Supporting Information

Break Down in Order to Build Up: Decomposing Small Molecules for Fragment-Based Drug Design with *e*MolFrag

Tairan Liu^{1,§} Misagh Naderi^{2,§} Chris Alvin³, Supratik Mukhopadhyay⁴, and Michal Brylinski^{2,5,*}

¹Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA ²Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA

³Department of Computer Science and Information Systems, Bradley University, Peoria, IL, 61625, USA

⁴Department of Computer Science, Louisiana State University, Baton Rouge, LA, 70803, USA ⁵Center for Computation & Technology, Louisiana State University, Baton Rouge, LA, 70803, USA

[§] These authors contributed equally to this work

* To whom correspondence should be addressed. Michal Brylinski, phone: +1-225-5782791; email: <u>michal@brylinski.org</u>

Content:

- 1. Algorithms
 - Algorithm S1. Molecular fragmentation.
 - Algorithm S2. Linker extraction.
 - Algorithm S3. Removal of redundant fragments.
- 2. Tables
 - **Table S1.** Computing speed of *e*MolFrag and molBLOCKS.
- 3. Examples
 - **Example S1.** Brick in SDF format.
 - Example S2. Linker in SDF format.

Algorithm S1. Molecular fragmentation.

1: procedure Fragment(Set<Molecule>*M*)

- **2:** List<Brick> $B \coloneqq \emptyset$
- **3:** List<Linker> $L \coloneqq \emptyset$
- **4:** for each $m \in M$
- **5:** for each $f \in$ FragmentOnBRICSBonds(m)
- **6: if** *f* . isBrick() **then**
- **7:** I := f. RemoveDummyAtoms()
- **8:** *f*.RemoveHydrogen()
- **9:** *f*.AddAppendix(*l*)

10:
$$B_m := B_m \cup \{f\}$$

- 11: end if
- 12: end for
- **13:** $B := B \cup B_m$
- **14:** $L := L \cup \text{ComputeLinkers}(m, B_m)$
- 15: end for
- **16:** return $\langle B, L \rangle$

17: end procedure

Algorithm S2. Linker extraction.

- **1: procedure** ComputeLinkers(Molecule *m*, List<Brick> *B_m*)
- **2:** for each $b \in B_m$
- **3:** *m.removeBrick(b)*
- 4: end for
- **5:** List<Linker> $\ell \coloneqq m.RemainingFragments()$
- **6:** for each $l \in \ell$
- 7: *l*.*AddAppendix*(*m*)
- 8: end for
- 9: return ℓ
- 10: end procedure

Algorithm S3. Removal of redundant fragments.

1: procedure RemoveRedundancy(List<Fragment> F)

- **2:** List<Fragment> $U := \emptyset$ // Unique fragment set
- **3:** List<Set<Fragment>> \mathcal{P}/\sim := Partition(*F*)
- **4:** for each $P \in \mathcal{P}/\sim$
- **5:** while $P \neq \emptyset$
- **6:** $f_0 \coloneqq P$.removeFirst()
- 7: $U \coloneqq U \cup \{f_0\}$
- 8: for each $f \in P$
- 9: if $f_0 = f$ then $P \coloneqq P \setminus \{f\}$
- 10: end for
- 11: end while
- 12: end for
- **13:** return *U*
- 14: end procedure
- **15: procedure** RemoveRedundancy(List<Brick> *B*, List<Linker> *L*)
- **16:** $\mathcal{B} \coloneqq \text{RemoveRedundancy}(\mathcal{B})$
- **17:** $\mathcal{L} \coloneqq \text{RemoveRedundancy}(\mathcal{L})$

18: end procedure

Table S1. Computing speed of *e*MolFrag and molBLOCKS measured by the number of compounds fragmented per second. Serial and parallel versions of *e*MolFrag and a serial version of molBLOCKS were tested against several datasets whose size ranges from 100 to 12,800 molecules randomly selected from the DUD-E library.

Dataset size ^a –	<i>e</i> MolFrag ^b		<i>e</i> MolFrag (Part I) ^c		molBLOCKS
	Serial	Parallel ^d	Serial	Parallel ^d	ext. ^e
100	8.7	24.0	9.8	34.6	6.6
200	8.3	22.2	11.3	52.9	8.7
400	7.7	20.3	12.9	69.2	10.9
800	7.3	17.7	22.6	66.7	11.8
1,600	6.8	16.8	19.6	62.9	12.2
3,200	6.4	15.4	21.8	59.6	14.6
6,400	6.0	13.9	23.9	49.0	13.0
12,800	4.8	11.8	23.2	61.1	12.5

^a Number of input molecules.

^b Full *e*MolFrag including fragmentation (Part I) and removing redundancy (Part II).

^c *e*MolFrag including fragmentation (Part I) only.

^d Executed on 16 computing cores.

^e Executed in the "extensive fragmentation" mode with a minimum fragment size of 4 atoms.

Example S1. Brick in SDF format.

```
b-CHEMBL175476.mol2-000.sdf
    RDKit
                   ЗD
  6 6 0 0 0 0 0 0 0 0 0999 V2000
   1.2268 -10.0020
                      -0.0554 C
                                  0 0
                                       0
                                          0
                                             0
                                                0
                                                   0
                                                      0
                                                         0
                                                            0
                                                               0
                                                                  0
   -0.4759 -10.3733
                       1.5879 C
                                  0
                                    0
                                       0
                                          0
                                             0
                                                0
                                                   0
                                                      0
                                                         0
                                                            0
                                                               0
                                                                  0
            -8.5086
                      -0.0838 C
                                  0 0
                                             0
                                                           0
                                                                  0
   0.8909
                                       0
                                          0
                                                0
                                                   0
                                                      0
                                                         0
                                                               0
  -0.8291
            -8.8837
                       1.5761 C
                                  0 0
                                       0
                                          0
                                             0
                                                0
                                                   0
                                                      0
                                                         0
                                                           0 0
                                                                  0
   0.0595 -10.7412
                       0.3138 0
                                  0 0
                                       0
                                          0
                                             0
                                                0
                                                   0
                                                      0
                                                        0 0
                                                               0
                                                                  0
   0.3682
            -8.1042
                       1.2294 N
                                  0 0
                                       0
                                          0
                                             0
                                                0
                                                   0
                                                      0 0 0 0
                                                                  0
    3 1 0
 1
 1
    5
       1
          0
 2
    4
       1
          0
 2
   510
 3 6 1 0
                                                                  3
      1 0
 4 6
M END
                                                          6 N
> <ATOMTYPES>
C.3
C.3
C.3
C.3
0.3
N.3
> <BRANCH @atom-number eligible-atmtype-to-connect>
6 C.3
> <fragments similar>
/tmp/michal/R0G1XHYZUN-17313/output/output-chop-comb/b-test1.mol2-000.sdf
$$$$
```

The auxiliary information included in brick SDF files:

<ATOMTYPES> Atom types according to SYBYL ordered according to the atom section
containing Cartesian coordinates.

<BRANCH @atom-number eligible-atmtype-to-connect> List of all possible bonds for this brick. The 1^{st} column is the atom index followed by atom types allowed to be connected at this position. For example, the 6^{th} atom in the brick fragment shown above, which is N.3, can connect to a C.3 atom.

<fragments similar> After removing redundancy, only one construct is kept for each unique fragment. This section tracks back all similar fragments that have been consolidated.

Example S2. Linker in SDF format.

```
l-test1.mol2-001.sdf
    RDKit
                   ЗD
  3 2 0 0 0 0 0 0 0 0 0999 V2000
           -6.4901
                       1.0459 O
                                  0 0
    2.4295
                                        0
                                           0
                                              0
                                                 0
                                                    0
                                                         0
                                                            0
                                                                0
                                                                   0
                                                      0
    0.0858
            -6.6629
                       1.2625 C
                                  0 0 0
                                              0
                                                 0
                                                    0
                                                      0
                                                         0
                                                            0
                                                                0
                                                                   0
                                           0
            -5.8952
    1.3774
                       1.1464 C
                                  0 0
                                        0
                                              0
                                                 0
                                                    0
                                                             0
                                                                   0
                                           0
                                                       0
                                                          0
                                                                0
  1 3 2 0
  2 3
       1 0
M END
> <MAX-NUMBER-Of-CONTACTS ATOMTYPES>
0 0.2
                                                                  C.3)
1 C.3
1 C.2
$$$$
                                                                        C.3)
                                                            (0.2)
```

The auxiliary information included in linker SDF files:

< MAX-NUMBER-Of-CONTACTS ATOMTYPES> The 1st column shows the maximum number of connections allowed at every atom, which are ordered according to the atom section containing Cartesian coordinates. Atom types are listed in the 2nd column. For example, the second line in this section in the linker fragment shown above (1 C.3) means that the 2nd atom is C.3 and it can form only one connection to other atoms.