RESEARCH – APPENDIX

Complexity and Algorithms for Copy-Number Evolution Problems

Mohammed El-Kebir^{1,2}, Benjamin J Raphael^{1,2*}, Ron Shamir^{*3}, Roded Sharan³, Simone Zaccaria^{1,2,4}, Meirav Zehavi³ and Ron Zeira³

*Correspondence: braphael@cs.princeton.edu; rshamir@post.tau.ac.il ¹Department of Computer Science, Princeton University, Princeton, NJ 08540, USA Full list of author information is available at the end of the article

Appendix A: Omitted Proofs

(Main Text) Lemma 5 Let u and v be two profiles. Then, there exists an optimal triple $(\mathbf{m}, \sigma(\mathbf{m}, \mathbf{u}), \sigma(\mathbf{m}, \mathbf{v}))$ such that the following conditions hold.

- Both $\sigma(\mathbf{m}, \mathbf{u})$ and $\sigma(\mathbf{m}, \mathbf{v})$ are sorted sequences of events.
- For all $1 \le i \le n$, $m_i \le B$. Thus, for all $1 \le i \le n$, $m_i \le \min\{B, e\}$.
- For all $1 \le i \le n$, $\mathbf{c} \in {\mathbf{u}, \mathbf{v}}$ and $w \in {-, +}$, $co(\sigma(\mathbf{c}), w, i) \le B$.

Proof First, observe that in the formulas given in (Main Text) Lemma 3, one only examines parameters a and d of value at most B. Thus, by (Main Text) Lemmas 2 and 3, if there exists an optimal triple $(\mathbf{m}, \sigma'(\mathbf{m}, \mathbf{u}), \sigma'(\mathbf{m}, \mathbf{v}))$ such that for all $1 \leq i \leq n, m_i \leq B$, then there also exists an optimal triple $(\mathbf{m}, \sigma(\mathbf{m}, \mathbf{u}), \sigma(\mathbf{m}, \mathbf{v}))$ such that $\sigma(\mathbf{m}, \mathbf{u})$ and $\sigma(\mathbf{m}, \mathbf{v})$ are sorted, and for all $1 \leq i \leq n, \mathbf{c} \in {\mathbf{u}, \mathbf{v}}$ and $w \in {-,+}, co(\sigma(\mathbf{m}, \mathbf{c}), w, i) \leq B$. Thus, if is sufficient to show that there exists an optimal triple $(\mathbf{m}, \sigma(\mathbf{m}, \mathbf{u}), \sigma(\mathbf{m}, \mathbf{v}))$ such that for all $1 \leq i \leq n, m_i \leq B$.

Let $(\mathbf{m}, \sigma(\mathbf{m}, \mathbf{u}), \sigma(\mathbf{m}, \mathbf{v}))$ be an optimal triple where $\sigma(\mathbf{m}, \mathbf{u})$ and $\sigma(\mathbf{m}, \mathbf{v})$ are sorted, which among all such triples minimizes $\sum_{i=1}^{n} m_i$. By (Main Text) Lemma 2, there exists such a triple, and therefore $(\mathbf{m}, \sigma(\mathbf{m}, \mathbf{u}), \sigma(\mathbf{m}, \mathbf{v}))$ is well-defined. We will show that our choice of $(\mathbf{m}, \sigma(\mathbf{m}, \mathbf{u}), \sigma(\mathbf{m}, \mathbf{v}))$ necessarily implies that for all $1 \leq i \leq n, m_i \leq B$. Suppose, by way of contradiction, that this is not true. Now, let $1 \leq i \leq n$ be an index such that $m_i > B$. Then, $\sigma(\mathbf{m}, \mathbf{u})$ contains at least one deletion, $c^{\mathbf{u}} = (\ell^{\mathbf{u}}, h^{\mathbf{u}}, -1)$, such that $\ell^{\mathbf{u}} \leq i \leq h^{\mathbf{u}}$, and also $\sigma(\mathbf{m}, \mathbf{v})$ contains at least one deletion, $c^{\mathbf{v}} = (\ell^{\mathbf{v}}, h^{\mathbf{v}}, -1)$, such that $\ell^{\mathbf{v}} \leq i \leq h^{\mathbf{v}}$. Consider the following cases.

1 $\ell^{\mathbf{u}} \leq \ell^{\mathbf{v}} \leq h^{\mathbf{u}} \leq h^{\mathbf{v}}$: Let \mathbf{m}' be the profile obtained from \mathbf{m} by decrementing by 1 the value of each entry between $\ell^{\mathbf{v}}$ and $h^{\mathbf{u}}$. That is, $\mathbf{m}' = (m_1, \ldots, m_{\ell^{\mathbf{v}}-1}, m_{\ell^{\mathbf{v}}} - 1, \ldots, m_{h^{\mathbf{u}}} - 1, m_{h^{\mathbf{u}}+1}, \ldots, m_n)$. Now, in $\sigma(\mathbf{m}, \mathbf{u})$ replace $c^{\mathbf{u}}$ by the event $(\ell^{\mathbf{u}}, \ell^{\mathbf{v}} - 1, -1)$, while in $\sigma(\mathbf{m}, \mathbf{v})$ replace $c^{\mathbf{v}}$ by the event $(h^{\mathbf{u}} + 1, h^{\mathbf{v}}, -1)$. Let $\sigma'(\mathbf{m}', \mathbf{u})$ and $\sigma'(\mathbf{m}', \mathbf{v})$ denote the resulting sequences of events.

Since $\sigma(\mathbf{m}, \mathbf{u})$ and $\sigma(\mathbf{m}, \mathbf{v})$ are sorted, so do $\sigma'(\mathbf{m}', \mathbf{u})$ and $\sigma'(\mathbf{m}', \mathbf{v})$. Moreover, since $\sigma(\mathbf{m}, \mathbf{u})$ and $\sigma'(\mathbf{m}', \mathbf{u})$ are sorted, for all $1 \leq j \leq n$, the value of the j^{th} entry of the profile yielded by $\sigma(\mathbf{m}, \mathbf{u})$ from \mathbf{m} is 0 if $m_j - co(\sigma(\mathbf{m}, \mathbf{u}), -, j) \leq 0$ and $m_j - co(\sigma(\mathbf{m}, \mathbf{u}), -, j) + co(\sigma(\mathbf{m}, \mathbf{u}), +, j)$ otherwise, while the value of the j^{th} entry of the profile yielded by $\sigma'(\mathbf{m}', \mathbf{u})$ from \mathbf{m}' is 0 if $m'_j - co(\sigma'(\mathbf{m}', \mathbf{u}), -, j) \leq 0$ and $m'_j - co(\sigma'(\mathbf{m}', \mathbf{u}), -,$ $j) + co(\sigma'(\mathbf{m}', \mathbf{u}), +, j)$ otherwise. Because $\sigma(\mathbf{m}, \mathbf{u})$ yields \mathbf{u} from \mathbf{m} , we have that $u_j = 0$ if $m_j - co(\sigma(\mathbf{m}, \mathbf{u}), -, j) \leq 0$, and $u_j = m_j - co(\sigma(\mathbf{m}, \mathbf{u}), -, j) + co(\sigma(\mathbf{m}, \mathbf{u}), +, j)$ otherwise. By our definition of \mathbf{m}' and $\sigma'(\mathbf{m}', \mathbf{u})$, if $\ell^{\mathbf{v}} \leq j \leq h^{\mathbf{u}}$ then $m'_j = m_j - 1$, $co(\sigma'(\mathbf{m}', \mathbf{u}), -, j) = co(\sigma(\mathbf{m}, \mathbf{u}), -, j) - 1$ and $co(\sigma'(\mathbf{m}', \mathbf{u}), +, j) = co(\sigma(\mathbf{m}, \mathbf{u}), +, j)$, and otherwise $m'_j = m_j$, $co(\sigma'(\mathbf{m}', \mathbf{u}), -, j) = co(\sigma(\mathbf{m}, \mathbf{u}), -, j)$ and $co(\sigma'(\mathbf{m}', \mathbf{u}), +, j) = co(\sigma(\mathbf{m}, \mathbf{u}), +, j)$. Therefore, if $m'_j - co(\sigma'(\mathbf{m}', \mathbf{u}), -, j) \leq 0$ then $u_j = 0$, and $u_j = m'_j - co(\sigma'(\mathbf{m}', \mathbf{u}), -, j) + co(\sigma'(\mathbf{m}', \mathbf{u}), +, j)$ otherwise. Since the choice of j was arbitrary, we have that $\sigma'(\mathbf{m}', \mathbf{u})$ yields \mathbf{u} from \mathbf{m}' . Symmetrically, we have that $\sigma'(\mathbf{m}', \mathbf{v})$ yields \mathbf{v} from \mathbf{m}' . We thus conclude that $(\mathbf{m}', \sigma(\mathbf{m}, \mathbf{u}), \sigma'(\mathbf{m}', \mathbf{v}))$ is an optimal triple. However, $\sum_{i=1}^n m'_i < \sum_{i=1}^n m_i$, which contradicts the choice of \mathbf{m} .

- 2 $\ell^{\mathbf{v}} \leq \ell^{\mathbf{u}} \leq h^{\mathbf{v}} \leq h^{\mathbf{u}}$: This case is symmetric to the previous one, and therefore also leads to a contradiction.
- 3 $\ell^{\mathbf{u}} \leq \ell^{\mathbf{v}} \leq h^{\mathbf{v}} \leq h^{\mathbf{u}}$: Let \mathbf{m}' be the CNP obtained from \mathbf{m} by decrementing by 1 the value of each entry between $\ell^{\mathbf{v}}$ and $h^{\mathbf{v}}$. That is, $\mathbf{m}' =$ $(m_1,\ldots,m_{\ell^{\mathbf{v}}-1},m_{\ell^{\mathbf{v}}}-1,\ldots,m_{h^{\mathbf{v}}}-1,m_{h^{\mathbf{v}}+1},\ldots,m_n)$. Now, in $\sigma(\mathbf{m},\mathbf{u})$ replace $c^{\mathbf{u}}$ by the events $(\ell^{\mathbf{u}}, \ell^{\mathbf{v}}-1, -1)$ and $(h^{\mathbf{v}}+1, h^{\mathbf{u}}, -1)$, while in $\sigma(\mathbf{m}, \mathbf{v})$ remove $c^{\mathbf{v}}$. Let $\sigma'(\mathbf{m}', \mathbf{u})$ and $\sigma'(\mathbf{m}', \mathbf{v})$ denote the resulting sequences of events. Since $\sigma(\mathbf{m}, \mathbf{u})$ and $\sigma(\mathbf{m}, \mathbf{v})$ are sorted, so do $\sigma'(\mathbf{m}', \mathbf{u})$ and $\sigma'(\mathbf{m}', \mathbf{v})$. Moreover, since $\sigma(\mathbf{m}, \mathbf{u})$ and $\sigma'(\mathbf{m}', \mathbf{u})$ are sorted, for all $1 \leq j \leq n$, the value of the j^{st} entry of the profile yielded by $\sigma(\mathbf{m}, \mathbf{u})$ from \mathbf{m} is 0 if $m_j - co(\sigma(\mathbf{m}, \mathbf{u}), -, j) \leq 0$ and $m_j - co(\sigma(\mathbf{m}, \mathbf{u}), -, j) + co(\sigma(\mathbf{m}, \mathbf{u}), +, j)$ otherwise, while the value of the j^{st} entry of the profile yielded by $\sigma'(\mathbf{m}', \mathbf{u})$ from \mathbf{m}' is 0 if $m_j' - co(\sigma'(\mathbf{m}', \mathbf{u}), -, j) \leq 0$ and $m_j' - co(\sigma'(\mathbf{m}', \mathbf{u}), -, j)$ $j + co(\sigma'(\mathbf{m}', \mathbf{u}), +, j)$ otherwise. Because $\sigma(\mathbf{m}, \mathbf{u})$ yields **u** from **m**, we have that $u_j = 0$ if $m_j - co(\sigma(\mathbf{m}, \mathbf{u}), -, j) \leq 0$, and $u_j = m_j - co(\sigma(\mathbf{m}, \mathbf{u}), -, j) + co(\sigma(\mathbf{m}, \mathbf{u}), -, j)$ $co(\sigma(\mathbf{m},\mathbf{u}),+,j)$ otherwise. By our definition of \mathbf{m}' and $\sigma'(\mathbf{m}',\mathbf{u})$, if $\ell^{\mathbf{v}} \leq co(\sigma(\mathbf{m},\mathbf{u}),+,j)$ $j \leq h^{\mathbf{v}}$ then $m'_j = m_j - 1$, $co(\sigma'(\mathbf{m}', \mathbf{u}), -, j) = co(\sigma(\mathbf{m}, \mathbf{u}), -, j) - 1$ and $co(\sigma'(\mathbf{m}',\mathbf{u}),+,j) = co(\sigma(\mathbf{m},\mathbf{u}),+,j)$, and otherwise $m'_j = m_j$, $co(\sigma'(\mathbf{m}',\mathbf{u}),$ $(-, j) = co(\sigma(\mathbf{m}, \mathbf{u}), -, j)$ and $co(\sigma'(\mathbf{m}', \mathbf{u}), +, j) = co(\sigma(\mathbf{m}, \mathbf{u}), +, j)$. Therefore, if $m'_j - co(\sigma'(\mathbf{m}', \mathbf{u}), -, j) \leq 0$ then $u_j = 0$, and $u_j = m'_j - m'_j$ $co(\sigma'(\mathbf{m}',\mathbf{u}),-,j)+co(\sigma'(\mathbf{m}',\mathbf{u}),+,j)$ otherwise. Since the choice of j was arbitrary, we have that $\sigma'(\mathbf{m}', \mathbf{u})$ yields **u** from **m**'. Replacing **u** and **u**' by **v** and \mathbf{v}' , respectively, in the arguments above shows also that $\sigma(\mathbf{m}, \mathbf{v})'$ yields \mathbf{v} from m'. We thus conclude that $(\mathbf{m}', \sigma'(\mathbf{m}', \mathbf{u}), \sigma'(\mathbf{m}', \mathbf{v}))$ is an optimal triple. However, $\sum_{i=1}^{n} m'_i < \sum_{i=1}^{n} m_i$, which contradicts the choice of **m**.
- 4 $\ell^{\mathbf{v}} \leq \ell^{\mathbf{u}} \leq h^{\mathbf{u}} \leq h^{\mathbf{v}}$: This case is symmetric to the previous one, and therefore also leads to a contradiction.

Since the case analysis is exhaustive, and each case leads to a contradiction, we conclude that the lemma is correct. $\hfill \Box$

Appendix B: Copy-Number Triplet Problem: ILP

In this section we give an ILP formulation for CN3 that consists of only O(n) variables and O(n) constraints. For every $1 \le i \le n$ and $\mathbf{w} \in \{\mathbf{u}, \mathbf{v}\}$, we introduce the integer variables $1 \le m_i \le \min\{B, e\}$ and $0 \le d_i^{\mathbf{w}}, a_i^{\mathbf{w}}, s_i^{\mathbf{w}}, t_i^{\mathbf{w}} \le B$. The m_i variables correspond to the copy numbers of the parent profile of \mathbf{u} and \mathbf{v} . The number

of deletions (resp. amplifications) transforming m_i to $\mathbf{w}_i \in {\{\mathbf{u}_i, \mathbf{v}_i\}}$ is represented by the variables $d_i^{\mathbf{w}}$ (resp. $a_i^{\mathbf{w}}$). The variables $s_i^{\mathbf{w}}$ (resp. $t_i^{\mathbf{w}}$) capture the number of deletions (resp. amplifications) that start at position *i* in the sequence from m_i to $\mathbf{w}_i \in {\{\mathbf{u}_i, \mathbf{v}_i\}}$.

Here we have the restriction $1 \leq m_i \leq B$ since by (Main Text) Lemma 5 we can assume that each position of the profile **m** is upper-bounded by B, while by (Main Text) Lemma 1 we can assume it is lower-bounded by 1. For every $\mathbf{w} \in {\mathbf{u}, \mathbf{v}}$, denote $a_0^{\mathbf{w}} = d_0^{\mathbf{w}} = 0$.

For every $1 \le i \le n$ and $\mathbf{w} \in {\mathbf{u}, \mathbf{v}}$, we have the following constraints:

$$s_i^{\mathbf{w}} \ge d_i^{\mathbf{w}} - d_{i-1}^{\mathbf{w}} \tag{4}$$

$$t_i^{\mathbf{w}} \ge a_i^{\mathbf{w}} - a_{i-1}^{\mathbf{w}} \tag{5}$$

Constraints 1, 2 and 3 ensure that the amplification/deletion variables represent a valid transformation of m into **w**. Constraints 4 and 5 capture the additional cost of new deletions/amplifications starting at index i. That is, $d_{i-1}^{\mathbf{w}}$ deletions (resp. $a_{i-1}^{\mathbf{w}}$ amplifications) can be extended to position i at no additional cost.

The objective function is:

$$F(\mathbf{u}, \mathbf{v}) = \min \sum_{\mathbf{w} \in \{\mathbf{u}, \mathbf{v}\}} \sum_{i=1}^{n} (s_i^{\mathbf{w}} + t_i^{\mathbf{w}})$$
(6)

Lemma 10 For two profiles **u** and **v**, $F(\mathbf{u}, \mathbf{v}) = \Delta(\mathbf{u}, \mathbf{v})$.

Proof On the one hand, let $(\hat{\mathbf{m}}, \sigma(\hat{\mathbf{m}}, \mathbf{u}), \sigma(\hat{\mathbf{m}}, \mathbf{v}))$ be an optimal triple. We assign values to the ILP variables as follows. First, for every $1 \leq i \leq n$, let $m_i = \hat{m}_i$. Now, for every $1 \leq i \leq n$ and $\mathbf{w} \in {\mathbf{u}, \mathbf{v}}$, let $d_i^{\mathbf{w}} = co(\sigma(\hat{\mathbf{m}}, \mathbf{w}), -, i), a_i^{\mathbf{w}} = co(\sigma(\hat{\mathbf{m}}, \mathbf{w}), +, i), s_i^{\mathbf{w}} = \max\{co(\sigma(\hat{\mathbf{m}}, \mathbf{w}), -, i) - co(\sigma(\hat{\mathbf{m}}, \mathbf{w}), -, i - 1), 0\}$ and $t_i^{\mathbf{w}} = \max\{co(\sigma(\hat{\mathbf{m}}, \mathbf{w}), +, i) - co(\sigma(\hat{\mathbf{m}}, \mathbf{w}), +, i - 1), 0\}$.

Since $(\hat{\mathbf{m}}, \sigma(\hat{\mathbf{m}}, \mathbf{u}), \sigma(\hat{\mathbf{m}}, \mathbf{u}))$ is an optimal triple, we have that for every $1 \leq i \leq n$ and $\mathbf{w} \in {\mathbf{u}, \mathbf{v}}$, if $w_i = 0$ then $\hat{m}_i \leq co(\sigma(\hat{\mathbf{m}}, \mathbf{w}), -, i)$, and if $w_i > 0$ then $co(\sigma(\hat{\mathbf{m}}, \mathbf{w}), -, i) \leq \hat{m}_i - 1$ and $\hat{m}_i - co(\sigma(\hat{\mathbf{m}}, \mathbf{w}), -, i) + co(\sigma(\hat{\mathbf{m}}, \mathbf{w}), +, i) = w_i$. Thus, by our assignment, all of the constraints are satisfied.

We now claim that under our assignment, for all $\mathbf{w} \in {\{\mathbf{u}, \mathbf{v}\}}, \ \delta_{\sigma}(\hat{\mathbf{m}}, \mathbf{w}) = \sum_{i=1}^{n} s_{i}^{\mathbf{w}} + t_{i}^{\mathbf{w}}$, and therefore $F(u, v) \leq \Delta(\mathbf{u}, \mathbf{v})$. Indeed, by (Main Text) Lemma 3, $\delta_{\sigma}(\hat{\mathbf{m}}, \mathbf{w}) = G[n, d_{n}^{\mathbf{w}}, a_{n}^{\mathbf{w}}] = G[n-1, d_{n-1}^{\mathbf{w}}, a_{n-1}^{\mathbf{w}}] + \max\{d_{n}^{\mathbf{w}} - d_{n-1}^{\mathbf{w}}, 0\} + \max\{a_{n}^{\mathbf{w}} - a_{n-1}^{\mathbf{w}}, 0\} = \ldots = \sum_{i=1}^{n} (\max\{d_{i}^{\mathbf{w}} - d_{i-1}^{\mathbf{w}}, 0\} + \max\{a_{i}^{\mathbf{w}} - a_{i-1}^{\mathbf{w}}, 0\}).$

On the other hand, let $\mathbf{m}, \mathbf{d}, \mathbf{a}, \mathbf{s}, \mathbf{t}$ be a solution to the ILP. Without loss of generality, we assume that for every $1 \leq i \leq n$ and $\mathbf{w} \in {\mathbf{u}, \mathbf{v}}$, $s_i^{\mathbf{w}} = \max\{d_i^{\mathbf{w}} - d_{i-1}^{\mathbf{w}}, 0\}$ and $t_i^{\mathbf{w}} = \max\{a_i^{\mathbf{w}} - a_{i-1}^{\mathbf{w}}, 0\}$. We construct a solution $(\hat{\mathbf{m}}, \sigma(\hat{\mathbf{m}}, \mathbf{u}), \sigma(\hat{\mathbf{m}}, \mathbf{u}))$ to the input instance of CN3 as follows. For every $1 \leq i \leq n$, let $\hat{m}_i = m_i$. For

every $\mathbf{w} \in {\mathbf{u}, \mathbf{v}}$, to construct $\sigma(\hat{\mathbf{m}}, \mathbf{w})$, consider the following process. Start with $\sigma(\hat{\mathbf{m}}, \mathbf{w}) = ()$ and an empty queue Q. For every $1 \le i \le n$, if $s_i^{\mathbf{w}} > 0$ push the index i into $Q \ s_i^{\mathbf{w}}$ times. Conversely, if $d_i^{\mathbf{w}} - d_{i-1}^{\mathbf{w}} < 0$, pop $d_{i-1}^{\mathbf{w}} - d_i^{\mathbf{w}}$ indices from Q, and for each popped index j append (j, i, -1) to $\sigma(\hat{\mathbf{m}}, \mathbf{w})$. For each index j remaining in Q in the end, append (j, n, -1) to $\sigma(\hat{\mathbf{m}}, \mathbf{w})$. Similarly, add amplifications to $\sigma(\hat{\mathbf{m}}, \mathbf{w})$ using the $t_i^{\mathbf{w}}$'s and $a_i^{\mathbf{w}}$'s.

By our construction, the number of deletions (resp. amplifications) affecting each index *i* is exactly $d_i^{\mathbf{w}}$ (resp. $a_i^{\mathbf{w}}$), and by the first three constraints in the ILP formulation, $\sigma(\hat{\mathbf{m}}, \mathbf{w})$ yields \mathbf{w} from \mathbf{m} . To conclude the proof, we show that $\delta_{\sigma}(\hat{\mathbf{m}}, \mathbf{w}) = \sum_{i=1}^{n} s_i^{\mathbf{w}} + t_i^{\mathbf{w}}$, and therefore $\Delta(\mathbf{u}, \mathbf{v}) \leq F(\mathbf{u}, \mathbf{v})$. Indeed, by our construction, $s_i^{\mathbf{w}}$ deletions (resp. $t_i^{\mathbf{w}}$ amplifications) are added to $\sigma(\hat{\mathbf{m}}, \mathbf{w})$ for each *i* such that $s_i^{\mathbf{w}} > 0$ (resp. $t_i^{\mathbf{w}} > 0$).

Next we show that not all variables must be explicitly restricted to be integers in our ILP formulation.

Lemma 11 If the m_i variables are integers, then there is a solution where all variables are integers.

Proof Let $\mathbf{m}, \mathbf{d}, \mathbf{a}, \mathbf{s}, \mathbf{t}$ be a solution to the ILP such that m_i is an integer for every $1 \leq i \leq n$. We consider the following rounding process for any profile $\mathbf{w} \in {\mathbf{u}, \mathbf{v}}$ and for every *i* starting from i = n down to i = 1.

If $w_i = 0$, set $a_i^{\mathbf{w}'} = \lfloor a_i^{\mathbf{w}} \rfloor$ and $t_i^{\mathbf{w}} = \max\{a_i^{\mathbf{w}'} - a_{i-1}^{\mathbf{w}}, 0\}$. Then, set $d_i^{\mathbf{w}'} = \max\{\lfloor d_i^{\mathbf{w}} \rfloor, m_i\} \leq d_i^{\mathbf{w}}$ and $s_i^{\mathbf{w}} = \max\{d_i^{\mathbf{w}'} - d_{i-1}^{\mathbf{w}}, 0\}$. Both adjustments satisfy all the constraints and can only improve the objective function.

If $w_i > 0$ then $m_i - w_i = d_i^{\mathbf{w}} - a_i^{\mathbf{w}}$ is an integer and the remainder of $d_i^{\mathbf{w}}, a_i^{\mathbf{w}}$ from an integer is the same. We round down $d_i^{\mathbf{w}}, a_i^{\mathbf{w}}$ to the next smallest integer thus keeping the difference $d_i^{\mathbf{w}} - a_i^{\mathbf{w}}$ and satisfying $\lfloor d_i^{\mathbf{w}} \rfloor \leq m_i - 1$. Next, we update $s_i^{\mathbf{w}} = \max\{\lfloor d_i^{\mathbf{w}} \rfloor - d_{i-1}^{\mathbf{w}}, 0\}$ and $t_i^{\mathbf{w}} = \max\{\lfloor a_i^{\mathbf{w}} \rfloor - a_{i-1}^{\mathbf{w}}, 0\}$. Again, we have that all values are integers and the objective function can only be improved.

From Lemma 11, we have that only the m_i variables must be restricted to be integers and all of the other variables can be relaxed. We note that in the majority of our simulation, a fully relaxed LP formulation gave an integral solution. Moreover, a gap between the ILP solution and the relaxed LP solution was seldom observed. We further hypothesize (according to our experiments) that the relaxed LP has an half-integral solution. We also note that our formulation can be naturally extended to handle more than two profiles. That is, given a set of profiles Y, we can find a "median" profile \mathbf{m} , i.e. profile \mathbf{m} that minimizes the sum of costs $\sum_{\mathbf{y} \in Y} \delta_{\sigma}(\mathbf{m}, \mathbf{y})$.

Appendix C: Copy-Number Tree Problem: Complete ILP

The ILP formulation is reproduced in its entirety below. We define $M = \lfloor \log_2(e) \rfloor + 1$.

 $\min \sum_{(v_i,v_j)\in E(G)} \sum_{1\leq s\leq n} w_{i,j,s}$ $\sum_{i \in N^-(j)} x_{i,j} = 1$ 1 < j < 2k - 1 $\sum_{j \in N^+(i)} x_{i,j} = 2$ $1 \le i \le k$ $y_{1,s} = 2$ $1 \le s \le n$ $y_{i,s} = c_{i-k+1,s}$ $k \le i \le 2k-1, 1 \le s \le n$ $y_{i,s} = \sum_{q=0}^{M} 2^q \cdot z_{i,s,q}$ $1 \le i \le 2k - 1, 1 \le s \le n$ $\bar{y}_{i,s} \le \sum_{q=0}^{M} z_{i,s,q}$ $1 \le i \le 2k - 1, 1 \le s \le n$ $1 \le i \le 2k - 1, 1 \le s \le n, 0 \le q \le M$ $\bar{y}_{i,s} \geq z_{i,s,q}$ $y_{j,s} \le y_{i,s} - d_{i,j,s} + a_{i,j,s} + 2e(2 - \bar{y}_{i,s} - \bar{y}_{j,s})$ $1 \leq s \leq n, (v_i, v_j) \in E(G)$ $y_{j,s} + 2e(2 - \bar{y}_{i,s} - \bar{y}_{j,s}) \ge y_{i,s} - d_{i,j,s} + a_{i,j,s}$ $1 \le s \le n, (v_i, v_j) \in E(G)$ $d_{i,j,s} \le y_{i,s} - 1 + (e+1)(2 - \bar{y}_{i,s} - \bar{y}_{j,s})$ $1 \le s \le n, (v_i, v_j) \in E(G)$ $y_{i,s} \leq d_{i,j,s} + e(1 - \bar{y}_{i,s} + \bar{y}_{j,s})$ $1 \leq s \leq n, (v_i, v_j) \in E(G)$ $(1 - x_{i,j}) + \bar{y}_{i,s} \ge \bar{y}_{j,s}$ $1 \le s \le n, (v_i, v_j) \in E(G)$ $\bar{a}_{i,j,s} \ge a_{i,j,s} - a_{i,j,s-1}$ $1 \leq s \leq n, (v_i, v_j) \in E(G)$ $\bar{d}_{i,j,s} \ge d_{i,j,s} - d_{i,j,s-1}$ $1 \leq s \leq n, (v_i, v_j) \in E(G)$ $a_{i,i,0} = 0$ $(v_i, v_j) \in E(G)$ $d_{i,j,0} = 0$ $(v_i, v_j) \in E(G)$ $w_{i,j,s} \ge \bar{a}_{i,j,s} + \bar{d}_{i,j,s} - (1 - x_{i,j}) \cdot 2e$ $1 \le s \le n, (v_i, v_j) \in E(G)$ $x_{i,j} \in \{0,1\}$ $(v_i, v_j) \in E(G)$ $y_{i,s} \in \{0,\ldots,e\}$ $1 \le i \le 2k - 1, 1 \le s \le n$ $\bar{y}_{i,s} \in \{0,1\}$ $1 \le i \le 2k - 1, 1 \le s \le n$ $z_{i,s,q} \in \{0,1\}$ $1 \le i \le 2k - 1, 1 \le s \le n, 0 \le q \le M$ $a_{i,j,s}, d_{i,j,s} \in \{0, \dots, e\}$ $1 \leq s \leq n, (v_i, v_j) \in E(G)$ $\bar{a}_{i,j,s}, \bar{d}_{i,j,s} \in \{0,\ldots,e\}$ $1 \le s \le n, (v_i, v_j) \in E(G)$ $w_{i,i,s} \in \{0, \dots, 2e\}$ $1 \leq s \leq n, (v_i, v_j) \in E(G)$

Appendix D: Supplemental Results

We show in Fig. S1 average running times of the DP and ILP algorithms for simulated CN3 instances as a function of n and B. Fig. S1 shows violin plots of running time, tree distance and optimality gap for simulated CNT instances.

Author details

¹Department of Computer Science, Princeton University, Princeton, NJ 08540, USA. ²Department of Computer Science, Center for Computational Molecular Biology, Brown University, Providence, RI 02912, USA. ³School of Computer Science, Tel Aviv University, Tel Aviv, Israel. ⁴Dipartimento di Informatica Sistemistica e Comunicazione (DISCo), Univ. degli Studi di Milano-Bicocca, Milan, Italy.

References



