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Appendix A: Omitted Proofs
(Main Text) Lemma 5 Let u and v be two profiles. Then, there exists an

optimal triple (m, σ(m,u), σ(m,v)) such that the following conditions hold.

• Both σ(m,u) and σ(m,v) are sorted sequences of events.

• For all 1 ≤ i ≤ n, mi ≤ B. Thus, for all 1 ≤ i ≤ n, mi ≤ min{B, e}.
• For all 1 ≤ i ≤ n, c ∈ {u,v} and w ∈ {−,+}, co(σ(c), w, i) ≤ B.

Proof First, observe that in the formulas given in (Main Text) Lemma 3, one only

examines parameters a and d of value at most B. Thus, by (Main Text) Lem-

mas 2 and 3, if there exists an optimal triple (m, σ′(m,u), σ′(m,v)) such that for

all 1 ≤ i ≤ n, mi ≤ B, then there also exists an optimal triple (m, σ(m,u), σ(m,v))

such that σ(m,u) and σ(m,v) are sorted, and for all 1 ≤ i ≤ n, c ∈ {u,v} and

w ∈ {−,+}, co(σ(m, c), w, i) ≤ B. Thus, if is sufficient to show that there exists an

optimal triple (m, σ(m,u), σ(m,v)) such that for all 1 ≤ i ≤ n, mi ≤ B.

Let (m, σ(m,u), σ(m,v)) be an optimal triple where σ(m,u) and σ(m,v) are

sorted, which among all such triples minimizes
∑n
i=1mi. By (Main Text) Lemma 2,

there exists such a triple, and therefore (m, σ(m,u), σ(m,v)) is well-defined. We

will show that our choice of (m, σ(m,u), σ(m,v)) necessarily implies that for all

1 ≤ i ≤ n, mi ≤ B. Suppose, by way of contradiction, that this is not true. Now,

let 1 ≤ i ≤ n be an index such that mi > B. Then, σ(m,u) contains at least one

deletion, cu = (`u, hu,−1), such that `u ≤ i ≤ hu, and also σ(m,v) contains at

least one deletion, cv = (`v, hv,−1), such that `v ≤ i ≤ hv. Consider the following

cases.

1 `u ≤ `v ≤ hu ≤ hv: Let m′ be the profile obtained from m by decre-

menting by 1 the value of each entry between `v and hu. That is, m′ =

(m1, . . . ,m`v−1,m`v − 1, . . . ,mhu − 1,mhu+1, . . . ,mn). Now, in σ(m,u) re-

place cu by the event (`u, `v−1,−1), while in σ(m,v) replace cv by the event

(hu + 1, hv,−1). Let σ′(m′,u) and σ′(m′,v) denote the resulting sequences

of events.

Since σ(m,u) and σ(m,v) are sorted, so do σ′(m′,u) and σ′(m′,v). More-

over, since σ(m,u) and σ′(m′,u) are sorted, for all 1 ≤ j ≤ n, the

value of the jth entry of the profile yielded by σ(m,u) from m is 0 if

mj− co(σ(m,u),−, j) ≤ 0 and mj− co(σ(m,u),−, j)+ co(σ(m,u),+, j) oth-

erwise, while the value of the jth entry of the profile yielded by σ′(m′,u)

from m′ is 0 if m′j − co(σ′(m′,u),−, j) ≤ 0 and m′j − co(σ′(m′,u),−,
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j) + co(σ′(m′,u),+, j) otherwise. Because σ(m,u) yields u from m, we have

that uj = 0 if mj − co(σ(m,u),−, j) ≤ 0, and uj = mj − co(σ(m,u),−, j) +

co(σ(m,u),+, j) otherwise. By our definition of m′ and σ′(m′,u), if `v ≤
j ≤ hu then m′j = mj − 1, co(σ′(m′,u),−, j) = co(σ(m,u),−, j) − 1 and

co(σ′(m′,u),+, j) = co(σ(m,u),+, j), and otherwise m′j = mj , co(σ
′(m′,u),

−, j) = co(σ(m,u),−, j) and co(σ′(m′,u),+, j) = co(σ(m,u),+, j). There-

fore, if m′j − co(σ′(m′,u),−, j) ≤ 0 then uj = 0, and uj = m′j −
co(σ′(m′,u),−, j)+co(σ′(m′,u),+, j) otherwise. Since the choice of j was ar-

bitrary, we have that σ′(m′,u) yields u from m′. Symmetrically, we have that

σ′(m′,v) yields v from m′. We thus conclude that (m′, σ(m,u), σ′(m′,v)) is

an optimal triple. However,
∑n
i=1m

′
i <

∑n
i=1mi, which contradicts the choice

of m.

2 `v ≤ `u ≤ hv ≤ hu: This case is symmetric to the previous one, and therefore

also leads to a contradiction.

3 `u ≤ `v ≤ hv ≤ hu: Let m′ be the CNP obtained from m by decre-

menting by 1 the value of each entry between `v and hv. That is, m′ =

(m1, . . . ,m`v−1,m`v−1, . . . ,mhv−1,mhv+1, . . . ,mn). Now, in σ(m,u) replace

cu by the events (`u, `v−1,−1) and (hv +1, hu,−1), while in σ(m,v) remove

cv. Let σ′(m′,u) and σ′(m′,v) denote the resulting sequences of events.

Since σ(m,u) and σ(m,v) are sorted, so do σ′(m′,u) and σ′(m′,v). More-

over, since σ(m,u) and σ′(m′,u) are sorted, for all 1 ≤ j ≤ n, the

value of the jst entry of the profile yielded by σ(m,u) from m is 0 if

mj− co(σ(m,u),−, j) ≤ 0 and mj− co(σ(m,u),−, j)+ co(σ(m,u),+, j) oth-

erwise, while the value of the jst entry of the profile yielded by σ′(m′,u)

from m′ is 0 if m′j − co(σ′(m′,u),−, j) ≤ 0 and m′j − co(σ′(m′,u),−,
j) + co(σ′(m′,u),+, j) otherwise. Because σ(m,u) yields u from m, we have

that uj = 0 if mj − co(σ(m,u),−, j) ≤ 0, and uj = mj − co(σ(m,u),−, j) +

co(σ(m,u),+, j) otherwise. By our definition of m′ and σ′(m′,u), if `v ≤
j ≤ hv then m′j = mj − 1, co(σ′(m′,u),−, j) = co(σ(m,u),−, j) − 1 and

co(σ′(m′,u),+, j) = co(σ(m,u),+, j), and otherwise m′j = mj , co(σ
′(m′,u),

−, j) = co(σ(m,u),−, j) and co(σ′(m′,u),+, j) = co(σ(m,u),+, j). There-

fore, if m′j − co(σ′(m′,u),−, j) ≤ 0 then uj = 0, and uj = m′j −
co(σ′(m′,u),−, j) + co(σ′(m′,u),+, j) otherwise. Since the choice of j was

arbitrary, we have that σ′(m′,u) yields u from m′. Replacing u and u′ by v

and v′, respectively, in the arguments above shows also that σ(m,v)′ yields v

from m′. We thus conclude that (m′, σ′(m′,u), σ′(m′,v)) is an optimal triple.

However,
∑n
i=1m

′
i <

∑n
i=1mi, which contradicts the choice of m.

4 `v ≤ `u ≤ hu ≤ hv: This case is symmetric to the previous one, and therefore

also leads to a contradiction.

Since the case analysis is exhaustive, and each case leads to a contradiction, we

conclude that the lemma is correct.

Appendix B: Copy-Number Triplet Problem: ILP
In this section we give an ILP formulation for CN3 that consists of only O(n) vari-

ables and O(n) constraints. For every 1 ≤ i ≤ n and w ∈ {u,v}, we introduce the

integer variables 1 ≤ mi ≤ min{B, e} and 0 ≤ dwi , a
w
i , s

w
i , t

w
i ≤ B. The mi vari-

ables correspond to the copy numbers of the parent profile of u and v. The number
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of deletions (resp. amplifications) transforming mi to wi ∈ {ui,vi} is represented

by the variables dwi (resp. awi ). The variables swi (resp. twi ) capture the number of

deletions (resp. amplifications) that start at position i in the sequence from mi to

wi ∈ {ui,vi}.
Here we have the restriction 1 ≤ mi ≤ B since by (Main Text) Lemma 5 we

can assume that each position of the profile m is upper-bounded by B, while by

(Main Text) Lemma 1 we can assume it is lower-bounded by 1. For every w ∈ {u,v},
denote aw0 = dw0 = 0.

For every 1 ≤ i ≤ n and w ∈ {u,v}, we have the following constraints:

mi ≤ dwi wi = 0 (1)

dwi ≤ mi − 1 wi > 0 (2)

mi − dwi + awi = wi wi > 0 (3)

swi ≥ dwi − dwi−1 (4)

twi ≥ awi − awi−1 (5)

Constraints 1, 2 and 3 ensure that the amplification/deletion variables represent

a valid transformation of m into w. Constraints 4 and 5 capture the additional cost

of new deletions/amplifications starting at index i. That is, dwi−1 deletions (resp.

awi−1 amplifications) can be extended to position i at no additional cost.

The objective function is:

F (u,v) = min
∑

w∈{u,v}

n∑
i=1

(swi + twi ) (6)

Lemma 10 For two profiles u and v, F (u,v) = ∆(u,v).

Proof On the one hand, let (m̂, σ(m̂,u), σ(m̂,v)) be an optimal triple. We assign

values to the ILP variables as follows. First, for every 1 ≤ i ≤ n, let mi = m̂i.

Now, for every 1 ≤ i ≤ n and w ∈ {u,v}, let dwi = co(σ(m̂,w),−, i), awi =

co(σ(m̂,w),+, i), swi = max{co(σ(m̂,w),−, i)− co(σ(m̂,w),−, i− 1), 0} and twi =

max{co(σ(m̂,w),+, i)− co(σ(m̂,w),+, i− 1), 0}.
Since (m̂, σ(m̂,u), σ(m̂,u)) is an optimal triple, we have that for every 1 ≤ i ≤

n and w ∈ {u,v}, if wi = 0 then m̂i ≤ co(σ(m̂,w),−, i), and if wi > 0 then

co(σ(m̂,w),−, i) ≤ m̂i − 1 and m̂i − co(σ(m̂,w),−, i) + co(σ(m̂,w),+, i) = wi.

Thus, by our assignment, all of the constraints are satisfied.

We now claim that under our assignment, for all w ∈ {u,v}, δσ(m̂,w) =∑n
i=1 s

w
i + twi , and therefore F (u, v) ≤ ∆(u,v). Indeed, by (Main Text) Lemma 3,

δσ(m̂,w) = G[n, dwn , a
w
n ] = G[n− 1, dwn−1, a

w
n−1] + max{dwn − dwn−1, 0}+ max{awn −

awn−1, 0} = . . . =
∑n
i=1(max{dwi − dwi−1, 0}+ max{awi − awi−1, 0}).

On the other hand, let m,d,a, s, t be a solution to the ILP. Without loss of

generality, we assume that for every 1 ≤ i ≤ n and w ∈ {u,v}, swi = max{dwi −
dwi−1, 0} and twi = max{awi − awi−1, 0}. We construct a solution (m̂, σ(m̂,u), σ(m̂,

u)) to the input instance of CN3 as follows. For every 1 ≤ i ≤ n, let m̂i = mi. For
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every w ∈ {u,v}, to construct σ(m̂,w), consider the following process. Start with

σ(m̂,w) = () and an empty queue Q. For every 1 ≤ i ≤ n, if swi > 0 push the index

i into Q swi times. Conversely, if dwi − dwi−1 < 0, pop dwi−1− dwi indices from Q, and

for each popped index j append (j, i,−1) to σ(m̂,w). For each index j remaining in

Q in the end, append (j, n,−1) to σ(m̂,w). Similarly, add amplifications to σ(m̂,w)

using the twi ’s and awi ’s.

By our construction, the number of deletions (resp. amplifications) affecting each

index i is exactly dwi (resp. awi ), and by the first three constraints in the ILP

formulation, σ(m̂,w) yields w from m. To conclude the proof, we show that

δσ(m̂,w) =
∑n
i=1 s

w
i + twi , and therefore ∆(u,v) ≤ F (u,v). Indeed, by our con-

struction, swi deletions (resp. twi amplifications) are added to σ(m̂,w) for each i

such that swi > 0 (resp. twi > 0).

Next we show that not all variables must be explicitly restricted to be integers in

our ILP formulation.

Lemma 11 If the mi variables are integers, then there is a solution where all

variables are integers.

Proof Let m,d,a, s, t be a solution to the ILP such that mi is an integer for every

1 ≤ i ≤ n. We consider the following rounding process for any profile w ∈ {u,v}
and for every i starting from i = n down to i = 1.

If wi = 0, set awi
′ = bawi c and twi = max{awi

′ − awi−1, 0}. Then, set dwi
′ =

max{bdwi c,mi} ≤ dwi and swi = max{dwi
′ − dwi−1, 0}. Both adjustments satisfy all

the constraints and can only improve the objective function.

If wi > 0 then mi − wi = dwi − awi is an integer and the remainder of dwi , a
w
i

from an integer is the same. We round down dwi , a
w
i to the next smallest integer

thus keeping the difference dwi − awi and satisfying bdwi c ≤ mi− 1. Next, we update

swi = max{bdwi c − dwi−1, 0} and twi = max{bawi c − awi−1, 0}. Again, we have that all

values are integers and the objective function can only be improved.

From Lemma 11, we have that only the mi variables must be restricted to be

integers and all of the other variables can be relaxed. We note that in the majority

of our simulation, a fully relaxed LP formulation gave an integral solution. Moreover,

a gap between the ILP solution and the relaxed LP solution was seldom observed.

We further hypothesize (according to our experiments) that the relaxed LP has an

half-integral solution. We also note that our formulation can be naturally extended

to handle more than two profiles. That is, given a set of profiles Y , we can find a

“median” profile m, i.e. profile m that minimizes the sum of costs
∑

y∈Y δσ(m,y).

Appendix C: Copy-Number Tree Problem: Complete ILP

The ILP formulation is reproduced in its entirety below. We define

M = blog2(e)c+ 1.
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min
∑

(vi,vj)∈E(G)

∑
1≤s≤n

wi,j,s

∑
i∈N−(j)

xi,j = 1 1 < j ≤ 2k − 1

∑
j∈N+(i)

xi,j = 2 1 ≤ i < k

y1,s = 2 1 ≤ s ≤ n

yi,s = ci−k+1,s k ≤ i ≤ 2k − 1, 1 ≤ s ≤ n

yi,s =

M∑
q=0

2q · zi,s,q 1 ≤ i ≤ 2k − 1, 1 ≤ s ≤ n

ȳi,s ≤
M∑
q=0

zi,s,q 1 ≤ i ≤ 2k − 1, 1 ≤ s ≤ n

ȳi,s ≥ zi,s,q 1 ≤ i ≤ 2k − 1, 1 ≤ s ≤ n, 0 ≤ q ≤M

yj,s ≤ yi,s − di,j,s + ai,j,s + 2e(2− ȳi,s − ȳj,s) 1 ≤ s ≤ n, (vi, vj) ∈ E(G)

yj,s + 2e(2− ȳi,s − ȳj,s) ≥ yi,s − di,j,s + ai,j,s 1 ≤ s ≤ n, (vi, vj) ∈ E(G)

di,j,s ≤ yi,s − 1 + (e + 1)(2− ȳi,s − ȳj,s) 1 ≤ s ≤ n, (vi, vj) ∈ E(G)

yi,s ≤ di,j,s + e(1− ȳi,s + ȳj,s) 1 ≤ s ≤ n, (vi, vj) ∈ E(G)

(1− xi,j) + ȳi,s ≥ ȳj,s 1 ≤ s ≤ n, (vi, vj) ∈ E(G)

āi,j,s ≥ ai,j,s − ai,j,s−1 1 ≤ s ≤ n, (vi, vj) ∈ E(G)

d̄i,j,s ≥ di,j,s − di,j,s−1 1 ≤ s ≤ n, (vi, vj) ∈ E(G)

ai,j,0 = 0 (vi, vj) ∈ E(G)

di,j,0 = 0 (vi, vj) ∈ E(G)

wi,j,s ≥ āi,j,s + d̄i,j,s − (1− xi,j) · 2e 1 ≤ s ≤ n, (vi, vj) ∈ E(G)

xi,j ∈ {0, 1} (vi, vj) ∈ E(G)

yi,s ∈ {0, . . . , e} 1 ≤ i ≤ 2k − 1, 1 ≤ s ≤ n

ȳi,s ∈ {0, 1} 1 ≤ i ≤ 2k − 1, 1 ≤ s ≤ n

zi,s,q ∈ {0, 1} 1 ≤ i ≤ 2k − 1, 1 ≤ s ≤ n, 0 ≤ q ≤M

ai,j,s, di,j,s ∈ {0, . . . , e} 1 ≤ s ≤ n, (vi, vj) ∈ E(G)

āi,j,s, d̄i,j,s ∈ {0, . . . , e} 1 ≤ s ≤ n, (vi, vj) ∈ E(G)

wi,j,s ∈ {0, . . . , 2e} 1 ≤ s ≤ n, (vi, vj) ∈ E(G)

Appendix D: Supplemental Results
We show in Fig. S1 average running times of the DP and ILP algorithms for simu-

lated CN3 instances as a function of n and B. Fig. S1 shows violin plots of running

time, tree distance and optimality gap for simulated CNT instances.
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Figure S1 Average running times of the DP and ILP algorithms for CN3 as a
function of n and B. DP algorithms are represented by dashed lines while ILP
algorithms are represented by straight lines. All algorithms were implemented in
Python and the ILP was solved using GUROBI v6.0.5 (www.gurobi.com). We ran
the simulated instances on a server with 16 2.6 GHz CPUs and 128 GB of RAM.
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Figure S2 Violin plot showing the optimality gap for varying number k of leaves
and number n of positions. Median values are indicated by a white dot in each
plot.
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Figure S3 Violin plot showing the running time in seconds (log scale) for varying
number k of leaves and number n of positions. Median values are indicated by a
white dot in each plot.
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Figure S4 Violin plot showing the normalized Robinson-Foulds (RF) metric for
varying number k of leaves and number n of positions. Median values are
indicated by a white dot in each plot.


