| Primer name and<br>orientation | Sequence (5' -> 3')    |
|--------------------------------|------------------------|
| K-Rta promoter, F              | AGCCAGCGTATGCTTCAGG    |
| K-Rta promoter, R              | IGCCTGGACAGTATTCTCACA  |
| PAN RNA promoter, F            | GGTGGCTAACCTGTCCAAAA   |
| PAN RNA promoter, R            | CAGCGAGCACAAAATCCATA   |
| Actin, FA                      | AGAAGTCGCAGGACCACACT   |
| Actin, R                       | GTAGAGCCCACCTTCCTTCC   |
| RNA pol II, F                  | CGCTGTGTCTGCTTCTTCTG   |
| RNA pol II, R                  | ACCCTCGCATATGTTTTTGC   |
| IL-6, F                        | CACACAGACAGCCACTCACC   |
| IL-6, R                        | ITTTCTGCCAGTGCCTCTTT   |
| IL-10, F                       | IGGTGAAACCCCGTCTCTAC   |
| IL-10, R                       | ITCCATCTCCTGGGTTCAAG   |
| GAPDH, F                       | ICGCTCTCTGCTCCTCCTGTTC |
| GAPDH, R                       | CGCCCAATACGACCAAATCC   |

Supplemental 1 Table . Primers used for real-time PCR



**S1 Figure: Adjacent localization of LANA and K-Rta RNA.** Picture presented in Figure 1 was enlarged for clearer view of adjacent localization. Immune-FISH was performed by probing K-Rta RNA (Red) and immune-staining of LANA protein (Green). Not all of episomes in a PEL cell are transcribing K-Rta RNA. BCBL-1 cells expressing K-Rta RNA is marked in white arrows.

BCBL-1

BC2

Α





100

0 L 0

50





150 Distance

200

250

100

HBL-6

# BCBL-1 (TPA & NaB, 28 hr)

K-Rta RNA

## **RNase A incubation (-)**



B



BJAB

### RNase A incubation (+)







S2 Figure: (A) Linear intensity plot. Signal intensities of green, red, and blue channel was measured with Image J program. Positions of the measurement was indicated in white arrows. (B) Immune-FISH analyses of cellular RNA polymerase II and K-Rta RNA with BCBL-1. RNase A treatment diminished K-Rta RNA signals, which were expected to see where RNA polymerase II formed "dotlike" structures. (C) KSHV negative BJAB cells did not show K-Rta RNA signals. Green: RNA polymerase II, Red: K-Rta RNA FISH signals.

**RNA Pol II** 





**S3 Figure: Effects of RNA polymerase II translocation on SUMO.** Cellular SUMO-2/3 modified proteins and/or SUMO-2/3 moiety were eliminated in KSHV reactivating cells. Immune-FISH were performed with an antibody, which recognizes both cellular SUMO-2 and SUMO-3 protein. Combination of K-Rta mediated SUMO degradation and inhibition of newly transcribing SUMO-2/3 may account for the global elimination of SUMO2/3 signals in KSHV reactivating cells.



**S4 Figure:** Higher magnification view of KSHV transcriptional factories. Immune-FISH was performed with BCBL-1 cells. Green: LANA, Red: RNA polymerase, Light blue: K-Rta RNA.

# **BCBL-1**, **RNase A treated**

# KSHV DNAsDAPIImage: Description of the second seco

**S5 Figure. DNA-FISH.** BCBL-1 cells were reactivated by TPA and sodium butyrate for 48 hours. RNase A treated slide was probed with terminal repeat targeting oligos.



**S6 Figure:** Inhibition of transcriptional factory formation by proteasome inhibitor. IFA was performed with anti-RNA pol II. KSHV failed to form clear punctate RNA Pol II dots in nucleus in presence of Bortezomib (16 nM).