/l CO₂ in soybean was greater than in *P. milioides* (Fig. 3). The differential inhibition observed is similar to that reported for *P. milioides* and the C₃ plant tall fescue (3).

Oxygen inhibition of net photosynthesis comprises two components, direct O_2 inhibition of photosynthesis and O_2 stimulation of photorespiratory CO_2 evolution (7, 13, 16). The photorespiration component of inhibition can be removed by determining the effect of O_2 on carboxylation efficiency (Fig. 4). This analysis further indicates that photosynthesis in *P. milioides* is less sensitive to O_2 than is soybean photosynthesis.

We have previously suggested that Γ and O_2 sensitivity in C_3 plants are functions of the kinetic characteristics of RuDP carboxylase with respect to CO_2 and O_2 (13, 15). In this context, the reduced O_2 response of *P. milioides* (Figs. 2-4) suggests that the kinetic constants of soybean and *P. milioides* RuDP carboxylase may be different. To examine this possibility, Km (CO_2) and Ki (O_2) were determined for enzymes from the two species. *P. milioides* RuDP carboxylase exhibited a slightly greater affinity for CO_2 than soybean RuDP carboxylase (Table II) but the Ki (O_2) values for both enzymes were similar.

DISCUSSION

In a previous analysis of O₂ sensitivity of soybean photosyn-

Table I. PEP and RuDP Carboxylase Activities in Crude Leaf Extracts of Soybean, P. milioides, and Maize

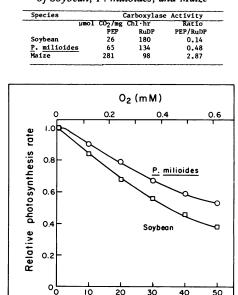


FIG. 3. Effect of O₂ concentration on relative net photosynthesis rate in *P. milioides* and soybean at 25 C. Photosynthesis rates at 21% O₂ were 31.2 mg CO₂ dm⁻²hr⁻¹ for *P. milioides*, and 30.5 mg CO₂ dm⁻²hr⁻¹ for soybean.

02 (%)

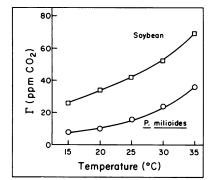


FIG. 1. Temperature dependence of Γ in P. milioides and soybean at 21% $O_2.$

FIG. 2. Response of Γ to O_2 concentration in *P. milioides* and soybean at 25 C.

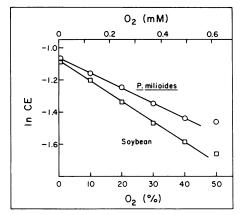


FIG. 4. Effect of O_2 concentration on carboxylation efficiency in *P*. *milioides* and soybean at 25 C.

Table II. Km (CO ₂) and Ki (O ₂)	Values for Partially Purified RuDP
Carboxylase from So	ybean and P. milioides

Km and Ki values are the mean of three enzyme preparations for each species. Experiments were conducted under N_2 , 50% $O_2/50\%$ N_2 , and 100% O_2 at pH 8.

Species	Km (CO ₂)	Ki (O ₂)
	μм	mм
Soybean	25	0.78
P. milioides	17	0.81

thesis (13), an expression of Γ in C₃ plants was derived from RuDP carboxylase kinetics with respect to CO₂ and O₂. In this analysis, Γ was considered to be the CO₂ concentration, at a given O₂ concentration, where the rate of CO₂ evolution by photorespiration equals the rate of CO₂ uptake by photosynthesis. If the rate of photorespiration is regulated by RuDP oxygenase activity, and the rate of photosynthesis is regulated by RuDP carboxylase activity, then at Γ ,

$$t\nu_o = \nu_r \tag{1}$$

where ν_0 is the velocity of the oxygenase reaction, ν_r is the rate of CO₂ fixation by RuDP carboxylase, and t is the proportion of glycolate oxidized to CO₂. Previously (13, 15), t was defined as the proportion of glycolate carbons released as CO₂ in photorespiration, 0.25. A more correct kinetic definition of t is the ratio of mol of CO₂ released in photorespiration to the mol of O₂ consumed in RuDP oxygenase reaction. According to the stoichiometry between O₂ uptake and CO₂ evolution in photorespiration proposed by Tolbert (18), t = 0.5. Expressing ν_0 and ν_r in terms of RuDP carboxylase kinetics (13), equation 1 becomes

$$tV_{o}K_{r}O/(K_{r}K_{o} + K_{r}O + K_{o}C) = V_{r}K_{o}C/(K_{r}K_{o} + K_{r}O + K_{o}C)$$
(2)

where V_0 and V_r are the maximum velocities of RuDP oxygenase and RuDP carboxylase, K_0 and K_r are the Michaelis constants for O₂ and CO₂, O is the O₂ concentration, and C is the CO₂ concentration. At Γ , $C = \Gamma$. Solving,

$$\Gamma = t V_o K_r O / V_r K_o \tag{3}$$

This equation predicts the linear response of Γ to increasing O₂ concentration observed in C₃ plants (Fig. 2, 9, 13).

It is evident that RuDP carboxylase kinetics alone does not account for the O₂ response of Γ in *P. milioides*, because Γ is not directly proportional to O₂ concentration (Fig. 2). Figure 2 suggests an additional fixation reaction, and the carboxylase analysis (Table I) suggests that an increased PEP carboxylase activity may account for this fixation. If PEP carboxylase is fixing a significant amount of CO₂ at Γ , then, at Γ , the rate of CO₂ evolution in photorespiration is equal to the combined rate of CO_2 fixation by both RuDP and PEP carboxylases, or,

$$t\nu_o = \nu_r + \nu_p \tag{4}$$

where t, ν_o , and ν_r are as defined above, and ν_p is the velocity of the PEP carboxylase reaction. Expansion of equation 4 in terms of RuDP and PEP carboxylase kinetics,

$$tV_{o}K_{r}O/(K_{r}K_{o} + K_{r}O + K_{o}C) = V_{r}K_{o}C/(K_{r}K_{o} + K_{r}O + K_{o}C) + V_{p}C/(K_{p} + C)$$
(5)

where t, V_o , V_r , K_r , K_o , O, and C are defined above, and V_p is the maximum velocity of PEP carboxylase, and K_p is the Km (HCO₃⁻) of PEP carboxylase expressed as the equivalent CO₂ concentration. At Γ , $C = \Gamma$. Solving,

$$\Gamma = [-b + (b^2 - 4ac)^{1/2}]/2a \tag{6}$$

and

$$a = (V_r + V_p)K_o \tag{7}$$

$$b = (V_p - tV_o)K_rO + (V_rK_p + V_pK_r)K_o$$
(8)

$$c = -tV_o K_r K_p O. (9)$$

The response of Γ to O_2 concentration is not obvious from equation 6, so some arbitrary solutions to the equation are given in Figure 5. Curve A simulates the observed response of soybean, and curve C simulates the response of *P. milioides*. In curve A, it was assumed that no PEP carboxylase recycling occurs. This assumption is based on the observation that only a negligible amount of CO_2 is fixed into C_4 acids at Γ in the C_3 plant barley (8, 11). Curve C assumes some PEP carboxylase recycling at Γ , as has been demonstrated for *P. milioides* (8, 11).

The difference in response of Γ to O_2 in soybean and *P. milioides* is not adequately explained solely on the basis of differences in extractable PEP carboxylase activity. If CO_2 fixation by PEP carboxylase *in vivo* were proportional to the extractable activity of this enzyme in both species, the Γ response curve ought to intercept the abscissa in soybean as it does for *P. milioides*, although the intercept would be much closer to the origin (Fig. 5, curve B). However, the soybean response curve intercepts the origin (Fig. 2), an observation typical for C_3 plants. The response of Γ to O_2 in *P. milioides* cv. P.I. 285220 (17), a cultivar in which the PEP carboxylase to RuDP carboxyl-

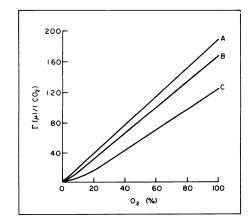


FIG. 5. Simulation of response of Γ to O₂ concentration at 25 C. These curves represent solutions to equation 6. Constants used in all curves are: V_r , 2000 μ mol/dm²·hr; V_o , 1000 μ mol/dm²·hr; K_r , 16 μ M; K_o , 0.75 mM; t, 0.50. Values of V_p (μ mol/dm²·hr) and K_p (μ M CO₂) are, respectively: curve A: 0 and 0; curve B: 33 and 0.2; curve C: 100 and 0.2.

555

ase ratio is equal to that in soybean (R. Chollet and B. Quebedeaux, personal communication) is described by curve B in Figure 5.

The positive intercept obtained by extrapolating Γ at high O₂ to low O₂ in *P. milioides* species (Figs. 2 and 5; ref. 17) indicates that the Km(HCO₃⁻) of PEP carboxylase, when expressed as the CO₂ concentration in equilibrium with HCO₃⁻, is substantially less then the Km(CO₂) of RuDP carboxylase. The Km(HCO₃⁻) for spinach leaf PEP carboxylase is very low (14), and a similar enzyme may be present in *P. milioides*. The absence of a curvilinear response curve in soybean indicates that either the Km(HCO₃⁻) of soybean PEP carboxylase is higher than the Km(CO₂) of RuDP carboxylase and Km(HCO₃⁻) of *P. milioides* PEP carboxylase, or soybean PEP carboxylase is largely inactive in the light. The latter possibility is supported by the observations that a smaller percentage of CO₂ is fixed into C₄ acids at air levels of CO₂ than at Γ (11), and that PEP carboxylase in spinach, also a C₃ plant, has a low Km(HCO₃⁻) (18).

The reduced O₂ sensitivity of photosynthesis and carboxylation efficiency in P. milioides (Figs. 3 and 4; ref. 3) may be ascirbed in part to PEP carboxylase fixation of CO₂. Because PEP carboxylase activity is not affected by O₂ (1), O₂ would inhibit only a part of CO₂ uptake. A second component of reduced O₂ sensitivity in P. milioides may be a greater affinity of P. milioides RuDP carboxylase for CO₂ (Table II). In C₃ plants, Γ is determined by the kinetic constants of RuDP carboxylase with respect to CO_2 and O_2 (13; equation 3). If PEP carboxylase fixation were reducing Γ from 40 μ l/l CO₂, typical for C₃ plants, to 20 µl/l CO₂, as found in P. milioides (Fig. 2, ref. 3), then PEP carboxylase must fix at least one-half of the CO₂ incorporated at Γ . Furthermore, if PEP carboxylase fixation were the major factor in reduced O₂ sensitivity of photosynthesis in P. milioides at 300 μ l/l CO₂, then a significant fraction of the products must be C_4 acids. However, product analysis of *P. milioides* photosynthesis indicates that only 15% of the products at Γ were C₄ acids, and at 300 μ l/l CO₂, no C₄ acids were synthesized (11). Thus, PEP carboxylase fixation is a minor component of CO₂ uptake at Γ and is negligible at air levels of CO₂, so cannot account for all the difference in Γ and O₂ inhibition observed in *P. milioides* and soybean.

The conclusions drawn from the data presented here and reported elsewhere (3, 8, 11) are that at O₂ concentration up to 10% in *P. milioides*, much of the photosynthetic CO₂ fixation is catalyzed by PEP carboxylase. Above 10% O₂, the slope of the Γ response curve and O₂ inhibition of photosynthesis is less than in soybean because of, in small part, PEP carboxylase fixation. A second, more important factor is also present, and this may be an increased affinity of *P. milioides* RuDP carboxylase for CO₂. The measured Km(CO₂) differences in RuDP carboxylase isolated from the two species (Table II) were less than could be reliably established by standard assay techniques, yet this small variation is sufficient to account for all of the observed differences in O_2 inhibition of photosynthesis and carboxylation efficiency. The O_2 response of Γ and O_2 inhibition of photosynthesis and carboxylation efficiency is about 50% greater in soybean than in *P. milioides*, and this is equal to the measured difference in $Km(CO_2)$. Because the initial products of photosynthesis in *P. milioides* at Γ and atmospheric CO_2 concentration are predominantly products of C_3 photosynthesis, and not C_4 acids (8, 10, 11), the reduced O_2 sensitivity in this species is more consistent with the concept of an altered RuDP carboxylase than with increased PEP carboxylase fixation. Quantitation of the two potential components of reduced O_2 sensitivity in *P. milioides* will require more precise data.

LITERATURE CITED

- BOWES, G. AND W. L. OGREN. 1972. Oxygen inhibition and other properties of soybean ribulose 1,5-diphosphate carboxylase. J. Biol. Chem. 247: 2171-2176.
- BOWES, G., W. L. OGREN, AND R. H. HAGEMAN. 1971. Phosphoglycolate production catalyzed by ribulose diphosphate carboxylase. Biochem. Biophys. Res. Commun. 45: 716-722.
- BROWN, R. H. AND W. V. BROWN. 1975. Photosynthetic characteristics of *Panicum milioides*, a species with reduced photorespiration. Crop Sci. 15: 681-685.
- CHOLLET, R. 1976. C. control of photorespiration. Studies with isolated mesophyll and bundle sheath cells. In: R. H. Burris and C. C. Black, eds., CO₂ Metabolism and Productivity of Plants. University Park Press, Baltimore. In press.
- CHOLLET, R. AND W. L. OGREN. 1972. Greening in a virescent mutant of maize. II. Enzyme studies. Z. Pflanzenphysiol. 68: 45-54.
- CHOLLET, R. AND W. L. OGREN. 1975. Regulation of photorespiration in C₃ and C₄ species. Bot. Rev. 41: 137-179.
- Forrester, M. L., G. KROTKOV, AND C. D. NELSON. 1966. Effect of oxygen on photosynthesis, and photorespiration in detached leaves. I. Soybean. Plant Physiol. 41: 422-427.
- GOLDSTEIN, L. D., T. B. RAY, D. P. KESTLER, B. C. MAYNE, R. H. BROWN, AND C. C. BLACK. 1976. Biochemical characterization of *Panicum* species which are intermediate between C₃ and C₄ photosynthesis plants. Plant Sci. Lett. 6: 85-90.
- JACKSON, W. A. AND R. J. VOLK. 1970. Photorespiration. Annu. Rev. Plant Physiol. 21: 385-432.
- KANAI, R. AND M. KASHIWAGI. 1975. Panicum milioides, a Gramineae plant having Kranz leaf anatomy without C_e-photosynthesis. Plant Cell Physiol. 16: 669–679.
- KESTLER, D. P., B. C. MAYNE, T. B. RAY, L. D. GOLDSTEIN, R. H. BROWN, AND C. C. BLACK. 1975. Biochemical components of the photosynthetic CO₂ compensation point of higher plants. Biochem. Biophys. Res. Commun. 66: 1439-1446.
- KRENZER, E. G. JR., D. N. MOSS, AND R. K. CROOKSTON. 1975. Carbon dioxide compensation points of flowering plants. Plant Physiol. 56: 194-206.
- LAING, W. A., W. L. OGREN, AND R. H. HAGEMAN. 1974. Regulation of soybean net photosynthetic CO₂ fixation by the interaction of CO₂, O₂, and ribulose 1,5-diphosphate carboxylase. Plant Physiol. 54: 678-685.
- 14. MUKERI, S. K. AND S. F. YANG. 1974. Phosphenolpyruvate carboxylase from spinach leaf tissue. Plant Physiol. 53: 829-834.
- OGREN, W. L. 1975. Control of photorespiration in soybean and maize. *In:* R. Marcelle, ed., Environmental and Biological Control of Photosynthesis. Dr. W. Junk, The Hague. pp. 45-52.
- OGREN, W. L. AND G. BOWES. 1971. Ribulose diphosphate carboxylase regulates soybean photorespiration. Nature New Biol. 230: 159-160.
- QUEBEDEAUX, B. AND R. CHOLLET. 1976. Comparative growth analysis of Panicum milioides, P. bisulcatum, and P. miliaceum determined at altered pO₂ and pCO₂. Plant Physiol. Suppl. 57:59.
- TOLBERT, N. E. 1971. Microbodies-peroxisomes and glyoxysomes. Annu. Rev. Plant Physiol. 22: 45-74.