
	 1	

Supporting	Information	

	

Break	Down	in	Order	to	Build	Up:	Decomposing	Small	Molecules	for	Fragment-Based	Drug	

Design	with	eMolFrag	

	

Tairan	Liu1,§	Misagh	Naderi2,§	Chris	Alvin3,	Supratik	Mukhopadhyay4,	and	Michal	Brylinski2,5,*	

	
1Department	of	Mechanical	Engineering,	Louisiana	State	University,	Baton	Rouge,	LA,	70803,	USA	
2Department	of	Biological	Sciences,	Louisiana	State	University,	Baton	Rouge,	LA,	70803,	USA	
3Department	of	Computer	Science	and	Information	Systems,	Bradley	University,	Peoria,	IL,	61625,	

USA	
4Department	of	Computer	Science,	Louisiana	State	University,	Baton	Rouge,	LA,	70803,	USA	
5Center	for	Computation	&	Technology,	Louisiana	State	University,	Baton	Rouge,	LA,	70803,	USA	

	
§	These	authors	contributed	equally	to	this	work	
*	To	whom	correspondence	should	be	addressed.	Michal	Brylinski,	phone:	+1-225-5782791;	

email:	michal@brylinski.org	

	

Content:	

1. Algorithms	

• Algorithm	S1.	Molecular	fragmentation.	

• Algorithm	S2.	Linker	extraction.	

• Algorithm	S3.	Removal	of	redundant	fragments.	

2. Tables	

• Table	S1.	Computing	speed	of	eMolFrag	and	molBLOCKS.	

3. Examples	

• Example	S1.	Brick	in	SDF	format.	

• Example	S2.	Linker	in	SDF	format.	

	 	

	 2	

Algorithm	S1.	Molecular	fragmentation.	

1:		procedure	Fragment(Set<Molecule>	𝑀)	 	

2:					List<Brick>	𝐵 ≔ ∅	

3:					List<Linker>	𝐿	 ≔ ∅	

4:					for	each	𝑚 ∈ 𝑀	

5:								for	each	𝑓 ∈ FragmentOnBRICSBonds(𝑚)	

6:											if	𝑓. isBrick()	then	

7:														𝐼 ∶= 𝑓. RemoveDummyAtoms()	

8:														𝑓. RemoveHydrogen()	

9:														𝑓. AddAppendix(𝐼)	

10:											𝐵L ∶= 	𝐵L ∪ 𝑓 	

11:									end	if	

12:							end	for	

13:							𝐵 ∶= 	𝐵 ∪ 𝐵L	

14:							𝐿 ∶= 	𝐿 ∪	ComputeLinkers(𝑚,𝐵L)	

15:				end	for	

16:				return	 𝐵, 𝐿 	

17:	end	procedure	

	
	
	 	

	 3	

Algorithm	S2.	Linker	extraction.	

1:		procedure	ComputeLinkers(Molecule	𝑚,	List<Brick>	𝐵L)	

2:					for	each	𝑏 ∈ 𝐵L	

3:								𝑚. 𝑟𝑒𝑚𝑜𝑣𝑒𝐵𝑟𝑖𝑐𝑘 𝑏 	

4:					end	for	

5:					List<Linker>	ℓ ≔ 𝑚.𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝐹𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠()	

6:					for	each	𝑙 ∈ ℓ	

7:								𝑙. 𝐴𝑑𝑑𝐴𝑝𝑝𝑒𝑛𝑑𝑖𝑥 𝑚 	

8:					end	for	

9:					return	ℓ	

10:	end	procedure	

	

	 	

	 4	

Algorithm	S3.	Removal	of	redundant	fragments.	

1:		procedure	RemoveRedundancy(List<Fragment>	𝐹)	

2:					List<Fragment>	𝑈 ∶= ∅						//	Unique	fragment	set	

3:					List<Set<Fragment>>	𝒫/~ ∶= Partition(𝐹)	

4:					for	each	𝑃 ∈ 𝒫/~	

5:								while	𝑃 ≠ ∅	

6:											𝑓k ≔ 𝑃. removeFirst()	

7:											𝑈 ≔ 𝑈	 ∪ 𝑓k 	

8:											for	each	𝑓 ∈ 𝑃	

9:														if	𝑓k = 	𝑓	then	𝑃 ≔ 𝑃	\	 𝑓 	

10:									end	for	

11:						end	while	

12:				end	for	

13:				return	𝑈	

14:	end	procedure	

15:	procedure	RemoveRedundancy(List<Brick>		ℬ,	List<Linker>	ℒ)	

16:				ℬ ≔ RemoveRedundancy ℬ 	

17:				ℒ ≔ RemoveRedundancy ℒ 	

18:	end	procedure	

	

	 	

	 5	

Table	S1.	Computing	speed	of	eMolFrag	and	molBLOCKS	measured	by	the	number	of	compounds	

fragmented	 per	 second.	 Serial	 and	 parallel	 versions	 of	 eMolFrag	 and	 a	 serial	 version	 of	

molBLOCKS	were	tested	against	several	datasets	whose	size	ranges	from	100	to	12,800	molecules	

randomly	selected	from	the	DUD-E	library.	

Dataset	sizea	
eMolFragb	 eMolFrag	(Part	I)c	 molBLOCKS	

ext.e	Serial	 Paralleld	 Serial	 Paralleld	

100	 8.7	 24.0	 9.8	 34.6	 6.6	

200	 8.3	 22.2	 11.3	 52.9	 8.7	

400	 7.7	 20.3	 12.9	 69.2	 10.9	

800	 7.3	 17.7	 22.6	 66.7	 11.8	

1,600	 6.8	 16.8	 19.6	 62.9	 12.2	

3,200	 6.4	 15.4	 21.8	 59.6	 14.6	

6,400	 6.0	 13.9	 23.9	 49.0	 13.0	

12,800	 4.8	 11.8	 23.2	 61.1	 12.5	
a	Number	of	input	molecules.	
b	Full	eMolFrag	including	fragmentation	(Part	I)	and	removing	redundancy	(Part	II).	
c	eMolFrag	including	fragmentation	(Part	I)	only.	
d	Executed	on	16	computing	cores.	
e	Executed	in	the	“extensive	fragmentation”	mode	with	a	minimum	fragment	size	of	4	atoms.	
	
	 	

	 6	

Example	S1.	Brick	in	SDF	format.	

b-CHEMBL175476.mol2-000.sdf
 RDKit 3D

 6 6 0 0 0 0 0 0 0 0999 V2000
 1.2268 -10.0020 -0.0554 C 0 0 0 0 0 0 0 0 0 0 0 0
 -0.4759 -10.3733 1.5879 C 0 0 0 0 0 0 0 0 0 0 0 0
 0.8909 -8.5086 -0.0838 C 0 0 0 0 0 0 0 0 0 0 0 0
 -0.8291 -8.8837 1.5761 C 0 0 0 0 0 0 0 0 0 0 0 0
 0.0595 -10.7412 0.3138 O 0 0 0 0 0 0 0 0 0 0 0 0
 0.3682 -8.1042 1.2294 N 0 0 0 0 0 0 0 0 0 0 0 0
 1 3 1 0
 1 5 1 0
 2 4 1 0
 2 5 1 0
 3 6 1 0
 4 6 1 0
M END

> <ATOMTYPES>
C.3
C.3
C.3
C.3
O.3
N.3

> <BRANCH @atom-number eligible-atmtype-to-connect>
6 C.3

> <fragments similar>
/tmp/michal/R0G1XHYZUN-17313/output/output-chop-comb/b-test1.mol2-000.sdf
$$$$

	

The	auxiliary	information	included	in	brick	SDF	files:	

<ATOMTYPES>	 Atom	 types	 according	 to	 SYBYL	 ordered	 according	 to	 the	 atom	 section	

containing	Cartesian	coordinates.	

<BRANCH @atom-number eligible-atmtype-to-connect>	List	of	all	possible	bonds	

for	 this	 brick.	 The	 1st	 column	 is	 the	 atom	 index	 followed	 by	 atom	 types	 allowed	 to	 be	

connected	at	this	position.	For	example,	 the	6th	atom	in	the	brick	 fragment	shown	above,	

which	is	N.3,	can	connect	to	a	C.3	atom.	

<fragments similar>	After	removing	redundancy,	only	one	construct	 is	kept	for	each	

unique	fragment.	This	section	tracks	back	all	similar	fragments	that	have	been	consolidated.	

	 	

	 7	

Example	S2.	Linker	in	SDF	format.	

l-test1.mol2-001.sdf
 RDKit 3D

 3 2 0 0 0 0 0 0 0 0999 V2000
 2.4295 -6.4901 1.0459 O 0 0 0 0 0 0 0 0 0 0 0 0
 0.0858 -6.6629 1.2625 C 0 0 0 0 0 0 0 0 0 0 0 0
 1.3774 -5.8952 1.1464 C 0 0 0 0 0 0 0 0 0 0 0 0
 1 3 2 0
 2 3 1 0
M END

> <MAX-NUMBER-Of-CONTACTS ATOMTYPES>
0 O.2
1 C.3
1 C.2

$$$$	
	
The	auxiliary	information	included	in	linker	SDF	files:	

<	MAX-NUMBER-Of-CONTACTS ATOMTYPES>	The	1st	column	shows	the	maximum	number	

of	 connections	 allowed	 at	 every	 atom,	which	 are	 ordered	 according	 to	 the	 atom	 section	

containing	Cartesian	coordinates.	Atom	types	are	listed	in	the	2nd	column.	For	example,	the	

second	line	in	this	section	in	the	linker	fragment	shown	above	(1 C.3)	means	that	the	2nd	

atom	is	C.3	and	it	can	form	only	one	connection	to	other	atoms.	

	

