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Figure S1 GWAS using WGS data for phenotypes with normal and skewed distributions 

under the null. The phenotypes (y) were simulated under the null model (q2 = 0), where q2 is 

denoted as the proportion of variance in phenotype explained by the causal variant. In panels 

(a) and (b), the analysis was performed on y2. Since y is generated from N(0, 1), y2 follows a 

chi-squared distribution which is highly skewed. In panels (c) and (d), the phenotypes were 

adjusted by the rank-based inverse-normal transformation (INF). 

 
  



 
Figure S2 Genome-wide false positive rate for GWAS based on different genotyping 

strategies. Genome-wide false positive rate (y-axis) was calculated as the number of 

simulations with at least one false positive divided by the total number of simulations at a P-

value threshold (x-axis). Shown are the results and 95% confidence interval from 1,000 

simulations based on the UK10K-WGS data under the null hypothesis where the phenotypes 

are generated from N(0,1) without any genetic effect. The red dashed line represents a 

genome-wide false positive rate of 0.05. 

  



 
Figure S3 Genome-wide false positive rates (GWFPR) for GWAS based on different 

genotyping strategies at different INFO score thresholds to filter imputed SNPs. For imputed 

data, we removed SNPs with imputation INFO score < 0.3 (panel a) or 0.6 (panel b). The 

decrease in GWFPR with the increased threshold of INFO score is expected because the 

number of tests is smaller. Note that the false positive rate for GWAS using 1KGP-imputed 

SNPs at P < 5e-8 is still higher than expected (0.05) even if SNPs with lower INFO scores are 

filtered out. 
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Figure S4 Inflated false positive rate (FPR) in rare variant associations due to skewed 

phenotype distribution under the alternative. We have shown in the figure above (Fig. S1) that 

FPR can be inflated if the phenotype is not normally distributed under the null that there is no 

genetic effect. Here, we show that even if the residuals are normally distributed, the FPR can 

also be inflated if there is a rare variant of relatively large effect. Shown are the genome-wide 

false positive rate (GWFPR, total number of simulations with at least one false positive 

divided by the total number of simulations) before and after inverse normal transformation 

(INF), at a range of P-value thresholds. The phenotypes were simulated under an alternative 

hypothesis (q2 = 0.02) using variants on chromosome 22, and the GWAS analysis was 

performed for variants on chromosomes 1 to 21. The result has been adjusted for the length of 

genome, i.e. adjusted GWFPR = GWFPR * length (genome) / length (chromosomes 1 to 21).    
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Figure S5 χ2 test-statistics of the causal variant and its tagging variant. We simulated two 

genetic variants (MAF = 0.01 for both variants and r2 = 0.95 between the two variants) from a 

bivariate binomial distribution with n = 1,000 or 10,000. We then simulated a phenotype 

using one of the SNPs as the causal variant with q2 = 0.01 or 0.1. The simulations were 

repeated 1,000 times. Each dot represents the χ2 statistic from association analysis of the 

simulated phenotype for the causal variant plotted against that for the tagging variant (the 

variant in LD with the causal variant). The dots above the diagonal lines represent the cases 

where the tagging variant other than the causal variant was detected as the top associated 

signal in GWAS. These results demonstrate that mapping precision of GWAS depends on 

NCP, which is a function of both n and q2. 

  



 
Figure S6 Number of variants in LD with a target variant as a function of MAF. We 

randomly sampled 100,000 as target variants from the UK10K-WGS data. We then used 

GCTA (the --ld option) to calculate the number of variants in LD (r2 > 0.5 or 0.95) with each 

target variant within 100Kb distance. Each dot represents the average number in a MAF bin.  



 
 
Figure S7 Sampling variation in LD r2 and mapping precision at different thresholds of minor 

allele count (MAC). Shown in panels (a) and (b) is an example generated from simulations 

(simulating two rare variants with expected r2 value of ~0.45), which demonstrates that the 

distribution of LD r2 in a sample of 20,000 individuals is almost identical to that in a sample 

of 3,600 individuals at the same MAC threshold. This suggests that the sampling variation of 

LD r2 depends on MAC, which is a product of MAF and sample size. We investigated the 

extent to which our result was affected by the sampling variation in LD by re-calculating the 

mapping precision for rare variants with MAC > 4 in the UK10K data. The result remained 

almost exactly the same (panel c), suggesting that the low mapping precision of GWAS for 

rare variants using imputed data is not driven by the sampling variation in LD. 

  



 
Figure S8 Extended mapping precision plot. The plotted values are the same as those in 

Figure 2 except that we added the results at P < 5e-11 and extended the x-axis to 250Kb for 

common variants and 2Mb for rare variants.  

 

  



 
Figure S9 LD r2 between two variants vs. their physical distance. Results are from 2,000 

common and 2,000 rare variants randomly sampled from all the simulated causal variants in 

the UK10K-WGS data (see main text for details of the simulations). The LD r2 was calculated 

between the target variant and all the other variants within 10Mb distance. The main long-

range LD regions are 44.5–50.5Mb on chromosome 5 and 33–40Mb on chromosome 12 for 

common variants, and 43–50Mb on chromosome 8 and 89–97.5Mb on chromosome 3 for rare 

variants, consistent with those reported in the Price et al. study [1] (identified in European 

samples).  

  



 

Figure S10 Statistical power of GWAS based on imputations with different reference sample 

sizes. Power is calculated as the proportion of simulations with a least a variant at P < 5e-8. 

Shown are results from 5,000 simulations for common and rare variants respectively. 1KGP3 

(nref = 1000) and 1KGP3 (nref = 500): SNP array data imputed to a random subset of 1,000 

and 500 individuals respectively from 1KGP3.  

  



 
Figure S11 Mapping precision of GWAS using data from 1KGP3- and HRC-imputation in 

the HRS cohort. There are 8,479 unrelated individuals genotyped on ~1.7 million SNPs 

(1,451,882 common and 243,548 rare) in the HRS cohort. We left out 50,000 common and 

50,000 rare SNPs as a pool to sample causal variants for simulations and imputed the 

genotypes of the remaining SNPs to 1KGP3 and HRC using the Sanger imputation server 

(https://imputation.sanger.ac.uk/). Shown are the results from 50,000 simulations for common 

(a) and rare (b) variants respectively. In each simulation replicate, we randomly sampled a 

variant from the causal variant pool (genotyped SNPs) and simulated a quantitative phenotype 

based on the method described in the main text with q2 = 0.87% in the whole sample and q2 = 

2% in a subset of the sample (n = 3,642), and analyzed the phenotype using imputed data.  

  



 
Figure S12 Mapping precision of GWAS using data from 1KGP3- and HRC-imputation in 

the HRS and UK10K data sets. Shown are the results from 50,000 simulations with q2 = 2%.  

sHRS-HRC: a subset of the HRS genotype data (n = 3,642) imputed to HRC (nref = 32,488).  

sHRS-1KGP3: a subset of the HRS genotype data (n = 3,642) imputed to 1KGP3 (nref = 

2,504). UK10K-1KGP3: UK10K ‘array data’ (n = 3,642) imputed to 1KGP3 (nref = 2,504). In 

the UK10K simulation, mapping precision was calculated focusing only on causal variants 

that exist in the 1KPG3 data. 

  



 
Figure S13 Mapping precision of GWAS based on different genotyping strategies observed 

from simulations where the causal variants are sampled from variants available in the 

imputation references. Shown on the y-axis is the proportion of causal variants that were 

mapped to variants within a certain distance as specified on the x-axis.  

 

 

  



 
Figure S14 Statistical power of GWAS based on different genotyping strategies observed 

from simulations where the causal variants are sampled from variants available in the 

imputation references. Power is calculated as the proportion of simulations with a least a 

variant at P < 5e-8. Shown are the results from 5,000 simulations for common and rare 

variants respectively at each heritability level.  

 

  



 
Figure S15 Mapping precision of GWAS with different sample sizes and q2. The analyses 

were performed using the same method as used in Figure 2 but with different sample sizes 

and q2 values. 

 

  



 
Figure 16 Mapping precision increases with the increase of GWAS sample size. The analyses 

were performed in the genotyping data from the Health Retirement Study (HRS). The results 

are from 10,000 simulation replicates for common and rare variants respectively. In each 

simulation replicate, we randomly sampled a variant from the causal variant pool (50,000 

each) and simulated a quantitative phenotype based on the method described in the main text 

with q2 = 0.87% (NCP = ~74), and analyzed the phenotype using imputed data with a range of 

sample sizes shown on the legend. The numbers in the parentheses are the equivalent GWAS 

sample size if q2 = 0.03%.  

 

 

  



 
Figure S17 Distribution of squared correlations between WGS and 1KGP3-imputed data at 

different P-value thresholds.  Shown is squared correlation between the genotype of the 

causal variant from WGS and the best-guess genotype of the GWAS hit (at P < 5e-8 or 5e-11) 

from the 1KGP3-imputed data. 

 

  



 
Figure S18 Mapping precision of GWAS with different genotyping strategies when the 

causal variants are all at DHS.  

  



 

Figure S19 Mapping precision of GWAS using imputed data based on different SNP 

genotyping arrays. The analyses were performed using the same method as used in Figure 2 

but with different SNP genotyping arrays. Illu2M: Illumina Omni2.5; illu1M: Illumina 

OmniExpress; affy6: Affymetrix 6; affyAxiom: Affymetrix Axiom Genome-Wide EUR 

Array; coreExome: Illumina CoreExome. 

  



Table S1 Number of variants for each of the genotyping strategies after quality control. 

Genotyping strategy Number of common variants  Number of rare variants 
UK10K-WGS 8,325,271 9,287,442 

1KGP3 9,351,166 10,669,647 
1KGP1 8,897,418 7,841,795 

1KGP3-1000 9,291,256 10,037,982 
1KGP3-500 9,238,091 9,086,824 
HapMap2 2,394,254 96,854 

Common variants: MAF > 0.01; Rare variants: MAF ≤ 0.01. 
  



Table S2 Genomic inflation factors from 1000 simulations under the null model. 

Genotyping strategy Genomic inflation factors 
UK10K-WGS 1.0006 

1KGP3 1.0006 
1KGP1 1.0007 

HapMap2 1.0006 
 

  



Table S3 Number of genome-wide significant top variants for each of the genotyping 

strategies in 50,000 simulations. Genome-wide significant: p-value < 5e-8. 

Genotyping strategy Number of significant 
common variants  

Number of significant rare 
variants 

UK10K-WGS 49,976 49,627 
1KGP3 44,376 13,381 
1KGP1 43,016 9,978 

1KGP3-1000 43,733 11,920 
1KGP3-500 43,228 10,884 
HapMap2 38,359  

Common variants: MAF > 0.01; Rare variants: MAF ≤ 0.01. 

Note that the purpose of this analysis is to quantify the proportion of genome-wide significant 

top variants within a given physical distance of the corresponding causal variants. We 

therefore assigned a relatively large effect size to the simulated causal variant so that the 

variance explained by each causal variant (q2) was 2%. The expected chi-squared value for 

the causal variant is ~75 given q2 = 2% and n = 3,642, which is much larger than the genome-

wide significant level (corresponding to a chi-squared value of about 30). This explains why 

the power for GWAS using UK10K-WGS data is almost 100% (first row of the table). 

  



Table S4 Numbers of variants in UK10K-WGS in common with those in five SNP 

genotyping arrays used in simulations. 

SNP array # Variants  
Illumina CoreExome 312,264 

Affymetrix 6.0 572,172 
Affymetrix Axiom Genome-Wide EUR Array  573,241 

Illumina OmniExpress 607,344 
Illumina Omni2.5 1,540,717 
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