
OptiMouse User Manual (V3.0)

1
Yoram Ben-Shaul 4/2017

OptiMouse User Manual

1. Overview
OptiMouse is a MATLAB program designed for analyzing mouse positions in a behavioral arena.
Its OptiMouse reflects the goal of optimizing the accuracy of position detection. OptiMouse is an
open-source code, and all analysis stages are transparent and configurable. In particular,
OptiMouse allows integration of custom written functions with a built-in set of algorithms.
The key assumption behind OptiMouse is that no single algorithm will achieve accurate detection
of nose positions in all sessions, nor on all frames within a session. Therefore, OptiMouse allows
application of multiple detection algorithms to any given session, among which the best
algorithm is selected for each frame.
OptiMouse requires the main MATLAB code, as well as the statistics and image processing
toolboxes. It was developed on MATLAB releases 2015b and 2016a. It is not compatible with
some older versions. It was tested on a PC platform. Graphical outputs may vary with different
screen resolutions.
Please report errors and suggestions to Yoram Ben-Shaul, yoramb@ekmd.huji.ac.il

1.1. Scope and limitations of OptiMouse
OptiMouse is designed for analyzing positions of one mouse in an arena. It is thus not suitable
for analyzing social interactions. Object detection is based on the assumption that the mouse is
either darker or brighter than the background. Although a mouse does not have to be uniformly
colored, detection of mice with patches of different intensities could compromise reliability of
detection. Color information is not used, since video frames are transformed to single channel
intensity images. In principle, all formats that are supported by the MATLAB VideoReader
function should work. Currently tested formats are: mp4, mpg, and wmv. OptiMouse is designed
to optimize detection accuracy, not speed. It is not suitable for real time detection.

1.2. Main analysis stages in OptiMouse
Analysis begins with a video file and ends with various measures associated with mouse position
within an arena.
In broad terms, the analysis includes four main stages:
1. Defining the spatial limits of the arena and the temporal range of the video for analysis.
2. Setting parameters for position detection, and run detection.
3. Reviewing the outcome of detection, selecting optimal algorithms for each frame, and
correcting positions if required. The review stage also allows video annotation.
4. Analysis of position data.

mailto:yoramb@ekmd.huji.ac.il

OptiMouse User Manual (V3.0)

2
Yoram Ben-Shaul 4/2017

2. Running OptiMouse

2.1. Installation and starting
Before running OptiMouse, the optimouse folder and the optimouse_user_definitions folders
must be added to the MATLAB path. The optimouse folder contains the main code files. The
optimouse_user_definitions folder contains user
specific definitions. These two folders should reside
under the same parent directory. There are several
ways to set the MATLAB path. One is to type pathtool
on the MATLAB command prompt. Typing doc
pathtool opens a MATLAB help window explaining the
pathtool function and providing more information
about the concept of the MATLAB path.

Once OptiMouse files are included in the MATLAB
path, the program can be started by typing
>> optimouse
on the MATLAB command prompt.

This will open the OptiMouse GUI, which provides
access to the four main analysis stages (Figure 2.1) and
to this user manual (INSTRUCTIONS).

2.2. A very quick start guide
This section is intended for users that do not have patience for wordy manuals. The sequence of
steps below defines the shortest path from a video file to analyzed results. However, it is only
appropriate for those videos for which detection is easy. Most features are entirely ignored in
this description.

1. After installation (Section 2.1), type optimouse on the command line
2. Press the PREPARE button in the OptiMouse interface (Figure 2.1)
3. Press the SELECT DIR button (Figure 3.1) to specify the directory containing the video files
4. Press the DEFINE button (Figure 3.1) to define the arenas
5. Press the CALIBRATE button (Figure 3.2) to specify the dimensions of the arena
6. Resize the yellow square until its edge matches a known distance on the arena (Figure 3.3)
7. Enter that distance (in mm!) into the yellow edit box (Figure 3.3)
8. Press the APPLY button to set the scale (Figure 3.3)

[The dimensions are now calibrated]
9. Press the NEW button to define a new arena (a rectangle by default)
10. Drag and resize the rectangle to define the arena for analysis

Figure 2.1. The main OptiMouse GUI

OptiMouse User Manual (V3.0)

3
Yoram Ben-Shaul 4/2017

11. Press the SAVE & APPLY button (Figure 3.5)
[The arena has been specified and is applied to the current video]

12. Back in the Prepare GUI (Figure 3.7), set the range of frames for analysis in the FILE RANGE panel (by
default all frames are included).

13. Press the RUN button (Figure 3.7) and wait until the progress bar disappears.
[The session has been prepared and positions can now be detected]

14. Press the DETECT button in the OptiMouse GUI (Figure 2.1). Select the file corresponding to the
session just created in the listbox on the upper left (there is no need to select the video directory
again).

15. In the DETECT GUI, examine the result of position detection. Note if body landmarks are correctly
identified, if the yellow rectangle bounds the mouse, and if the tail and periphery are seen as white
lines (as in Figure 4.1).

16. If detection is not satisfactory, modify the parameters. If detection seems completely off, try checking
the MOUSE IS BRIGHT and MOUSE IS DARK radio buttons (perhaps the automatic detection failed).
Change the threshold, the peeling stages, and, if the mouse does not have a visible tail, consider using
algorithm #7.

17. If none of the settings results in good position detection, it is probably a good idea to read the manual
section on the detection (Section 4).

18. If detection is satisfactory, browse the movie using the PREVIOUS and NEXT button, or jump or scroll
to various frames in the session, using the controls on lower right side of the Detect GUI.

19. If detection is satisfactory on all (or most) frames, press the ADD button in the DEFINED SETTINGS
panel. Name the setting when prompted. This will define the current set of parameters as a setting
(see Figure 4.6).
In this rapid procedure, we are defining only one setting. If one setting does not address the large
majority of frames, multiple settings must be defined. This is described in Section 4.9.

20. Press the RUN button in the Detect GUI (Figure 4.6), and wait until detection is complete (the
progress bar will disappear).
[Body and nose positions have now been detected in each frame]
Following this rapid procedure, we are skipping the reviewing stage. However, if multiple settings
were defined in the detection stage, if there are many failures requiring manual settings, or if it is
desired to annotate frames with events, then the reviewing stage is required (Section 5). Advancing
to the analysis stage without reviewing also does not allow evaluating the extent of incorrect
detection or their correction.

21. To show the Analysis GUI (Figure 6.1), press the Analyze button in the OptiMouse GUI (Figure 2.1).
22. Select the positions file created in the detection stage from the upper left listbox. It should be easy

to identify the file by the names of the original video and the arena.
23. For general analysis of positions, use the buttons in the POSITIONS AND SPEED panel. This will create

displays similar to those shown in Figures 6.2, 6.3, 6.4, 6.5, and 6.6.
24. To analyze the preference for particular regions in the arena, zones must be defined. To define a new

zone, press the NEW button in the ZONE DEFINITIONS panel (Figure 6.7). The type of zone is specified
using the listbox to the right of the NEW button. Resize and position the zone over the desired part
of the arena. Add as many zones as needed. For a detailed description of zone definition, see Section
6.3.

OptiMouse User Manual (V3.0)

4
Yoram Ben-Shaul 4/2017

25. Once at least one zone has been defined, the buttons in the ZONE BASED ANALYSES panel (Figure
6.7) are activated, making it possible to generate displays of zone specific analyses, such as shown in
Figure 6.8, 6.9, 6.10, 6.11, 6.12.

26. Press the SAVE RESULTS TO MAT FILE button on the analysis interface (Figure 6.1) to save the results
into a MATLAB file. The results file thus generated contains all analysis results. It is described in
Appendix 8.

27. Now, read the manual.

3. Preparing Sessions
The purpose of the first stage is to define the spatial extent and the temporal range of interest in
the video file. To begin press the PREPARE button on the OptiMouse GUI (Figure 2.1). This will
open the Prepare GUI (Figure 3.1).

Figure 3.1. The Prepare GUI

3.1. Selecting VIDEO files

Setting the main video directory
When running OptiMouse for the first time, the main video directory must be specified. This is
the directory that contains the video files. Use the SELECT DIR button to specify the directory.
Note that for convenience, several OptiMouse GUIs have a SELECT DIR button. They are all
designed to select the same main video directory. Once selected with any of the GUIs, it need
not be done again (unless the video files are moved to a different location).

OptiMouse User Manual (V3.0)

5
Yoram Ben-Shaul 4/2017

During various processing stages, OptiMouse creates several subdirectories within this main
video directory. The significance of each directory is described in Appendix 1, though users need
not be familiar with the different directories.

After selecting the main video directory, all supported video files will be shown in the list on the
left side of the Prepare GUI. Currently tested formats are: mp4, mpg, and wmv. In principle, all
formats that are supported by the MATLAB VideoReader function should work. See the function
populate_video_file_list to expand the list of displayed formats.

Narrowing the list of video files
It is possible to limit the range of video files displayed in the list. This is done by specifying a string
in the NAME FILTER edit box (and pressing enter). Only files whose names contain the string will
be displayed in the list.

3.2. Viewing video frames
A video file is selected by clicking its name on the list. Once selected, the first frame will be shown
in the central part of the GUI. Some of the video properties will be shown in the FILE PROPERTIES
panel.
Other frames can be viewed by entering a specific frame number (in the GO TO FRAME edit box),
a specific time within the video (using the GO TO TIME edit box), or by moving the slider below
the frame image. Clicking the arrows at the edges of the slider will advance in one-second steps.
Clicking the central region of the slider control, (blue shaded region to the right and left of the
slider bar) results in larger, one-minute, steps. The current frame and time are indicated above
the image.

OptiMouse User Manual (V3.0)

6
Yoram Ben-Shaul 4/2017

Figure 3.2. The Arena Definition GUI.

3.3. Defining Arenas
Before a video can be analyzed, one or more spatial regions of interest, denoted as arenas, must
be defined. The list on the right side of the Prepare GUI contains arena definition files. Initially,
the list will be empty. Arenas are defined for each video separately (but may be applied from one
to another, see Section 3.3.2.5). To define arenas, press the DEFINE button. This will open the
Arena Definition GUI (Figure 3.2) which performs two functions: calibration of arena dimensions
and definition of its boundaries.

3.3.1. Calibrating video dimensions
The actual size of the objects in the video cannot be determined from the video alone. Thus, the
ratio between pixels and mm must be specified. This is known as calibration. Before calibration,
dimensions are specified in pixel units (Figure 3.2). It is assumed that scaling is uniform across
the entire image and across all frames in the video.
Calibration is initiated using the CALIBRATE button. When pressed, a yellow square appears over
the video image (Figure 3.3). The calibration square can be repositioned by placing the cursor
inside it, holding the left mouse button, and dragging it. The square can be resized by dragging
its corners or edges using a left mouse button click. The square should be positioned to cover an
area of the image of known actual dimensions. This can be done with any frame in the video.
Once the square size has been adjusted, its value in millimeters should be entered in the edit

OptiMouse User Manual (V3.0)

7
Yoram Ben-Shaul 4/2017

box in the SIZE CALIBRATION panel. During definition, the edit box is highlighted in yellow (Figure
3.3).

Figure 3.3. Arena definition interface after the calibration square has been repositioned,
resized, and after entering its dimensions in mm.

Calibration is completed by pressing the APPLY button. Once complete, the yellow square
disappears, the scale factor is set and is indicated in the GUI (in red font), and the dimensions are
shown in mm (Figure 3.4). Dimensions can be shown as either pixels or mm units, using the radio
buttons on the SIZE CALIBRATION panel.
It is important to examine the dimensions assigned to the image, and validate the accuracy of
calibration. Although the exact dimensions do not affect most aspects of image analysis and
positional detection, they are required to obtain accurate measures of distance and speed.
The scaling process can be repeated in the same interface, overwriting any previous calibration.
Once the video is calibrated, buttons in the ARENA DEFINITIONS panel become active (as in
Figure 3.4).

OptiMouse User Manual (V3.0)

8
Yoram Ben-Shaul 4/2017

Figure 3.4. Arena definition interface after calibration.

3.3.2. Defining Arenas
Arenas are defined with the ARENA DEFINITIONS panel. Arenas may be circles, ellipses, squares,
rectangles, polygons, or freehand forms. The list of defined arenas is shown in the listbox on the
right side. To define a new arena, press the NEW button. The arena type is determined by the
value selected in the drop down menu to the right of the button (e.g. rectangle in Figure 3.4).

3.3.2.1. Defining square, rectangular, circular or elliptical arenas
For arenas that are square, rectangular, circular or elliptical, pressing the NEW button
immediately draws the corresponding shape over the image. Each of these shapes can be moved
by placing the cursor inside it, holding the left mouse button, and dragging it. These shapes can
be resized by dragging the corners or edges using a left-click of the mouse button.
Multiple arenas can be defined per video. For example, the video shown in Figure 3.4 includes
three parallel sessions, and thus requires specification of three arenas. Once an arena is defined,
it becomes the active arena, and is shown in red. Arenas also become active when selected via
the listbox, or when moved or resized (by clicking and dragging as described above). Merely
clicking an arena, however, without moving/resizing it, will not make it active.
Rectangular, square, circular and elliptical arenas can also be resized and moved using the edit
boxes at the lower part of the ARENA DEFINITIONS panel. Values entered into the edit boxes are
applied to the currently active arena.

OptiMouse User Manual (V3.0)

9
Yoram Ben-Shaul 4/2017

3.3.2.2. Defining polygon and freehand Arenas
Polygon and freehand shapes allow definition of arenas of arbitrary shapes. Polygons are
particularly convenient as they allow changing the position of each vertex after definition is
completed. The definition of polygon and freehand arenas follows a different procedure from
that described above.

Polygon arenas
For polygon arenas, clicking, the NEW button does not immediately create a shape. Instead, the
cursor changes to a cross when it is positioned on the image. Each left button mouse click defines
a new vertex. To complete definition, the polygon must be closed in one of three ways: double
clicking the left mouse button, single clicking the right mouse button, or single clicking of the left
mouse button with the cursor positioned over the first vertex. Closing the polygon does not yet
complete its definition. To do that, the shape must be double clicked once more. Only then it will
be added to the list, and become active (and shown in red). The polygon can always be modified
by moving it (placing the cursor inside it, clicking and dragging) or by dragging any of the vertices.

Freehand Arenas
For the freehand arenas, after the NEW button is pressed, the cursor is dragged to trace a path.
When the mouse button is released, the shape is automatically closed. As with polygons, the
shape must be double left-clicked to complete the definition, and make the arena active.

The definition of polygon and freehand shapes can be cancelled before completion by pressing
the escape key. The size and position edit boxes are not applicable to polygon and freehand
shapes. However, when active, the center coordinates will be shown in the X POS and Y POS
boxes.

3.3.2.3. Renaming, deleting, and duplicating arenas
Arenas can be renamed using the RENAME button, deleted using the DELETE button, or
duplicated using the DUPLICATE button. Pressing the RENAME button will initiate a dialog box
requesting a new name. Duplication results in the creation of an identical arena, (but with a
different name) exactly above the arena that was duplicated (thus hiding it). Renaming, deletion,
and duplication of arenas is always applied to the selected (red) arena.

To demonstrate the variety of possible arena shapes, Figure 3.5 shows the Arena Definition GUI
after the definition of an unreasonable number of nonsense arenas.

OptiMouse User Manual (V3.0)

10
Yoram Ben-Shaul 4/2017

Figure 3.5. Arena definition with too many arenas.

Figure 3.6 shows a more reasonable definition of three polygon shaped arenas that were named
according to their position. These examples show that a given video may contain multiple arenas,
which may or may not overlap. Note that in subsequent steps, arenas are processed
independently of each other.

OptiMouse User Manual (V3.0)

11
Yoram Ben-Shaul 4/2017

Figure 3.6 Definition of three arenas

3.3.2.4. The importance of accurate arena definitions
Proper arena definition is critical. Ideally, the arena should contain all the regions that a mouse
(including its tail) may be in and only those regions. Irrelevant regions may at best increase file
size, and at worst contain moving objects that will confound detection. Inclusion of arena walls
that contain reflections should be avoided when possible, as these can confound detection. The
navigation tools in the Arena Definition GUI (edit boxes, and slider bar) allow browsing different
frames to confirm the validity of arena definitions. Remember that the slider can be clicked in
one second and one minute steps (section 3.2).

3.3.2.5. Saving arena definitions
The SAVE & APPLY button saves arena definitions in a MATLAB data file (.mat), within a directory
named arenas in the main video file directory (see Appendix 1), and closes the Arena Definition
GUI.
The arena definition file name includes the original video file name, the string arenas, and a serial
number. For the video used in this example, named 00009, the first arena file will be named
00009_arenas_1.mat. Subsequent arena files for the same video, if created, will be given names
00009_arenas_2.mat, 00009_arenas_3.mat, etc.
If the Prepare GUI is still open, the arenas definitions will be automatically applied to it. The
arenas will be drawn over the video images, and the names given to them during definition will
be indicated (Figure 3.7).

OptiMouse User Manual (V3.0)

12
Yoram Ben-Shaul 4/2017

Arena definitions made with one video can be applied to another, but only if they share the same
image height and width (in pixels). To apply existing arena definitions to the currently selected
video, select an arena file (listbox on the right), and press the APPLY button.

Figure 3.7 Video after applying three arenas.

3.4. Setting the range of frames for analysis
The FRAME RANGE panel specifies the range of frames for processing. By default, all video frames
are included. However, when the relevant behavioral session is embedded in a longer video, it is
best to exclude irrelevant flanking frames. The video can be examined using the navigation tools
in the GUI.

3.5. Preparing videos for analysis - sessions
Once a video file is associated with an arena file (as indicated by the arenas shown over the video,
as in Figure 3.7), sessions can be prepared using the RUN button. A session is defined by a video
file, the arena, and the range of frames specified for analysis. For example, if the arena file
contains one arena, then one session will be created. If, as in Figure 3.7, the arena file contains
three arenas, three sessions will be created.
The technical details behind the session preparation stage are explained in Appendix 2. Broadly,
preparation involves two major elements: 1, extraction of the spatial (arena) and temporal
(frame range) boundaries, and 2, transformation of video files to MATLAB data files containing
greyscale intensity values.

OptiMouse User Manual (V3.0)

13
Yoram Ben-Shaul 4/2017

The specified frame range applies to all simultaneously processed sessions. If different arenas
within one video are used at different times, they should be prepared separately. In other words,
the RUN button should be pressed separately for each session, as defined by its arena and
temporal range.
During session preparation, a progress bar is shown. Processing can be cancelled by deleting the
progress bar. Once session definition is complete, it is possible to proceed to the detection stage
(Section 4).

3.6. User comments
The USER COMMENT panel allows association of sessions with an optional text comment. The
comment will be applied to all simultaneously created sessions. It will be visible in GUIs of
subsequent analysis stages. Figure 3.8 shows the GUI after setting the frame range and entering
a user comment.

Figure 3.8 Prepare GUI after specifying frame range and entering a user comment

3.7. Preparing sessions in Batch mode
Session preparation time scales linearly with the number of arenas and frames, and depends on
video resolution and arena size. Because it can be time consuming, OptiMouse allows storing
commands for the creation of multiple sessions, and then executing them all as a single batch
process. Pressing the BATCH button (rather than the RUN button), writes the command for
session preparation into a MATLAB text file (prepare_arena_batch.m) located in the
optimouse_user_definitions folder. The batch file is run by typing its name on the MATLAB

OptiMouse User Manual (V3.0)

14
Yoram Ben-Shaul 4/2017

command line (>> prepare_arena_batch). Progress made during batch file execution is reported
on the command line.

There is no limit to the number of commands in the batch file. With each press of the BATCH
button, commands are added to the batch file. Thus, pressing the button repeatedly will create
duplicate copies of the same commands in the file. This should be avoided, since it results in
execution of the calculation multiple times. In the same context, even after execution is
complete, commands remain in the batch file. It is the user’s responsibility to delete or convert
to comments any previously executed commands. Thus, before running the batch file it must be
examined to confirm that it contains the intended commands. See Appendix 3 for an example of
a batch file and a description of its contents.

4. Setting Detection Parameters
In this stage, parameters for detection of body and nose positions are specified. This is done using
the Detect GUI (Figure 4.1) which is opened by the DETECT button in the OptiMouse GUI.

Figure 4.1 The Detect GUI

4.1. Selecting sessions for viewing
The listbox on the upper left of the Detect GUI shows all previously created sessions. Each entry
in the list corresponds to one session. Sessions are identified as directories within the main video
directory containing the string _arenas (see Appendix 1). The name of the session contains

OptiMouse User Manual (V3.0)

15
Yoram Ben-Shaul 4/2017

information about the original video file name, the arena definition file, the arena name (given
during definition), and the frame range used. For example, the session highlighted in Figure 4.1,
was created from video 00009, the arena file arenas_1, an arena named center, and includes
frames 1 to 8000. As with all other GUIs, the list can be filtered using NAME FILTER edit box.
When a session is selected, the first frame will be shown. If a user comment was entered in the
previous stage, it will be shown in the USER COMMENT panel.

4.2. Viewing the video
The right side of the Detect GUI shows frames from the session. At this stage, the frames are a
greyscale and are clipped from the original video. The detected positions in each frame are
indicated by landmarks plotted over the image (Figure 4.1). The color scale to the right of the
image shows the intensity values of the image. The yellow rectangle bounds the mouse (or
whatever is detected as one). Colored circles indicate specific body positions. A legend is shown
below the image. For example, BODY, shown in green, corresponds to the center of mass of the
mouse (the detected object).

4.2.1. Zooming in on the mouse image
The zoom-in option, to the right of the color legend, will show a magnified view of the rectangular
bounding area containing the mouse (Figure 4.2).

Figure 4.2 The Detect GUI – zoomed in

OptiMouse User Manual (V3.0)

16
Yoram Ben-Shaul 4/2017

4.2.2. Navigating the video
Controls in the bottom right panel allow navigation. In addition to the GO TO FRAME and GO TO
TIME edit boxes and the slider, the Detect GUI includes buttons for moving to the NEXT and the
PREVIOUS frames. These operations can also be performed using the keyboard: The > (right
arrow), and < (left arrow) keys move to the next and previous frames, respectively. If the ALT key
is held while pressing the arrow keys, one second steps will be made. Keyboard controls will not
function if the cursor is within one of the edit boxes. See Appendix 6 for a list of keyboard
shortcuts.

4.3. Understanding body and nose detection
A basic familiarity with the detection process is required to understand the Detect GUI controls.
Position detection begins with object identification based on the different intensity values for
mouse and background. This involved background subtraction, and thresholding to define the
image. Radiobuttons in the IMAGE panel, below the video image, can be selected to show the
original, the background subtracted, or the thresholded image (see Figure 4.3 for these various
views).

4.3.1. Subtraction of a median background image
Background subtraction is helpful because it eliminates static objects in the arena that could be
confounded with the mouse. By default, the median image is subtracted from all video frames.
The median image is calculated during session preparation, over the entire range of the session.
If the mouse’s position varies in different frames, it will be filtered-out in the median image, and
the median will provide a good estimate of the arena without the mouse. However, if the mouse
stays immobile in many frames, it will also appear in the median image, and this could seriously
confound detection. Solutions for this case are described in sections 4.3.2 and 4.3.3. The SHOW
button in the BACKGROUND IMAGE shows the currently used background image (Figure 4.3D).

A. Original image B. Background subtracted C. Thresholded image D. Background
Figure 4.3. Different views of the video frames. Only a section of GUI is shown. For this view,
the SHOW PEEL checkbox has been unchecked (section 4.5).

OptiMouse User Manual (V3.0)

17
Yoram Ben-Shaul 4/2017

4.3.2. Cancelling Background subtraction
If the background itself changes during the session (due to changes in the position of objects,
lighting conditions, or camera movement) subtraction of a constant background will actually
interfere with correct detection. In such cases, it may be better to avoid background subtraction.
To cancel background subtraction, check the NONE radiobutton in the BACKGROUND IMAGE
panel. The cost of avoiding background subtraction is minimal if the mouse is clearly distinct from
the background.

4.3.3. Defining a custom Background using the Custom Background GUI
If the median image does not yield a good image of the arena without the mouse, it may be
possible to create a good background image from a specific set of frames, from either the current
video or another. Definition of a custom background is accomplished with the CREATE button in
the BACKGROUND IMAGE panel. This will open the Custom Background GUI (Figure 4.4). When
called, the custom background GUI will show the video containing the current session. The
boundaries of the arena and the rectangular region containing it are plotted over the video
(yellow and green in Figure 4.4).
The listbox on the left side of the GUI allows choosing other videos for background images. Other
videos can be used only if they share pixel dimensions with the original video. Only videos that
were filmed under the exact same conditions as the original video should be considered for
background definition.
The right side of the GUI shows the currently defined background image. Initially, it is empty. A
background can be defined from the selected video by one of two methods:

4.3.3.1. Creating a background from a single frame
The CREATE FROM CURRENT button will clip the arena boundaries from the current frame (in
the Custom Background GUI) and apply it as a background image. The resulting image is shown
on the right panel. If all session frames contain the mouse, this option will not yield a good
background image.

4.3.3.2. Creating a background from a range of frames
A background image can be defined as a median of any subset of frames in a video. The goal is to
find a set of frames whose median will include the arena without the mouse. The subset of frame
is specified in the edit box above the CREATE FROM CURRENT button. The set of frames can be
specified using any valid MALTAB array syntax. For example: 1:10 specifies all frames between 1
and 10, 1:1000:22000 specifies every thousandth frame. Strings such as 1:20 200:100 1:3 are also
valid. The resulting image, which may require a few seconds to calculate, will be shown in the
right side of the GUI (see Figure 4.4).

OptiMouse User Manual (V3.0)

18
Yoram Ben-Shaul 4/2017

Figure 4.4 The custom background GUI

4.3.3.2. Applying the custom background image
Once a background image is created using either of the two methods, it can be applied to the
current session using the APPLY button in the Custom Background GUI (the button only becomes
active after an image is specified). After pressing the APPLY button, the USER DEFINED
radiobutton in the BACKGROUND IMAGE panel of the Detect GUI will become accessible.
However, to apply the custom background it is necessary to select the radiobutton. The custom
background image can be viewed with the SHOW button in the BACKGROUND IMAGE panel.

4.4. Distinguishing mouse from background
After background subtraction, frames are transformed to binary images after thresholding. Pixels
with intensity above the threshold are designated as 1, the rest are designated as 0.
Checking the TRESHOLDED radiobutton in the IMAGE panel will show the thresholded image in
the GUI (Figure 4.3C). The thresholded binary images serve as inputs to the detection algorithm,
and thus represent a key stage in the detection process.

4.4.1. Setting the brightness of the mouse relative to the arena
To separate mouse from background, it should be known if the mouse is brighter or darker than
the arena. OptiMouse attempts to determine this automatically (the DETERMINE
AUTOMATICALLY button in the DETECTION PARAMS panel is selected by default). This
determination can fail however, and when it does, object detection will also fail. In such cases,
users should explicitly specify if the mouse is darker or brighter by checking either the MOUSE IS
DARK or the MOUSE IS BRIGHT buttons.

OptiMouse User Manual (V3.0)

19
Yoram Ben-Shaul 4/2017

4.4.2. Setting the threshold value
The threshold is determined automatically for each frame by the MATLAB function graythresh.
However, graythresh does not always return a value that separates mouse from background well.
Therefore, this automatically determined threshold can be modulated using the THRESHOLD edit
box, or slider, in the DETECTION PARAMS panel. The user-defined THRESHOLD value acts as a
multiplicative factor over that determined automatically. The only relevant criterion for setting
the THRESHOLD is the result of object detection. Ideally, the threshold should separate the entire
mouse, and nothing but the mouse, from the background. Varying the threshold directly effects
the dimensions of the detected object. Note that in all built-in algorithms, the mouse is
considered to be the largest object in the arena. Thus, the presence of above threshold non-
mouse pixels is not a problem as long as they do not form a continuous patch larger than the
mouse.
Excessively high thresholds will preclude object detection and a warning message will be
displayed above the frame image. Excessively low threshold values could lead to detection of
objects or regions that are not the mouse.

4.5. Detecting body and nose positions - the peeling operation
Once mouse boundaries are properly determined, deriving the body center is straightforward
and robust (BODY, indicated by the green circle in Figure 4.1). Technically, the body center is
determined as the center of mass of the mouse object.
Detection of the nose is far more challenging and therefore OptiMouse includes several methods
to derive nose position from the mouse image. In addition, OptiMouse supports inclusion of
custom algorithms, implemented as MATLAB code files (see Section 4.11).
Most built-in algorithms use a common procedure. Detection of the nose is actually based on
detection of the tail. Tail identification is based on a “peeling” operation. In each stage of peeling,
the pixels on the margins of the mouse are removed. Because the tail is thinner than the head, it
will disappear after several cycles of peeling, and a “tailless” mouse will remain. The difference
between the tailless mouse and the original mouse allows OptiMouse to identify the tail.
The number of peeling cycles is an important determinant of proper nose position detection. Too
few peeling steps will not eliminate the entire tail; too many cycles will eliminate the entire
mouse. Ideally, peeling should consistently remove the tail, but leave the body intact. The actual
value depends on the dimensions of the mouse (as it appears in the binary image) in pixels.
This number of peeling cycles is set in the PEELING STEPS drop down menu. Figure 4.5 shows the
effects of varying the number of cycles. The SHOW PEEL checkbox allows viewing or hiding the
peel from the mouse image.

OptiMouse User Manual (V3.0)

20
Yoram Ben-Shaul 4/2017

1 peeling cycle 3 cycles 9 cycles 3 cycles, peel hidden
Figure 4.5 Peeling cycles. Shown are zoomed in images of the mouse after varying numbers
of peeling steps. Although both one and three cycles result in correct nose detection (red
circle), the choice of three is the correct one, because it peels the entire tail and correctly
identified the tail base (yellow). An excessive number of cycles (9) results in confounding
nose and tail. If the peeling cycles are increased further, detection will not be possible as
nothing will remain after peeling. The image on the right corresponds to detection with three
cycles, with the SHOW PEEL checkbox unmarked.

4.6. Detection algorithms
OptiMouse includes different built-in algorithms for detection of nose positions. All algorithms
accept as inputs the binary mouse image and the number of peeling cycles. All algorithms detect
the body center identically, but differ in how they determine nose positions. The algorithm is
selected with the ALGORITHM pull down menu in the DETECTION PARAMS panel. Algorithms
are briefly described below. All algorithms are implemented in the MATLAB function
get_mouse_position_mm.m.

Algorithm 1: The nose is defined as the point on the mouse perimeter that shows the largest
distance difference between the tail center of mass and the tailless (peeled) mouse center of
mass.
Algorithm 2: Like algorithm 1, but the nose must be on the boundary of the bounding box (shown
in yellow).
Algorithm 3: The nose is defined as the furthest point from the tail center of mass and must also
be on the bounding box (yellow).
Algorithm 4: The nose is defined as the furthest point from the tail end (Euclidean distance).
Algorithm 5: The nose is defined as the furthest point from the tail base (Euclidean distance).
Algorithm 6: Like algorithm 5, but the distance to the base is determined along a path on the
mouse boundary. This is known as the geodesic distance, and is particularly advantageous when
the tail is curved.

OptiMouse User Manual (V3.0)

21
Yoram Ben-Shaul 4/2017

Algorithm 7: Appropriate when the tail is not visible so that the most angular region of the mouse
body is the snout, rather than the tail. This algorithm defines as nose, what the preceding
algorithms define as the tail.

As with all parameters, the choice of algorithm should only be determined by the success of nose
detection. The landmarks shown over the image allow determination of the performance of each
of the algorithms, and if they fail, identification of the cause of failure. Note that not all landmarks
are applicable to all detection algorithms. For example, algorithm 7 only involves body and nose,
while algorithm 4 involves body, nose and tail tip, but not tail base. The most important
landmarks to note are of-course the body (green), and the nose (red).

Under most scenarios that we tested, algorithm 6 is the most reliable, and is thus the default.
Algorithm 7 is very useful when the tail is not included in the binary mouse image (either because
it is hidden from view, or because the threshold is set too high).

A detailed technical description of the Algorithms is provided in Appendix 10. See also the
documentation within the function get_mouse_position_mm.m.

4.7. Running Detection (with a single setting)
The overall goal of the DETECT GUI is to find an optimal set of detection parameters, known as a
setting, and then run position detection on all video frames. The setting includes all the user
specified parameters: algorithm, threshold, whether the mouse is dark or light, number of
peeling steps, and the background image (or lack of it). Finding the optimal setting requires
evaluation of its performance on a range of frames. This is achieved by browsing the video and
observing the outcome of the detection. In the process, detection parameters should be modified
to achieve the best nose detection throughout the session.
Before applying any set of parameters for detection, they must be added to the settings list. This
is done with the ADD button in the DEFINED SETTINGS panel. When pressed, OptiMouse prompts
the user for a name for the setting and then it is added to the list. Figure 4.6 shows the GUI after
adding of one setting, named default set.
Once at least one setting is defined, detection can be started using the RUN button in the Detect
GUI. The detection can be cancelled by closing the progress bar. Results are saved in a MATLAB
data file denoted as the position file for subsequent analysis stages. The position file is saved in a
sub-directory, named positions under the main video directory. The position file name retains
information about the session, and also includes the string _positions. For example, the resulting
position file for the center arena in the example of Figure 4.6 will be named:
00009_arenas_1_center_frames_1_8000_positions. See Appendix 1 for a description of the
position file.

OptiMouse User Manual (V3.0)

22
Yoram Ben-Shaul 4/2017

The position file can be directly taken for analysis (Section 6). However, as explained in the next
sections, it is often best to define multiple detection settings and, regardless of the number of
settings, to review the results of detection before analysis (Section 5).

4.8. Running Detection in Batch mode
Like arena preparation, position detection is a time consuming process. Therefore, the Detect
GUI provides a batch processing option, which is similar to that for the session preparation stage.
Pressing the BATCH rather than the RUN button will add a command, equivalent to that of
pressing the RUN button, to a batch file. The batch file for the detection stage is named
calculate_positions_batch.m, and is located in the optimouse_user_definitions folder.
The batch file can be run by typing its name on the MATLAB command prompt
(>>calculate_positions_batch) or by pressing the Run icon when the batch file is open in the
MATLAB editor.
The batch file is intended to be called after a number of commands have been added to it. In
using the calculate_positions_batch, the same cautionary steps should be taken as when using
the prepare_arena_batch file (Section 3.6). See Appendix 4 for a description of the
calculate_positions_batch file.

Figure 4.6 The Detect GUI after one setting has been defined. Note the DEFINED
SETTINGS panel.

4.9. Assigning multiple settings to a single session

OptiMouse User Manual (V3.0)

23
Yoram Ben-Shaul 4/2017

Generally, a given setting will work well only for a subset of frames in a session. For example, the
tail may be visible in some frames but not in others. As another example, in sessions with
heterogeneous arenas, background subtraction may be helpful in some regions, but unfavorable
in others. To address such variability, OptiMouse allows the definition of up to 6 different settings
per session. The drawback of including more methods is prolonged processing time; a minor cost,
especially if the batch mode is used.

4.9.1. Adding and removing multiple settings
The procedure for adding multiple settings is identical to that described for a single setting. When
the ADD button is pressed, OptiMouse prompts for a name, and the current GUI parameters will
be saved as a setting. Settings must be unique, both in the parameter values, and in name. The
distinction between two methods may be subtle. For example, two settings could differ only in
the detection threshold value, or in the number of peeling steps. For the reviewing stage (Section
5), it is convenient to assign meaningful names to the settings. When a setting is active (by
selecting its name in the DEFINE METHODS panel), the parameters associated with it are applied
to the currently shown frame. However, changing parameter values will not affect saved settings.
To update the parameters associated with a predefined setting, press the ADD button, specify
that setting’s name, and confirm overwriting it. A setting can be removed by selecting it and
pressing the REMOVE button.

4.9.2. Defining a setting as the default
When the list contains multiple settings, the first one serves as the default setting. The
significance of this designation is explained in Section 5. Practically, it is convenien, to set as
default the setting that applies to the largest fraction of frames. Pressing the DEFAULT button
when a setting is selected will move it to the first position in the list, and thus make it the default.

4.9.3. Saving and loading settings
The SAVE and LOAD buttons on the DEFINED SETTINGS panel allow saving, and subsequently
loading, settings. This allows application of settings defined in different settings. When saving,
OptiMouse suggests a default name for the settings file, but any name may be used. It is
recommended to retain the prefix detection_settings in the name. Figure 4.7 shows the Detect
GUI after the definition of three settings.

OptiMouse User Manual (V3.0)

24
Yoram Ben-Shaul 4/2017

Figure 4.7 The Detect GUI after three settings were defined. Settings’ names indicate
the conditions for which they are suitable.

4.10. Running detection with multiple settings
Running detection with multiple settings is identical to running it with one setting. However, the
resulting positions file will contain positions determined by each of the settings. Batch processing
works with multiple settings as it does with a single settings (See Appendix 4).

4.11. Incorporating custom detection functions
Another feature that allows OptiMouse to deal with variable detection scenarios is the ability to
integrate custom user-defined functions into the Detect GUI. User-defined algorithms may be
slight variations of the built in algorithms, or entirely distinct from them. User defined functions
must return body and nose positions as outputs and ideally, they should also return other
parameters associated with detection. The significance of these parameters will be evident in the
next stage (Section 5). Custom function must be defined in a designated file named
user_defined_detection_function_description.m under the optimouse_user_definitions folder.
Once custom detection functions are defined, they will appear in the ALGORITHMS drop down
list box in DETECT PARAMS panel. User defined functions can accept as input any of the
parameters used by the built-in algorithms, and the GUI can accommodate up to five additional
parameters for these function. Figure 4.8 shows the Detect GUI with a user defined algorithm
selected. The algorithm selected in Figure 4.8 was associated with five additional parameters.
For all intents and purposes, once defined user defined functions are treated by OptiMouse as if

OptiMouse User Manual (V3.0)

25
Yoram Ben-Shaul 4/2017

they were built-in detection algorithms. A detailed explanation of the definition and use of
custom detection functions is given in Appendix 5.

5. Reviewing Position Detection

The reviewing stage is initiated by pressing the REVIEW button in main OptiMouse interface.
Figure 5.1 shows the Review GUI, with a session that was processed with three detection settings
(see Figure 4.8).
The upper left listbox shows all position files within the positions subdirectory (See Appendix 1).
Position files are identified as mat files ending with the string _positions. As with other GUIs, a
NAME FILTER can be entered to limit the list. The USER COMMENT panel shows previously
entered user comments, if defined in the session preparation stage.

Figure 4.8. Detect GUI with a custom algorithm selected. This algorithm merely imposes
a shift on positions detected using one of the built-in algorithms (compare with Figure
4.7). It is intended only for illustration purposes.

OptiMouse User Manual (V3.0)

26
Yoram Ben-Shaul 4/2017

Figure 5.1. Prepare GUI, a session with 3 settings.

5.1. Browsing frames and position detection
The center of the GUI shows session frames. Frames can be accessed by specifying their number
or their time into the edit boxes, or by moving the slider. Recall that a small slider step
corresponds to one second, while the larger steps correspond to one minute. The PREVIOUS and
NEXT buttons move to the previous and next frames. They can be activated from the keyboard
using the right arrow (>) and left arrows keys (<).
In addition, the Review GUI includes a continuous playback option. The PLAY button can be
toggled to play or pause movie playback in the forward direction. The YALP allows playback in
reverse. The DELAY and SKIP edit boxes allow slow motion and accelerated playback. If a DELAY
value is entered, playback will pause for the specified duration (in seconds) between consecutive
frames. The SKIP value allows a quick run through the movie. For example, if the value is 10, then
every 10th frame will be shown, effectively speeding up playback 10-fold. A value of 1 corresponds
to normal playback. The YALP and PLAY actions can be activated from the keyboard using the left
and right arrows while the ALT key is pressed. Pressing the left or right arrows while the SHIFT
key is pressed moves in one-second steps.
Appendix 6 provides a summary of all keyboard shortcuts.

5.1.1. The Active Setting
In each frame, detection results from all previously defined settings are shown. For the session
shown in Figure 5.1, three settings were defined. Each setting is associated with one color. In any
given frame, there is one active setting which determines the final coordinates assigned to each
frame. The major goal of the reviewing stage is to apply correct setting to each of the frames. As
described below, this can be achieved in multiple ways.

OptiMouse User Manual (V3.0)

27
Yoram Ben-Shaul 4/2017

Initially, the default setting from the previous stage (Figure 4.8) is applied to all frames. The
position associated with the active setting is indicated by a square (body), a circle (nose) and a
line connecting them. For other, non-active settings, only nose positions are shown, as smaller
circles. The active setting for any given frame is also indicated by the color of the rectangle below
it. Thus, in Figure 5.1, for frame 12048, the first setting is the active setting. This is indicated by
the blue line connecting the blue square and circle (nose positions determined by the other
settings are shown as smaller green and pink circles), and the blue rectangle below the mouse
image.

Viewing only the active setting
By default, detection results of all settings are shown. Check the SHOW ACTIVE radiobutton
(below the DETAILS button) to show the active setting only. Checking the SHOW ALL radiobutton
will show all settings.

Viewing setting details
The DETAILS button, under the USER COMMENT panel, creates a display with complete
descriptions of each of the settings (Figure 5.2).

Figure 5.2. Display of setting details, generated when the DETAILS button is pressed. Font
color corresponds to the setting color.

OptiMouse User Manual (V3.0)

28
Yoram Ben-Shaul 4/2017

Zooming in on the image
The ZOOM button under the USER COMMENT panel
allows zooming-in on the image. This will change the
cursor to a cross allowing rectangle definition. Drag the
vertex of the rectangle to define its dimensions. Once
present, the rectangle can be moved over the image
(by dragging it from the center) or resized (by dragging
one of the edges or the vertices). When the rectangle
is double left-clicked, the region within it will be
shown. Rectangle definition uses the MATLAB imrect
function. The RESET button will reset the zoom. Figure
5.3 shows a zoomed-in section of the frame.

5.1.2. Frames without valid positions
Sometimes, a given setting does not yield a valid position for a particular frame. Technically, the
position assigned by that setting (in that frame) is a MATLAB NaN (not a number). If it is the active
setting that is not associated with a valid position, then the frame itself will not be associated
with a position. Section 5.6.2 describes how to identify frames without a valid position. Note that
a valid setting is distinct from a correct setting.

5.2. Modifying settings in individual frames

5.2.1. Changing the active setting for a single frame
Any previously defined setting can be applied to the current frame by pressing the corresponding
button in the ASSIGN FRAME/SEGMENT panel. The panel contains one button for each setting.
The buttons’ color and name identify the setting they are associated with.
For example, as seen in Figure 5.1, the green and blue settings result in correct nose detection in
frame 12048, whereas the pink one does not.
In contrast, the default setting (blue) does not work well in frame 1577 (Figure 5.4). In this frame,
only the second (green) and the third (pink) settings correctly identify the nose. Pressing the
corresponding buttons will make the settings active. Figure 5.5, shows the same frame after
applying the second (green) method.

Figure 5.3. Zoomed view of mouse
(frame 12048). Only part of the GUI
is shown.

OptiMouse User Manual (V3.0)

29
Yoram Ben-Shaul 4/2017

Figure 5.4. In this frame, the default setting fails to identify correct nose position.

Settings can also be applied from the keyboard. Pressing keys 1-6 will apply the corresponding
settings to the current frame (if these settings were defined). For example, the second and third
settings can be toggled with the 2 and 3 keys.

Figure 5.5. The second setting does correctly identify the nose position in this frame.

5.2.2. Setting a manual position
Sometimes, none of the settings provide correct detection in a given frame. In rare cases, none
will yield a valid position (i.e. positions detected by all settings will be NaNs). OptiMouse provides
several ways to handle such situations.

OptiMouse User Manual (V3.0)

30
Yoram Ben-Shaul 4/2017

One option is to define positions manually, using the MANUAL button. After pressing the button,
the cursor, when positioned over the frame image, will appear as a cross. The mouse position is
specified as a line starting at the body center and ending at the nose. To define the line, left click
the mouse, and while holding, drag to define the second endpoint and release. Once a line is
drawn, it can be modified by dragging either of its ends. The position is set only after double
clicking it.
The manually defined position automatically becomes the active setting for that frame. This is
reflected by yellow the color of the square, circle and line connecting them. The manual position
can always be overridden by the other settings. Figure 5.6 shows a manually defined position.
If a manual position has already been defined for the current frame, but is not active, the
MANUAL button will make it active. If the manually defined positioned is active, the MANUAL
button will initiate a new definition, overriding the original. The definition of the manual position
uses the MATLAB function imline.

Figure 5.6. A frame after setting a manual position.

5.2.3. Excluding individual frames
Frames can be excluded from further analysis. When a frame is excluded, it is not associated with
a position. The EXCLUDE button in the left side of the GUI excludes the current frame (the x key
does the same thing). Excluded frames are identified by a gray rectangle below them and the
absence of a line connecting nose and body coordinates. Frame exclusion can be reversed by
applying any valid setting, or by defining a manual position. Figure 5.7 shows an excluded frame.
Positions in explicitly excluded frames, as in frames without valid active settings, are also
designated as NaNs, and are ignored subsequent analyses.

OptiMouse User Manual (V3.0)

31
Yoram Ben-Shaul 4/2017

Figure 5.7. The same frame shown in Figure 5.6, after excluding it. Note the gray square
below the image, and the lack of a connecting line.

5.3. Operations on entire segments

5.3.1. Applying settings to segments
Applying settings to each individual frame is time consuming and not practical for entire sessions.
OptimMouse provides several methods to allocate settings to multiple frames. One method is to
apply a setting to a continuous range of frames - a segment. A segment is defined by start and
end frames, set using the START and END edit boxes in the SEGMENT panel. Alternatively,
pressing the SET CURRENT buttons, located below the edit boxes, will assign the current frame
as either the start or end. Segment start and end can also be set from the keyboard using the s,
and e keys, respectively.
When a valid segment is set, the buttons for each of the settings (in the ASSIGN
FRAME/SEGMENT panel) will apply the setting to all frames in the segment (this is also true for
the keyboard shortcuts associated with these settings). Similarly, pressing the EXCLUDE button
when a segment is defined, excludes all frames within the segment.
Manual positions cannot be set for a segment, but as described in Section 5.3.2 below, positions
in a segment can be interpolated based on the start and end frames.

5.3.2. Interpolating positions in a segment of frames
It may be that an entire sequence of frames will not be correctly detected with any predefined
settings. Setting manual positions to each frame is impractical. To address such cases, OptiMouse
provides an option for interpolation. When a valid segment is defined, as described above, the
INTERPOLATE button interpolates positions in all frames between start and end frames.
Interpolation can be performed from the keyboard using the i key.

OptiMouse User Manual (V3.0)

32
Yoram Ben-Shaul 4/2017

Body and nose positions at the start and end frames serve as anchors for interpolation, and are
not modified. Thus, to serve as anchors for interpolation, the start and end frames must have
valid (non NaN) positions associated with their active setting.
Interpolated frames are automatically assigned to the interpolated class which are shown in
ochre. When one of these frames is selected, an INTERPOLATED button appears in the ASSIGN
FRAMES/SEGMENT. Interpolation is reversible, and other settings can always be applied as
described above (and also below).

OptiMouse provides two interpolation algorithms, determined using the two radiobuttons under
the INTERPOLATE button.

5.3.2.1. Interpolation by PATH
The default interpolation option is BY PATH. Here, vectors defined by the mouse angle and length
are taken from the start and end frames. The angles and lengths of these vectors are then linearly
interpolated for all the other frames within the segment. Each of these vectors is then applied to
each frame, with its origin placed at the body center.

5.3.2.2. Interpolation by LINE
In the BY LINE interpolation algorithm, body and nose positions are each linearly interpolated,
using the start and end frame positions. Thus, the paths of both body and nose positions will
define a straight line from start to end frames.

The conditions that determine which algorithm is more suitable are complex. Practically, both
algorithms must be tested to determine which provides better results. Generally, interpolation
only works well for short segments with gradual monotonic changes. For example, if the mouse
angle and length change in a complex, non-monotonic way, the BY PATH approach will not work
well. The BY LINE algorithm will only work if the mouse trajectory within the segment defines a
straight line at a constant speed. Applying interpolation in cases where the requirement of
linearity are violated can lead to very misleading outcomes. Whichever algorithm is used, the
results of interpolation must be monitored.

Figure 5.8 shows the same frame as in Figure 5.6 and 5.7, with interpolated positions (rather
than manual position).

OptiMouse User Manual (V3.0)

33
Yoram Ben-Shaul 4/2017

Figure 5.8 The same frame shown in Figure 5.6, and 5.7, after interpolating frames. In
this example, frames 4044 and 4048 were used as anchors and the BY PATH option was
used for interpolating positions. The previously defined manual position is still stored,
but is not active. Interpolated positions are indicated in ochre.

5.4. Annotating frames
OptiMouse provides basic annotation with user defined events.
Annotation requires an initial definition of character strings that can be used as annotation
events. The definitions are made in the file user_annotation_events.m in the
optimouse_user_definitions folder. See Appendix 7 for a description of this file and how to define
events.
The list of events is read from the file and used to populate the pull down menu in the EVENTS
panel (on the bottom right side of the Review GUI). It is advisable to assign short event names,
so they will not be truncated in the Review GUI.
Events in the list can be assigned to selected frames using the buttons in the EVENTS panel. The
APPLY button adds the selected event (from the pull down menu) to the current frame, or
segment (if a valid segment is defined). The REMOVE button removes the selected event from
the current frame, or segment. A frame can be associated with multiple events. The APPLY and
REMOVE buttons can be activated from the keyboard using the a and r keys, respectively. Figure
5.9 shows an annotated frame.
Events associated with the current frame are indicated in the text box below the frame image. A
procedure for identifying all annotated frames within the session is described in Section 5.6.2.

OptiMouse User Manual (V3.0)

34
Yoram Ben-Shaul 4/2017

Figure 5.9 A frame assigned with the event freezing as indicated by the red text below
the mouse image. The event was defined in the user_annotation_events.m file. It was
added to the frame by pressing the APPLY button when it was selected in the EVENT
panel listbox. A frame can be associated with multiple events.

5.5. Combining navigation tools and keyboard shortcuts to view and
correct positions
The tools described thus far allow browsing the session to monitor, and if necessary, to correct,
erroneous detections in individual frames or segments. Below is a suggested procedure for
achieving this goal:
1. View the movie using the PLAY/PAUSE button and/or by advancing individual frames using

the NEXT and PREVIOUS buttons. This can be done more efficiently with keyboard shortcuts
(>,<, for individual frames, and ALT>,ALT< for playback).

2. Whenever a frame that requires correction is found, pause the movie.
3. In each such frame, move one or two frames back in time using the < key, identify the first

frame that requires correction, mark it as a segment start (using the keyboard shortcut, s).
Then move forward using the > key (one frame) or shift > (an entire second) to find the last
frame that requires correction. Mark it as a segment end (using the keyboard shortcut, e).

4. If a frame, or an entire segment, requires correction, do one of the following:
4.1. If a predefined setting is suitable for all frames in the segment, apply it using the

corresponding keyboard shortcuts (1,2,3,4,5,6).
4.2. If there is no suitable predefined setting, but the frames do include a mouse with a

defined position, then
4.2.1. Interpolate the frames between segment start and segment end using the

keyboard shortcut (i), or

OptiMouse User Manual (V3.0)

35
Yoram Ben-Shaul 4/2017

4.2.2. Define manual positions for the frames. More efficiently, manual positions can be
defined for a few frames, and these can then serve as anchors, allowing to
interpolate positions in others frames.

4.3. If frames do not include a valid mouse image, exclude them using the keyboard shortcut
(x).

Frames can be efficiently annotated by combining movie navigation shortcuts, segment
definitions shortcuts and annotation shortcuts.

Completion of this procedure will result in correct position detection in the entire movie.
However, it may be very time consuming, particularly for long movies requiring many corrections.
The other set of controls in the Review GUI, described below, is designed to facilitate the
reviewing and correcting process.

5.6. The Parameter View
The right side of the Review GUI, which we refer to as the parameter view, allows viewing
parameters associated with each frame, and reciprocally, accessing frames with particular
parameter values. This display and the associated controls are designed to facilitate the
identification and correction of frames with erroneous position detection. We first describe the
various displays and controls, and then, explain how they can be applied to facilitate correct
position detection.
In the parameter view, each frame is represented by one dot. The position of the dot is
determined by the frame’s attributes (see below). Its color is determined by the setting
associated with it, following the color scheme described above.
When a session is initially selected, the nose position view is shown. In this view (shown in all
previous figures of the Review GUI), dot positions represent the nose position according to the
active setting. Thus, initially, all dots will be blue (the color associated with the first, default
setting).
The dot representing the current frame is surrounded by a black diamond. As different frames
are selected, and when the movie is played, the diamond changes position.
In the nose position view, frames that do not have a valid position will not be shown as dots. Note
the absence of a diamond in Figure 5.7, and its presence in Figures 5.5 and 5.6.

5.6.1. Accessing frames according to particular attributes and Zooming-In
Clicking near one of the dots will show the frame corresponding to the selected dot. Note that it
is necessary to click near rather than on a dot. Thus, selecting a dot within a very dense cluster
may be difficult and requires zooming-in. This is done with the ZOOM and RESET buttons on the
right side of the REVIEW GUI, using the same procedures described for the frame image zoom.

OptiMouse User Manual (V3.0)

36
Yoram Ben-Shaul 4/2017

5.6.2. The DISPLAY panel
This panel contains five pull-down menus which determine which parameters to shown in the
parameter view. The menu on the left is at the top of the hierarchy. The other menus become
active only when the parameter pairs option is selected from this menu (see Section 5.6.3). We
demonstrate the different views with an example of a session with four different settings

Nose position (Figure 5.10)
Dots indicate the position of the nose, as determined by the active setting for each frame.

Figure 5.10 The nose position view

Body position (Figure 5.11)
Dots indicate the position of the body (mouse center of mass), as determined by the active setting
for each frame.

OptiMouse User Manual (V3.0)

37
Yoram Ben-Shaul 4/2017

Figure 5.11 The body position view

Active setting (Figure 5.12)
Dots indicate the setting associated with each frame (frame number appears on the horizontal
axis). In addition to each of the user defined settings (indicated numerically in the vertical axis as
1, 2, 3, 4, 5, 6) there are entries for excluded frames (denoted as X in the vertical label), manually-
set positions (denoted as UD), and interpolated frames (INT). The NaN category denotes frames
without a valid position. The values in parentheses on the vertical axis indicate the number of
frames associated with each category. Clicking near dots in the NaN category will show those
frames for which the active setting (indicated by the dot color) does not provide a valid position.
As described above, such frames may well have a valid position using other settings, and if not,
manual positions can be defined. Sections 5.8 and 5.9 describe how all NaN frames can be
accessed efficiently.

OptiMouse User Manual (V3.0)

38
Yoram Ben-Shaul 4/2017

Figure 5.12 The active setting view

Angle Change (Figure 5.13)
Dots indicate the absolute difference, in degrees, between mouse angles on consecutive frames.
The value for any given frame is the absolute value of the angle difference between it and the
one proceeding it. This view is useful for identifying frames with incorrect positions: mice do not
make 180° body flips within a fraction of a second, but a very common detection error is to
confound nose and tail positions, which can lead to such abrupt changes between consecutive
frames if detection is correct in one, and incorrect in another.
Thus, selecting dots corresponding to large changes will usually reveal incorrect detection on
either the frame itself or the one preceding it. On the other hand, small angle change values do
not necessarily imply correct detections (an entire sequence of frames may have similar incorrect
detections, resulting in small angle changes between them).
When the angle change view is selected, three vertical lines appear in the display. Their
significance and purpose are explained in Sections 5.8 and 5.9 on the MARK and CORRECT
panels. These panels are designed to facilitate viewing and correcting such fast angle changes.
The CORRECT panel appears only when the angle change view is selected.

OptiMouse User Manual (V3.0)

39
Yoram Ben-Shaul 4/2017

Figure 5.13 The angle change view

Mouse angle (Figure 5.14)
Dots represent the mouse angle as a function of frame number. Angles are defined between 0°
and 360°. Note that this view is not very useful for detecting abrupt angle changes, since changes
between e.g. 1° and 359° may appear large on the display, while they are actually small.

Figure 5.14 The mouse angle view

Body Speed (Figure 5.15):
Dots represent the speed of the mouse as a function of frame number. The value in any given
frame represents the speed from the preceding frame into the current frame. This view includes
a horizontal black line whose significance is explained in Sections 5.8 and 5.9 on the MARK panel.

OptiMouse User Manual (V3.0)

40
Yoram Ben-Shaul 4/2017

Figure 5.15 The body speed view

Nose speed (Figure 5.16)
Dots indicate the speed of the nose relative to the body (as a function of frame number). This
measure is highly correlated with, but not identical to, the angle change parameter. As with angle
change and body speed views, the value represents the speed going into the current frame.
Extremely high values are usually due to erroneous detections, in either the current, or the
preceding frame. This view also includes a horizontal black line described in Sections 5.8 and 5.9.

Figure 5.16 The nose speed view

OptiMouse User Manual (V3.0)

41
Yoram Ben-Shaul 4/2017

Annotated events (Figure 5.17)
In this view, the dots indicate, for each frame, whether an event has been assigned to it. Although
the identity of the event is not indicated in this display, clicking near a dot in the upper row will
reveal the frame and all events associated with it.

Figure 5.17 The annotated events view

5.6.3. Parameter Pairs
Selecting the parameter pairs option activates the other pulldown menus in the DISPLAY panel
(they are inactive in Figures 5.10-5.17). Using these menus, a variety of parameter pairs can be
viewed on the vertical and horizontal axes. For each axis, it is required to select which parameter
to show using the upper pull down menus. The lower pull down menus specify the setting from
which the parameter value is derived. Note that here, the dot positions do not necessarily
represent values associated with the active setting. Their color however, does show the active
setting. Axes labels assume the color of the setting that they represent. The ability to select the
settings and the parameters for each axis provides many options for identifying frames with
particular properties.

5.6.3.1. Viewing the same parameter as detected by different settings
To provide one example, it is possible to show mouse angles determined by the one setting vs.
those determined by another setting. The dot selected in Figure 5.18 is on the diagonal, indicating
that similar angles were determined by both settings. Selecting an off-diagonal dot,
corresponding to a ~180° difference, will reveal frames in which at least one of the settings yields
a wrong nose position.

OptiMouse User Manual (V3.0)

42
Yoram Ben-Shaul 4/2017

Figure 5.18 Parameter pairs view showing mouse angle as detected by different
methods

5.6.3.2. Viewing two different parameters from the same setting
Another possibility is to view the relationship between two parameters from the same setting.
For example, Figure 5.19 shows mouse length and mouse area as determined by the first setting.
This is an example where outlying dots, like the one selected in Figure 5.19, can reveal
problematic frames that should be excluded (see Section 5.7.2). The example in Figure 5.19 is
clearly extreme, but more subtle problems can also be revealed outlying dots.

Figure 5.19 Parameter pairs view showing mouse area vs. mouse length for a single
setting.

OptiMouse User Manual (V3.0)

43
Yoram Ben-Shaul 4/2017

The number of possible parameter combinations is very large and it is definitely not intended to
examine each of them. The rationale behind the parameter display is that some parameters may
characterize frames with important attributes. Different parameters may be useful for different
sessions and for different analyses.

5.6.3.3. A description of all parameter pairs
Below is a description of all parameters.

Parameters related to mouse position
body x: horizontal position of the mouse center of mass.
body y: vertical position of the mouse center of mass.
nose x: horizontal position of the mouse nose.
nose y: vertical position of the mouse nose.

Note that the vertical position (as defined by the video image display) can be plotted on the
horizontal axis of the parameter view, and vice-versa.

mouse angle: the angle of the line connecting the nose and the body center of
mass.

Parameters related to mouse shape
trim factor: ratio between the length of the mouse before trimming to the

length after trimming. This indicates whether the tail of the mouse
has been properly identified. Values will typically be large if the
tail is detected and is in the same orientation as the body.

mouse perimeter: perimeter of the mouse before peeling.
thinned mouse perimeter: perimeter of the mouse after peeling.
perimeter ratio: ratio of the perimeters before and after peeling.

Parameters related to mouse dimensions
mouse area: total number of pixels associated with the detected object.
mouse length: distance between the body center of mass and the nose.

Parameters associated with image intensity
grey threshold: software determined threshold values for the frame.
mouse intensity mean: mean intensity of mouse pixels.
mouse intensity var: variance of the intensity of mouse pixels.
mouse intensity range: difference between the minimal and maximal intensity pixels of

the mouse.
background intensity (mean): mean intensity of the rectangle containing the mouse object

without mouse pixels.

OptiMouse User Manual (V3.0)

44
Yoram Ben-Shaul 4/2017

Frame number
Allows viewing how another parameter changes as a function of frame number.

5.7. Applying settings to frames based on common attributes
The ability to mark, and change settings of frames using polygons is especially useful when frames
with similar attributes form clusters under particular parameter combinations. For example,
when the mouse is in certain parts of the arena with a distinct background color, one particular
setting may be preferable over others. Such frames can be identified using the background color
parameter. Or, when the tail is hidden, there may also be one particular optimal setting. Such
frames can be identified using the mouse length or perimeter. To give a third example, when a
mouse is moving with an elongated body, there may also be one ideal setting. Such frames can
be identified using the length and speed parameters. The parameter view allows applying a
setting to a group of frames whose dots cluster in the parameter view. This is accomplished by
surrounding selected dots with a polygon, a procedure that technically is identical to the
definition of polygon shaped arenas.

Figure 5.20 Application of a setting to a group of frames using the ASSIGN GROUP panel.
To complete definition it is still required to double click the polygon, as shown in the
next figure.

5.7.1. Applying settings to frames using the parameter view
The ASSIGN GROUP panel on the right side of the REVIEW GUI includes buttons for each of the
settings. When one of these buttons is pressed, the cursor changes to a cross hair, and allows
defining a polygon on the parameter view. The procedure for defining polygons is identical to
that described in Section 3.3.2.2. Once definition is complete, all the points within the polygon
are assigned with the button’s setting. Figures 5.20 and 5.21 illustrate the application of the third

OptiMouse User Manual (V3.0)

45
Yoram Ben-Shaul 4/2017

setting (pink button) to a group of frames in which the default setting fails. These frames are
identified by characteristic trim factor and length values. Figure 5.20 and Figure 5.21 show the
definition before and after the polygon was double clicked, respectively. Note the change in the
current frame image following the definition.

Figure 5.21 After double clicking the polygon shown in Figure 5.20, all frames
corresponding to dots inside it are associated with the third (pink) setting.

5.7.2. Excluding frames using the parameter view
Polygon definitions can also be applied to exclude a group of frames using the EXCLUDE button
on the right side of the Review GUI. After drawing a polygon around the dots designated for
exclusion, they will be shown in gray (Figure 5.22). Excluded frames will not be shown in the
parameter view if the HIDE checkbox under the EXCLUDE button is checked. This is useful when
dots corresponding to the excluded frames impair visibility of relevant frames. Note that even
when frames are hidden in the parameter view, they are still shown in the video display.

OptiMouse User Manual (V3.0)

46
Yoram Ben-Shaul 4/2017

Figure 5.22 excluding a group of frames using the EXCLUDE button. To complete
exclusion definition it is still required to double click the polygon.

5.8. Marking and focusing on a subset of frames
Controls in the MARK panel allow highlighting frames with particular parameter values for closer
inspection. Frames can be marked in one of two ways.

5.8.1. Marking frames using the SUBSET button
The SUBSET button allows marking frames using a polygon on the parameter view. The number
of marked frames and the percentage that they constitute of the total will be indicated. Once a
subset has been defined, the other controls within the panel, described below, become active.

5.8.2. Marking frames according to large parameter values
The second way to define a subset is only applicable to the angle change, body speed, or nose
speed views. Parameters associated with these views are unique because large values are often
indicative of incorrect detection (see also Section 5.9). When one of these views is selected, a
black horizontal line is shown. The height of the line corresponds to the 99th percentile of the
parameter value distribution and is indicated in the MARK LARGER THAN edit box. To modify the
height of the black line (and the subset of marked frames), enter the desired value into the MARK
LARGER THAN edit box, and press the enter key. As a result, all frames with values exceeding the
specified value will be marked, overwriting any previously marked group of frames. Figure 5.23
shows the Review GUI after frames associated with high nose speed were marked. All marked
frames are shown as larger dots, and the number and percentage of marked frames is indicated
in the MARK panel.

OptiMouse User Manual (V3.0)

47
Yoram Ben-Shaul 4/2017

Figure 5.23 Marking frames with high nose speed values. Frames were marked by
entering the value in the MARK LARGER THAN edit box.

5.8.3. Examining marked frames
Selecting the HIGHLIGHT checkbox shows all marked frames as large dots, and all unmarked
frames as small dots. This checkbox is automatically selected when a subset is defined. When
marked frames are highlighted, it is possible to identify frames marked in one view, under
another view. This is illustrated in Figure 5.24 which shows the nose position view with frames
marked in a different view.

Regardless of which method was used to mark a subset of frames, the PREVIOUS and NEXT
buttons within the panel (not to be confused with those in the main navigation panel) will move
to the previous and next frames in the marked subset, skipping unmarked frames. When the
control (Ctrl) key is held, the < and > keys also advance to the previous and next marked frames.

OptiMouse User Manual (V3.0)

48
Yoram Ben-Shaul 4/2017

Figure 5.24 Frames were marked according to mouse length using the SUBSET button.
The view was then changed to nose position. Note that frames with longer mouse
lengths tend to occupy particular arena locations. Note also that the number of marked
frames is indicated (322, 2%).

When the STOP PLAYBACK checkbox in the MARK panel is selected, continuous playback (using
the PLAY or YALP buttons), automatically pauses when a frame in the marked subset is reached.
This allows selectively stopping playback on frames requiring closer inspection.

5.8.4. Focusing on frames in particular arena locations
One use of the MARK panel is to focus on frames in particular arena locations. For example, if
the arena includes an odor source, accurate detection of nose positions away from the source
may be unnecessary. By combining the body position view with the SUBSET button, it is possible
to mark frames in which the mouse is located near some region of interest. Once marked, frames
can be accessed using the MARK panel controls. By limiting in-depth examination to a subset of
important frames, the reviewing process becomes much more efficient. Figure 5.25 shows the
GUI after marking all frames near the lower odor source.

OptiMouse User Manual (V3.0)

49
Yoram Ben-Shaul 4/2017

Figure 5.25 The Review GUI after marking frames in which the mouse occupied the
lower left part of the arena.

5.9. Correcting brief detection failures using the CORRECT panel
The CORRECT panel is designed to identify, and correct, brief sequences of wrong detections.

5.9.1. The concept of transient error correction
Erroneous detections are typically characterized by fast angle changes between consecutive
frames (see angle change in Section 5.6.2). If a small number of such “reversed” detections occur
within a sequence of correct detections, this will result in brief transients in calculated angle. To
illustrate, consider a series of six frames in which the actual mouse direction is 90° (up, in Figure
5.26). If detection is correct in all frames, angles are detected as [90°,90°,90°,90°,90°,90°], and
the angle change between consecutive frames will be [0°,0°,0°,0°,0°] (Figure 5.26A). If a reverse
(incorrect) detection occurs in the third frame, the sequence of detected angles will be
[90°,90°,270°,90°,90°,90°], with the corresponding angle changes: [0°,180°,180°,0°,0°] (Figure
5.26B). Note that changes are specified in absolute values, as the direction of change is irrelevant
in this context.

OptiMouse User Manual (V3.0)

50
Yoram Ben-Shaul 4/2017

Figure 5.26 Four scenarios (A-D) illustrating the concept of correcting brief detection errors.
Each scenario includes a sequence of six frames. Values between frames indicate the change
in detected angles between them. The different scenarios are explained in the text.

A similar scenario is a sequence of two consecutive reverse detections. Using the same example,
a detected sequence of [90°,90°,270°,270°,90°,90°], will result in the following sequence of
changes: [0°,180°,0°,180°,0°] (Figure 5.26C) which can also indicate a transient failure.
We stress that such sequences of angle change can only detect abrupt transitions, but provide
no information regarding whether the fast transitions, or the flanking frames, represent wrong
detections. For example, if the sequence of real mouse angles is [90°,90°,90°,90°,90°,90°], but is
incorrectly detected as [270°,270°,90°,90°,270°,270°], this will also appear as a fast transition
(Figure 5.26D). If “corrected”, it will be altered to [270°,270°,270°,270°,270°,270°], which is
obviously wrong. The crucial point is that automatic correction works only if incorrect detections
occur in a minority of frames, over a dominant background of correct detections.

5.9.2. Application of transient error correction
Practically, correction is applied using the GO button in the CORRECT panel, visible only in the
angle change parameter view (Figure 5.27). The algorithm will identify all angle transients in the
data, and interpolate the positions in the frames associated with the quick transients. Note that
with real data, differences between frames with correct detections will hardly ever be as low as
0°, while abrupt transitions will rarely be as large as 180°. To find transient changes, the algorithm

OptiMouse User Manual (V3.0)

51
Yoram Ben-Shaul 4/2017

searches for abrupt changes over a background of smooth changes. Thus, one must define what
constitutes an abrupt change as well as what constitutes a smooth change.
Error correction therefore depends on these parameters, specified in the CORRECT panel:
BAD>, value in degrees that defines how large of an angle change (absolute value) constitutes an
abrupt transition. Must be larger than 60°.
GOOD<, value in degrees that defines how small the angle change must be to qualify as a smooth
change. Cannot be larger than 30°.
MAX LENGTH: The maximum length of transient that will be corrected. The maximum transient
length allowed is 5 frames long (the transient length in Figure 5.26C is two).

After setting these parameters and pressing the GO button, OptiMouse will identify all such
transient segments and inform the user of the number of segments and frames detected. If the
user approves, these segments will be corrected and assigned to the interpolated class (shown in
ochre). The modified frames can be easily monitored using the active setting view and examining
interpolated frames. Figure 5.27 shows the GUI after fast transition correction. A total of 187
frames were corrected, including the currently shown frame.

Figure 5.27 Review GUI after application of the transient correction procedure.

5.10. Summary of methods for identifying wrongly detected frames
Below is a summary of the main approaches for identifying frames with a high likelihood of
incorrect position detection.
1. Highlight and navigate to frames with abrupt transitions, identified using the body speed,

nose speed, or the angle change views (Section 5.8). For the angle change parameter,
transient changes can be corrected automatically (Section 5.9).

OptiMouse User Manual (V3.0)

52
Yoram Ben-Shaul 4/2017

2. Highlighting and navigating to frames with NaN values using the active setting view. After
marking NaN frames with the SUBSET button, frames lacking valid positions can be viewed
and corrected. Note that even if frames lack a valid position with their current setting, they
may still have valid positions with other settings. Recall that, as with all views, the active
setting is indicated by the dot color. Active settings for all NaN frames can be changed in a
single operation by applying a new setting using polygon based definitions (Section 5.7.1).

3. Identifying frames with particular, often outlying, parameter values. Relevant parameters
can include object dimensions, arena locations, times during the session, intensity values (of
the mouse or the background), or shape parameters. Ideally, frames with particular
characteristics will form clusters, facilitating application of a common setting to all such
frames in a single operation (using polygon based definition).

4. Identifying frames with discrepancies in parameter values as determined by different
settings. While differences in some parameters (i.e. mouse length, area, trim factor, etc.) are
expected between different settings, discrepancies in detected positions or angles indicate
that at least one setting is wrong. The most useful comparison is probably among body
angles. See Section 5.6.3.1 and Figure 5.18. The parameter view and its associated panels
facilitate marking and if appropriate, changing settings for all the frames.

5.11. Combining parameter views, navigation tools and keyboard
shortcuts to efficiently correct frames
Section 5.5 showed how to identify problematic frames by serially scanning the entire session.
The methods described in Sections 5.6-5.8, can expedite this procedure considerably. Namely,
rather than viewing frames serially, the parameter display views and the MARK panel controls
allow targeting incorrectly detected frames (see Section 5.8.3). The procedure described in
Section 5.5, starting with step 3, can then be applied to each frame or segment that needs
correction.
Once positions are corrected, irrelevant frames excluded, and event annotations added (if
desired), changes should be saved with the SAVE button, and the next stage, analysis, can be
initiated. The SAVE button stores all changes in the associated positions file which is used for
analysis. Note that the reviewing process may be completed in several working sessions. When
a session in opened in the Review GUI, previously stored changes are recalled.

6. Analysis
The ANALYZE button in the OptiMouse GUI opens the Analyze GUI (Figure 6.1). Many buttons
on the GUI provide a graphical representation of the results. All analysis results can be saved to
a data file, for custom analyses of data in individual sessions, or population-level analysis. Some
measures can also be displayed on the MATLAB command line as text.

OptiMouse User Manual (V3.0)

53
Yoram Ben-Shaul 4/2017

Figure 6.1 The Analyze GUI

6.1. Selecting position files and navigating the video
Analysis requires position files, generated during detection, and potentially modified during the
reviewing stage. The upper left box on the Analysis GUI lists position files for analysis. The panel
below the list shows the total number of frames in the selected file, the number of user excluded
frames, and the sum of user excluded and NaN frames (see Section 5.2.3).
The USER COMMENT panel shows the user comment, if one was entered during the session
preparation stage (a comment is now shown in Figure 6.1). Navigation tools in the Analysis GUI
are identical to those in the Session GUI (Section 3.2). Panels on the right side of the GUI include
buttons for various analyses.

6.2. Analysis of positions and speed

6.2.1. Distance
The DISTANCE button creates a display of the distance travelled by the mouse body as a function
of time (Figure 6.2).

OptiMouse User Manual (V3.0)

54
Yoram Ben-Shaul 4/2017

Figure 6.2 Display of distance as a function of time

6.2.2. Tracks
The TRACKS button generates two figures showing mouse locations in the arena. One figure
shows body positions and the other shows nose positions (Figure 6.3).

Figure 6.3 Tracks made by the body (left) and the nose (right) across the entire session.

OptiMouse User Manual (V3.0)

55
Yoram Ben-Shaul 4/2017

6.2.3. Heatmap
The HEATMAP button creates heat maps of body and nose positions in the arena (Figure 6.4).
Bin colors indicate the frequency of being in each position. The RESOLUTION edit box determines
the size of the heatmap bins (in mm). The COLOR RANGE edit box determines the range of the
colormap. The default is four standard deviations, meaning that the color scale will be clipped for
values larger than four standard deviations from the mean. This is useful because some bins may
contain very high values (for example, if the mouse remains immobile in a certain region for many
frames) potentially condensing the dynamic range of the heatmap.

Figure 6.4 Heatmaps of body (left) and nose (right) locations. These figures were
generated using bins of 2.5 mm and a 3 SD display cutoff.

6.2.4. Body Angle
The BODY ANGLE button shows a polar histogram of the body angles across all frames (Figure
6.5). The body angle is defined by the line connecting the body and the nose.

OptiMouse User Manual (V3.0)

56
Yoram Ben-Shaul 4/2017

Figure 6.5 Body Angle Histogram

6.2.5. Speed
The SPEED button generates a figure with two panels (Figure 6.6). On the left is the body speed
as a function of time. Although the horizontal axes shows all video frames, including excluded or
NaN frames, body speed values are not specified for excluded and NaN frames. The right panel
shows a histogram of speeds. The histogram is rotated so that its vertical axis, representing
speed, is congruent with the left panel. Three user-defined parameters control this display.
SMOOTH WIN determines the temporal smoothing window for the left panel. MAX SPEED limits
the vertical axis. HIST RESOLUTION, determines the bin size (in cm/s) of the speed histogram.

Figure 6.6 Speed Display

OptiMouse User Manual (V3.0)

57
Yoram Ben-Shaul 4/2017

6.3. Defining Zones
Many analyses of mouse position data involve the time spent in particular zones within the arena.
For such analyses, one or more zones must be defined using the ZONE DEFINITIONS panel.
Technically, this is identical to arena definition (Section 3.3.2), and thus zones can be circles,
squares, rectangles, ellipses, polygons, or freehand shapes. The NEW button creates a new zone
with a shape determined by the listbox to its right. As with arena definitions, zones can be
renamed, deleted, duplicated, and modified after creation. Figure 6.7 shows the Analysis GUI
after definition of four zones. Note that different zones can overlap.
Zone definitions can be saved (using the SAVE button) and loaded (using the LOAD button). Zone
files are saved in a dedicated zones directory, under the main video directory (See Appendix 1).
Zones dimensions are saved in mm units, rather than pixels so that zones defined in one video
may be applied to another video with a different (pixel/mm) scaling.

Figure 6.7 The analysis GUI after definition of four zones. Note that meaningful names
were assigned to the zones, and that zones may overlap. After zone definitions, the ZONE
BASED ANALYSES panel is active.

6.4. Zone based analyses
Controls in this panel become active only after one or more zone have been defined (see Figure
6.7).
6.4.1. Summarized zone statistics
The TOTALS button creates two displays with a summarized description of nose and body
positions in each zone (Figure 6.8 shows the display for nose positions). Bars in the top panel
show the total time spent in each zone. Bars at the bottom panel show the enrichment score for
each zone, defined as the ratio between the actual time, and the expected time spent in each

OptiMouse User Manual (V3.0)

58
Yoram Ben-Shaul 4/2017

zone. Enrichment scores above 1 indicate preference, whereas values smaller than 1 indicate
avoidance of a zone. The expected time is calculated under the assumption of uniform sampling
of arena locations. Thus:

𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐝𝐝 𝐞𝐞𝐭𝐭𝐭𝐭𝐞𝐞 𝐭𝐭𝐢𝐢 𝐳𝐳𝐳𝐳𝐢𝐢𝐞𝐞 =
𝐞𝐞𝐳𝐳𝐞𝐞𝐭𝐭𝐭𝐭 𝐬𝐬𝐞𝐞𝐬𝐬𝐬𝐬𝐭𝐭𝐳𝐳𝐢𝐢 𝐞𝐞𝐭𝐭𝐭𝐭𝐞𝐞 × 𝐭𝐭𝐚𝐚𝐞𝐞𝐭𝐭 𝐳𝐳𝐨𝐨 𝐳𝐳𝐳𝐳𝐢𝐢𝐞𝐞

𝐭𝐭𝐚𝐚𝐞𝐞𝐭𝐭 𝐳𝐳𝐨𝐨 𝐭𝐭𝐚𝐚𝐞𝐞𝐢𝐢𝐭𝐭

Since they normalize for zone area, enrichment scores allow comparison of preferences between
differently sized zones.

Figure 6.8 Summarized zone statistics for nose positions
in four zones. An analogous display is generated for body
positions.

6.4.2. Ignoring excluded frames
The fraction of time spent in each zone and the enrichment score depend on the total session
duration. However, the total duration could either include all video frames, or ignore excluded
and NaN frames. Which time base to use is determined by the IGNORE EXCLUDED checkbox. The
selection influences all analyses in the ZONE BASED ANALYSES panel, except those made using
the VISIT DURS button. The appropriate choice depends on the specific analyses performed.

6.4.3. Zone statistics as a function of time
The IN TIME button shows zone statistics as a function of time for nose and for body position.
Figure 6.9 shows the display for nose positions. The top panel shows zone occupancy with time,
with different zones indicated on the vertical axes. A colored marker indicates that the nose was
inside the zone at the corresponding time point. The middle panel shows the cumulative time
spent in each zone. The expected time for each zone is also shown, using lines of the same color.

up
 sm

all

do
wn s

mall up
 bi

g

do
wn b

ig

0

200

400

tim
e

(s
)

Nose time in zone, (of 587.0 s)

up
 sm

all

do
wn s

mall up
 bi

g

do
wn b

ig

0

5

10

15

en
ric

hm
en

t s
co

re

Total enrichment time of nose in zone

OptiMouse User Manual (V3.0)

59
Yoram Ben-Shaul 4/2017

These lines are barely visible in Figure 6.9 because the actual number of frames in two of the
zones far exceeds the expected values. The expected duration is derived from the zone area and
the time elapsed. The bottom panel shows the enrichment scores in each of the zones as a
function of time. This is an important measure, because it can often reveal that zone preferences
change during the session.

Figure 6.9 Nose positions in zones as a function of time. An analogous figure is
created for body positions.

6.4.4. Pairwise comparisons among zones
The COMPARE button shows pairwise zone preference comparisons (Figure 6.10). One figure is
created for body positions and one for nose positions. Each figure shows a matrix of pairwise
zone preference indices. For two zones, A and B, the index is defined as:

Zone preference index (A, B) =
[enrichment zone A – enrichment zone B]

[enrichment zone A + enrichment zone B]

The index can assume values between -1 and 1. The matrix is antisymmetric around the diagonal.

OptiMouse User Manual (V3.0)

60
Yoram Ben-Shaul 4/2017

Figure 6.10 Matrix of zone preference indices. The matrix indicates that
“down” zones are preferred over “up” zones, and that the smaller zones are
associated with higher enrichment scores compared to the larger zones.

6.4.5. Statistics of visit durations
The VISIT DURS button shows histograms of visit durations in each of the zones (Figure 6.11),
defined as the interval between a zone entry and the subsequent exit. Separate figures are
created for body and for nose positions with each figure containing one panel per zone. Bar
heights indicate sorted individual visit durations.

Figure 6.11 Zone visit durations. Shown here are durations based on nose positions.

OptiMouse User Manual (V3.0)

61
Yoram Ben-Shaul 4/2017

6.4.6. Application of zones to position displays
When defined, zones are also shown in displays created by the TRACKS and HEAT MAP buttons
(Figure 6.12).

Figure 6.12 Analysis of nose (left), and body (right) tracks after zones have been
defined. This display underscores the importance of examining nose, rather than
body positions to detect preferences.

6.5. Analyses of event times
Buttons in the EVENTS panel will be active if events were defined (see Appendix 7) during the
reviewing stage.

6.5.1. Total event count
The TOTALS button shows the total number of frames associated with each event (Figure 6.13).
In this and other event related analyses, all frames, including excluded and NaN frames, are
considered.

OptiMouse User Manual (V3.0)

62
Yoram Ben-Shaul 4/2017

Figure 6.13 Total events display. Four events were defined in
the events file (only two were actually assigned to some of
the frames).

6.5.2. Event occurrence in time
The IN TIME button shows when each of the events occurred (Figure 6.14). The lower panel
shows mouse speed as a function of time allowing a rough comparison of event occurrence and
movement activity. The SMOOTH WIN, MAX SPEED, and HIST RESOLUTION settings in the
POSITIONS AND SPEED panel apply to this display as well.

Figure 6.14 Event occurrence as a function of time.

OptiMouse User Manual (V3.0)

63
Yoram Ben-Shaul 4/2017

6.5.3. Analysis of event occurrence as a function of position
The IN POSITION button generates, for each event, a display showing where it occurred (Figure
6.15). In this display, frames associated with the event are shown with red asterisks. In each
figure, the left and right panels show nose and body positions, respectively.

Figure 6.15 Display of one event (grooming) as a function of arena
location. Positions associated with the event are indicated by red
asterisks. The left panel is for nose positions and the right panel
is for body positions.

6.5.4. Analysis of event occurrence in different zones
If zones and events are defined, it is possible to see how many event-frames occurred in each of
the zones. The IN ZONES button will generate one display for each event that happened at least
once in the session (Figure 6.16). The left panel of each figure shows the number of frames
associated with the event. The right panel shows the ratio between the number of in-zone frames
associated with the event, and the total number of in-zone frames. For example, if the mouse
was inside the zone for 1000 frames, and 200 of these were also associated with the event, the
fraction is 0.2. Here, in-zone frames are defined as those in which the body (rather than the nose)
was in the zone.

OptiMouse User Manual (V3.0)

64
Yoram Ben-Shaul 4/2017

Figure 6.16 Display of events in zones. In this session, the rearing event
occurred only within the zone named “down big”.

6.6. Displaying summary results in the command line
The SHOW RESULTS IN COMMAND LINE button provides a summarized report of the results in
the command line.

6.7. Saving results to a MATLAB data file
The SAVE RESULTS TO MAT FILE saves all analysis results to a MATLAB data file. The file is
denoted as a results file, and is saved in the results directory, under the main OptiMouse video
directory. The results file contains a single structure, Res, which is described in detail in Appendix
8. The structure includes all values associated with the graphical displays and more. It serves as
a starting point for analyses not implemented by the GUI.
If the SAVE ZONE option is checked, zones will also be saved to a zone file when the SAVE
RESULTS button is pressed. This is equivalent to pressing the SAVE button in the ZONE
DEFINITIONS panel, except that the zone file name will be set without user input.

6.8. Associating descriptors with files for subsequent analysis
For population level analyses, it may be useful to associate data files with particular tags. When
present, tags are saved into the results file, allowing subsequent identification of all sessions
associated with particular tags (e.g. subjects with a particular phenotype, sessions conducted
under certain conditions). Tags are entered as text into the EXPERIMENT TAGS edit box. The list
will be parsed, with spaces separating distinct tags.
Importantly, to be saved with the results file, tags must be first defined in a separate text file,
named optimouse_experiment_tags.txt, and located in the optimouse_user_definitions
directory. This file controls for accidental inclusion of tags with typos, which could make it difficult
to subsequently identify related sessions. Each line of the text file can include one tag, which is a

OptiMouse User Manual (V3.0)

65
Yoram Ben-Shaul 4/2017

character string without spaces. When the EXPERIMENT TAGS list is read, OptiMouse checks if
the parsed strings are included in the text file. If, and only if they are, they will be saved in the
Res structure (Appendix 8). Note that tags are case sensitive.

OptiMouse User Manual (V3.0)

66
Yoram Ben-Shaul 4/2017

7. Appendices

Appendix 1. OptiMouse user directories and files
OptiMouse uses a large number of files and folders. They are described in this appendix by
following the analysis of one video file. In this description, folders are shown in red font and files
are shown in green font. To illustrate the various files and folder, we begin with a video folder
called movies, with only one video file, named myvid.mp4. See Figure A.1 for a graphical display
of the folders created during the process.

The session preparation stage
This file is selected for session preparation in the Prepare GUI (Figure 3.1), the DEFINE button is
pressed and three arenas are defined in the Arena Definition GUI (Figure 3.2). These arenas are
named, left, center and right.
At the end of the arena definition (after pressing the SAVE & APPLY button in the Arena
Definition GUI) the arenas file, named myvid_arenas_1 .mat is created in a folder named arenas.
The arenas folder is located under the main video directory, movies in this example.
The arena file contains information about each of the three arenas.
Next, this arena file is applied to the myvid.mp4 file, a frame range of 1-333 is specified, and
session preparation is initiated by pressing the RUN button in the Prepare GUI.
At the end of the preparation process, three new folders are generated under movies, each
corresponding to one of the arenas. They are named
myvid_arenas_1_center_frames_1_333
myvid_arenas_1_left_frames_1_333
myvid_arenas_1_right_frames_1_333
Each of these folders contains a number of MATLAB data files. For example, the first folder
contains the following files:
myvid_arenas_1_center_frames_1_333_1.mat
myvid_arenas_1_center_frames_1_333_2.mat
myvid_arenas_1_center_frames_1_333_3.mat
myvid_arenas_1_center_frames_1_333_4.mat
Each of these files contains video frames converted to MATLAB format. The video frames are
divided into blocks to facilitate loading and processing. The number of blocks thus created is a
function of the frame range selected.
In addition, three new files are written to the arenas folder. In this example, they are named
myvid_arenas_1_center_frames_1_333_info.mat
myvid_arenas_1_left_frames_1_333_info.mat
myvid_arenas_1_right_frames_1_333_info.mat

OptiMouse User Manual (V3.0)

67
Yoram Ben-Shaul 4/2017

Each of these files contains arena definitions for one of the three arenas defined (center, left and
right).

The position detection stage
When the Detect GUI is opened, the three arenas are listed in the upper left box. We will continue
the explanation with the center arena.
To run detection, settings have to be defined.
If the SAVE button is pressed, then a settings file is created. Unless the user specifies a different
name, this file, which was created will be named
detection_settings_myvid_arenas_1_center_frames_1_333.mat and saved under a new
directory called detection_settings, located under the main video directory.

When the RUN button pressed, detection is initiated. Regardless of whether the user explicitly
saved the settings (as described above), they are written into a file in the detection_settings
folder. The file format is identical to that saved by the user, but it has a unique name identifier
(associated with the time of its creation). In our example, the settings file is called:
detection_settings_myvid_arenas_1_center_frames_1_33307-Nov-2016 09_46_53.mat
The unique identifier is required for the batch processing option (Appendix 4).

The results of detection are saved in another file, located with the positions directory, which is
itself under the main video directory. The position file in our example is called
myvid_arenas_1_center_frames_1_333_positions.

The reviewing stage
The listbox on the upper left side of the Review GUI includes all positions file in the positions
directory. The changes made to the file are saved in the position file. No new files are created at
this stage.

The analysis stage
If saved, zone definitions made in this stage are stored in a zone file under the zones folder, under
the main video directory. The zone file in our example, given its default name, is
myvid_arenas_1_center_frames_1_333_zones_1.mat.
The SAVE RESULTS TO MAT FILE button saved the results in another matlab data file, under the
results directory.
In our example, the default name for the file is
myvid_arenas_1_center_frames_1_333_result_1.mat.

OptiMouse User Manual (V3.0)

68
Yoram Ben-Shaul 4/2017

Figure A.1 Graphical representation of files created under the main video
folder (here named movies). All directories and files shown here resulted
from the analysis of three arenas for one video.

Appendix 2. Inside the arena preparation stage
Arena preparation involves transforming each video frame to a MATLAB format, and extracting
the relevant part of the frame corresponding to each of the arenas. The conversion to MATLAB
data files results in considerably faster processing than would be possible by directly reading each
video frame. The extracted segment, per arena, is the smallest rectangle containing the entire
arena. The arena margins (the regions between the arena boundaries and the enclosing
rectangle) are assigned with the median intensity value across all frames within the frame block.
The data is saved as unsigned integer (uint8 data type) grayscale matrices.
As described in Appendix 1, the process yields a new folder for each arena.
Within each of these folder are relevant video frames, divided into blocks, each containing 100
frames. This value represents a tradeoff between minimizing the number of blocks and the cost
of loading them vs. the memory load associated with each block. The block size is determined by
the variable framesperblock defined in the file prepare_arena_data.m.
Once the arena preparation is complete, an “info” file, containing all the definitions for each
specific arena is created in the arenas folder.

Appendix 3. The prepare batch file
When the BATCH button in the Prepare GUI is pressed, the command that would be otherwise
executed by the RUN button is written into a MATLAB text file. The file is named
prepare_arena_batch.m and is located in the optimouse_user_definitions folder.

OptiMouse User Manual (V3.0)

69
Yoram Ben-Shaul 4/2017

Each press of the BATCH button adds six lines to the file. Using the example of Appendix 1, a
frame range of 1-600, and starting with an empty batch file, after pressing the BATCH button, the
batch will contain the following lines (font colors are those assigned by the MATLAB editor):
% batch command from 07-Nov-2016 10:34:58
% video file: myvid
% arena file: myvid_arenas_1
% frames: 1 to 600
disp('now running
prepare_arenas(C:\movies\myvid.mp4,C:\movies\arenas\myvid_arenas_1.mat,1,600,
100,)')
prepare_arenas('C:\movies\myvid.mp4','C:\movies\arenas\myvid_arenas_1.mat',1,
600,100,'')

The first four lines are meant as documentation providing information about the date, original
video file name, arena file and frame range. In the MATLAB editor, lines beginning with the %
character are considered as comments and ignored.
The fifth line (beginning with the word disp) will result in a command line report allowing the
user to monitor progress when the batch file is running. The sixth line, beginning with the word
prepare, is the actual command.

As described in Section 3.6, the user is responsible for checking that the previously executed lines
in the batch file are deleted or converted to comments. Otherwise they will be executed again.
Commenting lines, rather than deleting them, can make the batch file serve as a work log of
sessions that were prepared. Pressing ctrl r in the MATLAB editor turns selected lines to comment
lines by adding the % character at their start.

Appendix 4. The detect batch file
When the BATCH button in the Detect GUI is pressed, the command that would be otherwise
executed by the RUN button is written into the file calculate_positions_batch.m which is located
in the optimouse_user_definitions folder. This file is similar to the Prepare GUI batch file
described in Appendix 3.
Each press of the BATCH button adds five lines to the file. Using the example of Appendix 1, a
frame range of 1 to 333, and an empty batch file, after pressing the BATCH button, the file will
contain the following lines:

% batch command from 07-Nov-2016 11:00:38
% arena file: myvid_arenas_1_left_frames_1_333_info
% position file: myvid_arenas_1_left_frames_1_333_positions
disp('now running
calculate_positions_mm(C:\movies\detection_settings\detection_settings_myvid_
arenas_1_left_frames_1_33307-Nov-2016 11_00_38.mat)')
calculate_positions_mm('C:\
movies\detection_settings\detection_settings_myvid_arenas_1_left_frames_1_333
07-Nov-2016 11_00_38.mat')

The first three lines are comments providing information about the date, the arena file, and the
output (position) file name. The fourth line (beginning with the word disp) will result in a
command line display allowing the user to monitor progress when the batch file is running. The

OptiMouse User Manual (V3.0)

70
Yoram Ben-Shaul 4/2017

fifth line, beginning with the word calculate, is the actual command. Note that the input to the
calculation function (calculate_positions_mm) is MATLAB file name. This is the detection settings
file described above (Appendix 1), associated with a unique name identifier. This file contains all
the required parameters for detection, including multiple settings and background images.

Appendix 5. Defining custom functions
As described in Section 4.11, OptiMouse allows the incorporation of user defined detection
algorithms. This is an advanced feature that requires familiarity with the MATLAB programming
language. Custom algorithms are specified as dedicated MATLAB m files. The files should define
functions that accept pixels intensity values (in one frame), return nose and body positions and
ideally, as described below, other parameters as well.
All detection functions, whether built-in (all built-in algorithms are implemented via the file
get_mouse_position_mm.m file) or user defined, are called in two contexts. The first is when the
algorithm is selected in the Detect GUI and a frame or a parameter is modified (i.e. when an
update is required). In this situation, the detection algorithms are called by the function
update_arena_images.m. The second context is during the detection procedure, whether using
the RUN button or the BATCH option. In this context, the calling function is
calculate_positions_mm.m, which was already mentioned in the context of the
calculate_positions_batch.m file.

All custom functions must be “declared” in the file
user_defined_detection_function_description.m located in the optimouse_user_definitions
folder. The file returns a structure array, named user_detection_functions. Each element in the
array corresponds to one function. The structure has the following fields:
runstring: the string that will be evaluated to run the algorithm.
name: the name of this algorithm in the Detect GUI listbox. This variable is also a string.
param_names: a cell array of parameter names. These names will appear in the Detect GUI when
the function is selected from the list of algorithms. Up to 5 parameters can be defined and
accessed from the Detect GUI. All params are numerical, and must be single numbers (not
arrays).
param_range: a cell array, with the same number of elements as the param_names, specifying
the minimal and maximal values for the corresponding parameters.

Below is the beginning of the user_defined_detection_function_description file, which contains a
definition of one such function:

user_detection_functions = user_defined_detection_function_description

% a funciton with definition of user defined functions for detection
user_detection_functions = [];
% %
% %
% Result =
user_definedfunction(MedianRemovedImage,trim_cycles,GreyThresh_fact,user_pname1,user_pname2);

OptiMouse User Manual (V3.0)

71
Yoram Ben-Shaul 4/2017

user_detection_functions(1).runstring = 'Result =
user_defined_detect_func_1(ThisFrame,trim_cycles,GreyThresh_fact,shift1,shift2);';
user_detection_functions(1).name = 'user_func 1';
user_detection_functions(1).param_names{1} = 'shift1';
user_detection_functions(1).param_range{1} = [-10 10];
user_detection_functions(1).param_names{2} = 'shift2';
user_detection_functions(1).param_range{2} = [-10 10];

When the Detect GUI is opened, it searches for the
user_defined_detection_function_description.m file. If the file exists, and if it contains algorithm
definitions, then these algorithms will be added to the ALGORITHM listbox. When one of the user
defined functions is called from the ALGORITHM listbox, all parameters associated with this file
(up to 5) are added to the USER PARAMETERS panel. Figure A.2 shows the Detect GUI after the
function declared above (user_func 1) was selected. When values are entered into the shift1 and
shift2 edit boxes in the USER PARAMETERS panel, OptiMouse will check if entered values are
within the range defined in the user_defined_detection_function_description.m file (-10 to 10 in
this example).

Whenever a user defined algorithm is selected from the list, it is applied to the current frame (by
executing the runstring file entry defined for it) and the resulting position detection is plotted
over the image.

For example, in the present example, OptiMouse will attempt to execute the following command:
'Result = user_defined_detect_func_1(ThisFrame,trim_cycles,GreyThresh_fact,shift1,shift2);'
For this to result in valid detection, several conditions must be met.
1. There must be a function in the MATLAB path named user_defined_detect_func_1.m. This

function should be located in the optimouse_user_definitions directory.
2. The function must accept inputs as specified in the commend string. In this call, the first

three parameters are variables that are defined within the functions that call the algorithms.
Specifically:
ThisFrame is the frame image, after background subtraction, as determined in the Detect
GUI.
trim_cycles is the number of cycles of trimming, as determined in the Detect GUI.
GreyThresh is the user specified THRESHOLD as determined in the Detect GUI.
Any user defined function must take as input a frame image, otherwise it cannot detect
positions, but the other parameters are not necessarily required. For example, one could
write an algorithm that does not need trim_cycles or the GreyThresh parameters.
The other parameters are optional. In this example, there are two additional parameters,
shift1 and shift2 which are retrieved from the GUI and passed to the function. These
parameters are also optional, and are limited to 5. They must be numerical variables (not
strings, or arrays). The parameter names in the function call (as specified in the runstring
field) must be identical to those specified in the param_names field of the function.

3. As for the output side, the function returns a single structure called Result, with the following
fields:

OptiMouse User Manual (V3.0)

72
Yoram Ben-Shaul 4/2017

Absolutely required values:
Result.mouseCOM = 1x2 array of mouse body center positions specified in pixels. The

first element is the X dimension, the second is the Y dimension.
Result.nosePOS = 1x2 array of mouse nose positions in pixels

Optional values for plotting results in the Detect GUI:
Result.BB = 1 x 4 element array specifying the bounding box of the mouse.

(X,Y,Width,Height)
Result.PerimInds = indices of mouse perimeter pixels. Specified as a cell with two

arrays. The first for the column, and the second for the row indices
of all perimeter pixels.

Result.ErrorMsg = a string with an error message if detection did not succeed
Result.tailbasePOS = 1x2 array of tail base positions in pixels
Result.tailendPOS = 1x2 array of tail end positions in pixels

Optional values for the parameter display in the Review GUI:
Result.GreyThresh = MATLAB determined grey threshold
Result.TrimFact = ratio of length of mouse before and after peeling.
Result.MouseArea = mouse area in pixels
Result.MousePerim = mouse perimeter in pixels
Result.ThinMousePerim = thin mouse perimeter in pixels
Result.BackGroundMean = intensity value of image background
Result.MouseMean = mean intensity value of mouse object
Result.MouseRange = range of intensity values of mouse object
Result.MouseVar = variance of intensity values of mouse object

We reiterate that the only absolutely required values are mouse COM and nosePOS. The other
values are required for plotting the output of the result in the Detect GUI, or for assisting with
frame detection in the parameter display in the Review GUI. Note that if these parameters are
not returned as outputs, OptiMouse will replace them with 0 or NaN values. The consequence is
that some display option in the Detect GUI or REVIEW GUI will not be available. For example, the
yellow bounding box and mouse perimeter could not be viewed if the corresponding parameters
are not returned. Likewise, if the MouseArea parameter is not returned, then it would not be
possible to view it in the parameter pair view display.
More information about these fields can be obtained by viewing the documentation in the file
get_mouse_position_mm.m that contains all the built-in detection algorithms.

The file user_defined_detection_function_description in the optimouse_user_definitions
directory is contains definitions of four custom functions. The MATLAB *.m files for these

OptiMouse User Manual (V3.0)

73
Yoram Ben-Shaul 4/2017

functions are also included. Note that these function serve only to illustrate how the user defined
function concept works, and are not useful for detection. The functions are:
user_defined_detect_func_1.m
user_defined_detect_func_2.m
user_defined_detect_func_3.m
user_defined_detect_func_4.m
The first three functions are based on algorithms in get_mouse_position_mm.m. They differ in
the head method parameter, which defines the detection algorithm, and also in the names and
numbers of custom parameters defined. In these examples, for illustration, the parameters apply
a shift on the positions detected by the get_mouse_position_mm function. The fourth function
returns random X and Y positions for the nose and the body. The image input is only used to
derive frame dimensions. This function does not return any other parameter other than the X
and Y position (Figure A.4).

Figure A.2 Detect GUI when a user defined function with two parameters are selected.

Figure A.3 and A.4 shows the Detect GUI after selecting of two different user defined functions.
One with five parameters, and one without parameters.

OptiMouse User Manual (V3.0)

74
Yoram Ben-Shaul 4/2017

Figure A.3 Detect GUI when a user defined function with five parameters are selected.
This function does not return the tail base or tail tip

Figure A.4 A user defined function that does not return any outputs other than random
tail and nose positions.

OptiMouse User Manual (V3.0)

75
Yoram Ben-Shaul 4/2017

Appendix 6. Keyboard shortcuts

Keyboard shortcuts for the Detect GUI
Navigation
> move forward one frame
< move back one frame
shift > move forward one second
shift < move backward one second

Keyboard shortcuts for the Review GUI
Navigation
> move forward one frame
< move back one frame
shift > move forward one second
shift < move backward one second
alt > forward playback (continuous)
alt < reverse playback (continuous)
control > move to the next marked frame
control < move to the previous marked frame

Frame assignment
1,2,3,4,5,6 assign settings (1,2,3,4,5,6, respectively) to current frame or segment (if defined).
x exclude current frame or segment
i interpolate frame positions from first to last frames in segment

Segment definition
s set current frame as segment start
e set current frame as segment end

Annotation
a apply selected event (from the listbox in the EVENT panel) to current frame or segment (if
defined).
r remove selected event from current frame or segment.

Appendix 7. The event file
To annotate frames in the Review GUI (using the EVENT panel listbox), the list of valid events
must first be defined in the file user_annotation_events.m in the optimouse_user_definitions
folder. The events are defined as a cell array of strings. To illustrate, in the example of the event
file shown below, the EVENT listbox will contain 4 events, called rearing, grooming, marking, and
freezing.

OptiMouse User Manual (V3.0)

76
Yoram Ben-Shaul 4/2017

function annotation_events = user_annotation_events
% user defined events
annotation_events{1} = 'rearing';
annotation_events{2} = 'grooming';
annotation_events{3} = 'marking';
annotation_events{4} = 'freezing';

Event can be added by adding lines:

function annotation_events = user_annotation_events
% add or remove events using the same conventions used in this file
annotation_events{1} = 'rearing';
annotation_events{2} = 'grooming';
annotation_events{3} = 'marking';
annotation_events{4} = 'freezing';
annotation_events{5} = 'walking';
annotation_events{6} = 'running';
annotation_events{7} = 'jumping';
annotation_events{8} = 'galloping';

or removed:

function annotation_events = user_annotation_events
% add or remove events using the same conventions used in this file
annotation_events{1} = 'rearing';
annotation_events{2} = 'grooming';

function annotation_events = user_annotation_events
% add or remove events using the same conventions used in this file
annotation_events = [];

Appendix 8. The results file
The results file includes a single structure, called Res with various fields containing analyzed
position data. In addition, some of the fields in Res are structures themselves, each which
multiple fields, some of which are also structure arrays. Thus, Res is an elaborate multi-level
structure that contains not only analysis results, but also all the raw position data required for
analysis, as well as inherited information from previous stages. To facilitate the description
below, the fields are organized into groups. Information about most of these fields can be found
in the text of the manual.

General attributes
Res.position_file full name of position file analyzed.
Res.experiment_tags cell array with user entered experiment_tags associated with this file.
Res.deltaT time interval in seconds between frames
Res.frame_times array of times for each frame, including excluded frames
Res.good_frame_times array of times for the non-excluded frames

OptiMouse User Manual (V3.0)

77
Yoram Ben-Shaul 4/2017

Res.good_frames a logical array, with a value of 1 for every frame that is not excluded and does
not have a NaN entry for position. 0 otherwise.

General movement statistics
Res.cms_travelled array of doubles with the cumulative distance travelled in each frame.
Res.total_cms_travelled total distance travelled in cm, equivalent to the last element in
cms_travelled
Res.delta_body_cm_s body speed in each frame (cm/s)
Res.smoothed_speed smoothed body speed in each frame. Smoothing parameters as specified
in the GUI.
Res.smooth_win_sec smoothing window for speed as specified in GUI.
Res.smooth_points number of points used for smoothing
Res.mean_body_speed mean body speed in cm/s
Res.median_body_speed median body speed in cm/s
Res.std_body_speed standard deviation of body speed

Zone related measures
Res.zone_names a cell array with the names of user defined zone names
Res.ZV cell array with each element containing the vertices of each of the zones. The number of
vertices depends on the type of zone.
Res.ZAcm2 array of doubles containing area of each zone (in cm2)
Res.allZPbody logical ZxN array, with Z being the number of zones, and N being the number of
good (i.e. non excluded) frames. A value of 1 in element (z,n) indicates that the body position was
inside zone z in frame n
Res.allZPnose same as allZPbody with values indicating nose rather than body positions.
Res.cumsumZPbody double ZxN array, with the cumulative number of frames spent in each zone
as defined by body position.
Res.cumsumZPnose double ZxN array, with the cumulative number of frames spent in each zone
as defined by nose position.
Res.cumZbody_enrichment double ZxN array, with cumulative enrichment score, of body
position in each frame for each zone.
This value depends on the total number of good frames, which in turn depends on whether NaN
frames were excluded or not.
Res.cumZnose_enrichment double ZxN array, with cumulative enrichment score, of nose
position in each frame for each zone.
This value depends on the total number of good frames, which in turn depends on whether NaN
frames were excluded or not.
Res.totalZbody_enrichment ZX1 array with the total enrichment of the body in each zone. This
value is the same as the last element of cumZbody_enrichment.
Res.totalZnose_enrichment ZX1 array with the total enrichment of the nose in each zone. This
value is the same as the last element of cumZnose_enrichment.
Res.totalFramesZPnose ZX1 array with the total number of frames that the nose spent in each
zone

OptiMouse User Manual (V3.0)

78
Yoram Ben-Shaul 4/2017

Res.totalFramesZPbody ZX1 array with the total number of frames that the body spent in each
zone
Res.totalTimeZPnose ZX1 array with the total time that the nose spent in each zone (in seconds)
Res.totalTimeZPbody ZX1 array with the total time that the body spent in each zone (in seconds)
Res.totalTimeZPbody_CM2 ZX1 array with the total time that the body spent in each zone,
normalized by area of zone (i.e. total time per cm2)
Res.totalTimeZPnose_CM2 ZX1 array with the total time that the nose spent in each zone,
normalized by area of zone (i.e. total time per cm2)
Res.fractionTimeZPbody ZX1 array with the fraction of time that the body spent in each zone.
This value depends on the total number of good frames, which in turn depends on whether NaN
frames were excluded or not.
Res.fractionTimeZPnose ZX1 array with the fraction of time that the nose spent in each zone.
This value depends on the total number of good frames, which in turn depends on whether NaN
frames were excluded or not.
Res.pairwise_zone_pref_index_body A ZxZ matrix of pairwise preference indices as measured
by body positions for each pair of zones. The index assumes values between -1 and 1. The matrix
is antisymmetric around the diagonal
Specifically:

pairwise_zone_pref_index_body(i, j) =
[totalZbody_enrichment(i) − totalZbody_enrichment(j)]
[totalZbody_enrichment(i) + totalZbody_enrichment(j)]

Res.pairwise_zone_pref_index_nose A ZxZ matrix of pairwise preference indices as measured
by nose positions for each pair of zones. Analogous to pairwise_zone_pref_index_body, but
refers to nose positions
Res.nose_zone_visits cell array, with one element for each zone, where each element is an N by
2 array with N being the number of segments within a zone. Thus, each row corresponds to one
segment. The first column is the entry time. The second column is the exit time.
Res.body_zone_visits same as nose_zone_visits, but for body rather than nose positions.
Res.nose_zone_durations cell array, with one element for each zone, where each element is an
N by 1 array of segment durations.
Res.body_zone_durations same as nose_zone_durations, but for body rather than nose
posititions.

Event related measures
Res.event_names a cell array with user annotated event names. Only events which are non-
empty are included (that is, events that are not associated with any frame in the session are not
included.
Res.event_inds cell array, with one element for each event (corresponding to the event_names
field), with each element itself an array of indices of the frames associated with each of the
events. The number of elements for each such event is thus the number of frames associated
with the event
Res.N_this_event_in_this_zone An M x Z array, where M is the number of events, and Z is the
number of zones. Each element contains the number of event frames occurring within each of
the zones.

OptiMouse User Manual (V3.0)

79
Yoram Ben-Shaul 4/2017

Res.fraction_events_in_this_zone like N_this_event_in_this_zone, but normalized for the total
number of (non excluded) frames.

Position data
Position data is specified in pD, itself a structure which is inherited from the position file
containing all the position data (pD stands for position Data).

Final position data
Res.pD.frame_class A 1XN array with the active setting for each frame. N is the total number of
session frames including excluded and NaN frames. Values between 1 and 6 denote user defined
settings. A value of 10 corresponds to manual set positions. A value of 11 denotes excluded
frames. A value of 12 is for interpolated frames.
Res.pD.final_nose_positions Nx2 array with final nose positions in each frame. The values are
determined by the active settings within each frame. Excluded frames have NaN values.
Res.pD.final_body_positions Nx2 array with final body positions in each frame. The values are
determined by the active settings within each frame. Excluded frames have NaN values.
Res.pD.final_mouse_angles 1xN array with final angles in each frame. The values are determined
by the active settings within each frame. Excluded frames have NaN values.

Annotation data
Res.pD.annotations a structure array, with one element for each annotation event type as
defined in the event definition file (Appendix 7). Each element is a sparse array of 1XN doubles,
with N being the total number of session frames. Elements corresponding to frames associated
with the event have a value of 1, and 0 otherwise.

Position data associated with each of the settings defined in the detection stage
This information is contained in the position_results a structure which is a field of pD, with one
element for each detection setting. May of the fields are used in the parameter display. For each
setting, it includes the following fields:
Res.pD.position_results.mouseCOM Nx2 array with the X and Y coordinates of the mouse body
for each frame in the session.
Res.pD.position_results.nosePOS Nx2 array with the X and Y coordinates of the mouse nose for
each frame in the session.
Res.pD.position_results.GreyThresh 1XN array with the grey threshold used for each frame
Res.pD.position_results.TrimFact 1XN array with the trimming factor associated with each frame
Res.pD.position_results.MouseArea 1XN array with the mouse area in each frame
Res.pD.position_results.MousePerim 1XN array with the mouse perimeter in each frame
Res.pD.position_results.ThinMousePerim 1XN array with the mouse perimeter, after peeling, in
each frame
Res.pD.position_results.mouse_angle: A 1XN array with mouse angles in each frame
Res.pD.position_results.mouse_length 1XN array with mouse lengths in each frame
Res.pD.position_results.MouseMean 1XN array with the mean intensity value of the mouse
object in each frame

OptiMouse User Manual (V3.0)

80
Yoram Ben-Shaul 4/2017

Res.pD.position_results.MouseRange 1XN array with the range of intensity values of the mouse
object in each frame
Res.pD.position_results.MouseVar 1XN array with the variance of intensity values of the mouse
object in each frame
Res.pD.position_results.BackGroundMean 1XN array with the mean intensity values of the
rectangle containing the mouse object - the mouse pixels are excluded.

User defined and interpolated position data
Res.pD.user_defined_nosePOS NX2 array containing user defined mouse nose coordinates for
those frames that are associated with user defined positions.
Res.pD.user_defined_mouseCOM NX2 array containing user defined mouse body coordinates
for those frames that are associated with user defined positions.
Res.pD.user_defined_mouse_angle NX1 array containing user defined mouse angles for frames
with user defined positions.
Res.pD.interpolated_nose_position NX2 array containing interpolated mouse nose coordinates
for frames that have interpolated positions.
Res.pD.interpolated_body_position NX2 array containing interpolated mouse body coordinates
for frames that have interpolated positions.
Res.pD.interpolated_mouse_angle NX2 array containing interpolated mouse angles for frames
that have interpolated positions.

Arena data (an inherited structure array)
Res.pD.arena_data a structure containing information about the arena. It contains the following
fields:
Res.pD.arena_data.videofilename full name of original video file for session
Res.pD.arena_data.arenafilename full name of arena file used for session
Res.pD.arena_data.user_string if defined, user entered string during session preparation
Res.pD.arena_data.OriginalImageSizeInPixels original image size in pixels. Width and height
Res.pD.arena_data.pixels_per_mm ratio of pixels to mm as specified during calibration
Res.pD.arena_data.frames_in_original_video first and last frames in original video for session
Res.pD.arena_data.MedianImage median image of arena
Res.pD.arena_data.FrameInfo Nx3 array of doubles with N being the total number of session
frames. This array provides indices for each of the frames of the session into the block files
created during session preparation. The index denotes the frame number, the first column is the
block index, the second is the frame index within the block, and the third is the frame time within
the session.
Res.pD.arena_data.arena_info structure with information about the specific arena definitions
for the current session.

Information about settings used for detection
Res.pD.arena_data.detection_methods and Res.pD.arena_data.detection_params are
structure arrays where one element for each of the different settings applied in the detection
stage. Fields within these structures specify the entire set of detection parameters associated
with each setting. Fields within detection methods are: name, algorithm, trimlevel, threshold,

OptiMouse User Manual (V3.0)

81
Yoram Ben-Shaul 4/2017

median_background, user_background, no_background, mouse_brighter, mouse_darker,
auto_determine_color, BackGroundImage, user_defined_params, user_defined_param_names,
user_method_name, user_method_runstring.

Appendix 9. An example of custom analysis of data in the Results file

This appendix contains example code for analyzing freezing episodes in motion data. These
examples are designed to show to load and process the data in the results file. The first block
below includes a script that load a results data file, and calls the function find_freezing_episodes,
and then plots the results. The second block below contains the function find_freezing_episodes.
The two figures below show figures generated by the script, with different values for the
min_pause_speed and min_pause_duration parameters. Note that some lines which are broken
in the manual should appear as single lines in the MATLAB editor.

% Define a full name of a results file to load
% modify the XXX to an existing results file
% results file have the name '*result*.mat'
fname = 'XXX';

% Load the smooth speed variable
D = load(fname);
this_speed = D.Res.smoothed_speed;
deltaT = D.Res.deltaT; % frame sampling interval

% Define values defining a pause
max_pause_speed = 0.5; % cm / s
min_pause_duration_in_sec = 5;
% minimal pause duration specified as number of frames
min_pause_duration = round(min_pause_duration_in_sec/deltaT);

% Get a list of all freezing episodes - longest pause and total time paused
% all values are listed as frames numbers
[all_pauses,all_pause_durations,longest_pause,total_time_paused] =
find_freezing_episodes(this_speed,max_pause_speed,min_pause_duration);

figure;
plot(this_speed);
hold on
line([1 length(this_speed)],[max_pause_speed
max_pause_speed],'color','k','linestyle',':')
axis tight
xlabel('frame number')
ylabel('speed (cm/s)')
for i = 1:size(all_pauses,1)
 line([all_pauses(i,1) all_pauses(i,2)],[max_pause_speed
max_pause_speed],'color','r','linewidth',2);
end
title(['min pause duration: ' num2str(min_pause_duration) ' | max pause
speed: ' num2str(max_pause_speed) ' | total pauses time (frames): '

OptiMouse User Manual (V3.0)

82
Yoram Ben-Shaul 4/2017

num2str(total_time_paused) ' num pauses: '
num2str(length(all_pause_durations))])

function [all_pauses,all_pause_durations,longest_pause,total_time_paused] =
find_freezing_episodes(speed,max_pause_speed,min_pause_duration)
% Find pauses in speed profile data
%
% INPUTS:
% speed: an array with speed values
% max pause speed: number indicating the maximum speed which counts as non
% movement
% minimum_pause_duration = minimum number of frames, required for a segment
% of non-movement
% to qualify as a pause
%
% OUTPUTS:
% all_pause_durations: a list of durations of all pauses
% all_pauses: a list of start and end time of all pauses
% longest_pause: the longest pause
% total_time_paused: the total time paused
% NOTE: all outputs returned as numbers of frames, not absolute time
%
% YBS February 2017

speed(isnan(speed)) = 0;

all_pauses = [];
all_pause_durations = [];
longest_pause = 0;
total_time_paused = 0;

% Find all slow frames - this results in a vector of 0 and 1s
slowframes = speed <= max_pause_speed;

if isempty(slowframes)
 return
end

% find the starts and ends of pause segmenbts
pause_starts = 1 + find(diff(slowframes) == 1);
pause_ends = 1 + find(diff(slowframes) == -1);

% pause index
pi = 1;
% if we started with a pause
if pause_ends(1) < pause_starts(1)
 if (pause_ends(1)) > min_pause_duration
 all_pause_durations(pi) = pause_ends(1);
 all_pauses(pi,:) = [1 pause_ends(1)];
 pi = pi + 1;
 end
 pause_ends = pause_ends(2:end);
end
% if we ended with a pause
if pause_starts(end) > pause_ends(end)

OptiMouse User Manual (V3.0)

83
Yoram Ben-Shaul 4/2017

 if (length(speed) - pause_starts(end)) > min_pause_duration
 all_pause_durations(pi) = length(speed) - pause_starts(end);
 all_pauses(pi,:) = [pause_starts(end) length(speed)];
 pi = pi + 1;
 end
 pause_starts = pause_starts(1:end-1);
end
% now they should be the same length
if ~(length(pause_starts) == length(pause_ends))
 disp('bug in the find freezing episodes function')
 return
end
for i = 1:length(pause_starts)
 this_start = pause_starts(i);
 tmp_ends = pause_ends(pause_ends > this_start);
 this_end = min(tmp_ends);
 all_pause_durations(pi) = this_end - this_start;
 all_pauses(pi,:) = [this_start this_end];
 pi = pi + 1;
end

% keep only the pauses that are long enough
all_pauses = all_pauses(all_pause_durations >= min_pause_duration,:);
all_pause_durations = all_pause_durations(all_pause_durations >=
min_pause_duration);
longest_pause = max(all_pause_durations);
total_time_paused = sum(all_pause_durations);

Figure A.5 Plot created by the script shown in Appendix 9.

OptiMouse User Manual (V3.0)

84
Yoram Ben-Shaul 4/2017

Figure A.6 Another plot created by the script shown in Appendix 9, using different settings
for the max pause speed, and the min pause duration.

Appendix 10. A detailed explanation of OptiMouse detection
algorithms.

All built in detection algorithms are implemented by the function get_mouse_position_mm. The
function receives the arena image (one frame), the algorithm (default is 6), the number of trim
cycles (default is 3) and the greythreshold factor (default is 0.5).

The MATLAB graythresh function is used to derive a threshold for the image. It then multiples
the value by the user defined factor, specified as greythreshold (if it is set to 1, then the
graythresh function’s value will be used). The grayscale image is then converted to a binary (black
and white) image using the MATLAB im2bw function and the threshold.

The connected components within the binary image are then found using the MATLAB
bwconncomp function.

OptiMouse User Manual (V3.0)

85
Yoram Ben-Shaul 4/2017

If the bwconncomp function does not return any object, the detection function will return with
empty outputs. If multiple objects are found, then the object with the largest area will be
considered.

Then, the MATLAB function regionprops is used to derive the following properties from the
object: area, bounding box coordinates, centroid, list of object pixels, and list of pixels on the
perimeter of the object. The mouse center of mass is the centroid of this object.

Then, a smaller binary containing only the mouse object (not the entire arena) is created. It is
named mouse. Note that merely clipping the original image according to the mouse bounding
box is not sufficient, since it may also contain non mouse objects. Therefore, derivation of the
mouse variable involves explicit assignment of 1’s to the pixels that correspond to the mouse.

Next, the mouse image is peeled. The number of peeling cycles is determined by the trim_cycle
argument to the main detection function. Prior to peeling, the original mouse is saved as
orig_mouse. Peeling uses the OptiMouse function trim_object_periphery, which in turn uses the
MATLAB function bwperim to find the pixels on the mouse object periphery. The result of peeling
is saved in the variable thin_mouse.

The list of pixels on the perimeter of the original mouse is saved in the variable orig_boundary.
This is found using the MATLAB bwboundaries function.

Using the MATLAB functions bwconncomp and regionprops the centroid, bounding box, and the
perimeter of the thin mouse are derived.

The tail is found by subtracting the thin_mouse from the orig_mouse.
Note that tail will not only include the tail, but rather everything that was thinned. Nevertheless,
the center of mass of the tail is closer to the center of mass of the actual tail than is the entire
mouse center of mass.

The tail center of mass is found using the MATLAB functions bwconncomp and regionprops. If
more or less than one object is found in the tail variable, the detection function will return.

The Euclidean distances of all the mouse’s boundary points from the tail center of mass are
found, and saved in the distfromtail variable.

The Euclidean distances of all boundary points from the tailless mouse center of mass are found
and saved in the distfrommouse variable.

The distfrommouse is subtracted from the distfromtail, yielding the difference between the
distances of each boundary point from the tail and from the body center of mass. This is saved in
the variable tailheaddist.

OptiMouse User Manual (V3.0)

86
Yoram Ben-Shaul 4/2017

At this stage, the algorithm splits depending on the detection method chosen by the user via the
interface. We describe the position of each algorithm in turn. Algorithms 1 to 6 are increasingly
more complex. Algorithm 7 is relatively simple. Note that derivation of body center of mass, as
described above, is identical for all algorithms.

Algorithm 1: the nose is defined as the perimeter pixel which is associated with the maximal
tailheaddist.

Algorithm 2: the nose is defined the perimeter pixel which is on the bounding box, and has the
largest tailheadist. The rationale for this approach is that the nose is often a sharp part which
opposes the bounding box.

Algorithm 3: the nose is the perimeter pixel which is furthest from the tail center of mass, but is
also on the bounding box. It also must be further from the tail than from the thin_mouse center
of mass.

Algorithm 4: the nose is defined the perimeter pixel which is furthest from the tail end. It also
must be further from the tail than from the thin_mouse center of mass.

The tail end is found as the perimeter pixel which is furthest from the tail center of mass, but is
also closer to the tail center of mass than it is to the body center of mass. After finding the tail
end, the Euclidean distance of each periphery pixel from the tail end is found and saved in
distfromend variable.

Algorithm 5: The nose is the furthest point from the tail base. This approach is appropriate since
the tail might be curved or at an angle relative to the mouse body, and so the tail end might
actually be close to the head (leading to failure of algorithm 4).

The thin_mouse periphery (without the tail) is found using the MATLAB bwboundaries function.
It is saved in the variable thinboundary.

The tail end is detected as described in Algorithm 4.

The tail base is defined as the pixel, on the thin_mouse periphery, which is closest to the tail end
(again, using the Euclidean distance).

The Euclidean distance of all perimeter points on the mouse are then found and saved in
distfromtailbase.

Then, we find the tailbaseheaddist for each peripheral pixel. This is the difference between the
distance from tail base and the distance to the mouse center of mass. The nose is defined as the
pixel which is associated with the maximal difference, but must also be closer the mouse center
of mass than to the tail base.

OptiMouse User Manual (V3.0)

87
Yoram Ben-Shaul 4/2017

Algorithm 6: As in Algorithm 5, the nose is defined as the furthest peripheral pixel from the tail
base. However, the tail base itself is derived using a different algorithm, which is appropriate also
when the tail is curved.

The tail end is derived using the same procedure described in algorithms 4 and 5. Then, using the
periphery of the original mouse (saved in a variable origBW), and the position of the tail end
(saved in the variable endMASK), the geodesic distance of each peripheral pixel from the tail end,
along the mouse periphery is found using the MATLAB function bwdistgeodesic.

However, to find the tail base, all pixels within the tail itself must be ignored. Pixels within the
tailless mouse are found by considering the thin_mouse, after adding a thickness reduced
following the peeling procedure. The algorithm then finds the pixel which is closest to the tail
end (but is not part of the tail itself), and is on the tailless mouse periphery.

Having found the tail base, the nose is defined, as in the previous method, as the perimeter point
which is furthest from it (using the Euclidean distance). The nose must also be closer to the mouse
body center of mass than it to the tail center of mass.

Algorithm 7: This algorithm is appropriate when the mouse "has no tail" (or when the tail can
be thresholded out of the image). As in Algorithm 4, the tail end is defined as the perimeter pixel
which is furthest from the tail center of mass, but which is also closer to tail center of mass than
it is to the head center of mass and is on the perimeter. This algorithm works without a tail, since
the snout is often the thinnest part and peeling will first make the head, rather than the tail
disappear.

