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S1: Variable VACNT Forests’ Density 

Carefully monitored CVD process allows generating a range of site densities of the VACNTs between 
7% and 30% and thus, enables to control of the nano-gaps in the final masks used for the CNT-EHL. 
To evaluate the site-densities, liquid-induced compaction method was used.  Isopropanol was added to 
the samples and been allowed to dry leading to collapse of the CNT forests as shown in the Figure S1. 
The percentage of the aggregated CNTs was the calculated by the fraction of number of pixels of the 
aggregated forest areas divided by that of the entire image.   
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Figure S1: Top view SEM images of coagulated CNTs forests following the liquid-induced densification by isopropanol. (a-c) 
CNTs with various densities (1010-1012 cm-2) and coverage of 7%, 15% and 30%, respectively.  
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S2: Young’s Equation and Classical Wetting Theory 

On an ideal flat surface the contact angle is described by the equation, formulated by Young, which 
demonstrates that contact angle is a property directly dependent on the surface tension between the 
three interfaces (Fig. S2): 
 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =  
𝛾𝛾𝑆𝑆𝑆𝑆 − 𝛾𝛾𝑆𝑆𝑆𝑆
𝛾𝛾𝑆𝑆𝑆𝑆

 

where, 
𝑐𝑐 – Water contact angle 
𝛾𝛾 – Surface tension 
SV, LV, SL – Solid-Vapour, Liquid-Vapour and Solid-Liquid interfaces, respectively. 
 
 
 
 
 
 
 
Figure S2. Schematic representation of forces at the three phase contact line for a droplet. 
 
 
According to this equation a hydrophobic material has an inherent water contact angle above 90° and a 
hydrophilic material has an inherent water contact angle below 90°.  The wetting behaviour on rough 
surfaces however, is more complex than described by the Young’s theory. It has been established that 
the surface roughness enhances the inherent wetting properties of the materials. [Ind. Eng. Chem., 
1936, 28, 988; Trans. Faraday Soc.1944, 40, 546]  While Wenzel’s theory is established on complete 
contact between the liquid and the surface and for hydrophobic materials there is no gap between the 
droplet and the surface with the contact angle 𝑐𝑐 > 90°, in the Casie-Baxter’s model the small contact 

area between the liquid and the solid phase and the resulting small contact angle hysteresis allow 
drops to easily ‘roll’ off a surface due to the presence of air-pockets under the droplet. 

 

S2.1: Wenzel’s Model 
Wenzel’s wetting is strongly dependent on the surface roughness, which is a measure of the true 
against the projected surface area: 

cosθW =  rcosθ 
where, 
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𝑐𝑐W- Apparent contact angle  

𝑐𝑐 – Young/Equilibrium contact angle 

r = Roughness ratio 
 
 

 
 

Figure S3.  Wetting on hydrophobic rough surfaces with a (A) Wenzel drop and with a (B) Cassie-Baxter drop. 
 
 

 
S2.2: Cassie-Baxter Model 
In the case when the contact angle is above 90° and there is a thin air-filled gap between the drop and 
the surface with high surfaces roughness, it is energetically more favourable for the hydrophobic 
Cassie-Baxter regime to prevail. 
Cassie-Baxter wetting is characterised by the drop located on the peaks of the surface structures which 
does not penetrate into the deeper holes. This air-pocket state corresponds to partial non-wetting of the 
surface, which is the most favourable solution for the energy equation for very rough hydrophobic 
materials: 
 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐶𝐶 = 𝜑𝜑𝑠𝑠(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) + (1-𝜑𝜑𝑐𝑐) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑋𝑋 
 

where, 

𝜑𝜑𝑐𝑐 - Fraction of surface available at the top of protrusions 

𝑐𝑐𝑋𝑋 – Contact angle with the vapour in the gaps (usually taken as 180°) 

 
Cassie-Baxter model is often called the superhydrophobic wetting and it has been observed by 
Barthlott et al. on the surface of Nelumbo Nucifera, commonly known as the ’Lotus Leaf effect’. 
Superhydrophobicity has been studied on various surfaces, including for instance, periodic structured 
micropillars, biomimetic superhydrophobic structures, carbon-nanotubes based surfaces, alumina 
nanowires, silicon ‘nanograss’ and fibrous textile surface structures. [Soft Matter, 2005, 1,55; 
Microelectronic Engineering, 2005, 78; Langmuir, 2006, 22,5998;  Langmuir, 2008, 24,1959; Soft 

Matter, 2008, 4, 224; Chemical Communications, 2009, 1043; Advanced Materials, 2007, 20.] 



S2.3: Cassie Impregnating Wetting State 

 

 

Figure S4.  Schematic representation of Cassie-Impregnating wetting state.  

 

 
The impregnating state, depicted in Figure S4 can be determined using the following equation:  
 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐶𝐶 = 1 − 𝑓𝑓𝑠𝑠 + 𝑓𝑓𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

where, 𝑓𝑓𝑐𝑐 is the solid fraction underneath the liquid drop. However, for this Cassie impregnating state to 

be viable, it must satisfy: 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
1 − 𝑓𝑓𝑠𝑠
𝑟𝑟 − 𝑓𝑓𝑠𝑠

 

A classic example in nature of a Cassie impregnating regime is the rose petal, also known as the ‘Rose 
Petal Effect’`. The water film is able to impregnate the surface by seeping into the larger crevices, but 
not the smaller ones. Therefore, the water drop depending on its size can attach to the surface due to 
the very high adhesive forces.  

 

S2.4: Combined Model 

An additional possibility exists when a liquid droplet may not bridge the gap on a rough surface 
completely. Unlike in Wenzel’s model, where liquid film must be present before droplet is placed on the 
surface, there is an initially dry rough surface. Without a liquid film, the drop might spread below the flat 
surface, as occurs on surfaces such as sol-gels and soils, where internal spreading can occur rapidly, 
resulting in a combined Wenzel’s and the Cassie-Baxter model., which gives the effective macroscopic 
water contact angle for Cassie-Baxter wetting [Trans. Faraday Soc.1944, 40, 546] 

cos θCB = f cos θγ +f – 1. 

The roughness of the fraction of the surface in contact with the liquid, r f also controls the surface 
wetting properties, and a more specific definition of the air-pocket state can be given by: 



cos θCB = r ffcos θγ +f – 1. 

  
Ishino et. al have theoretically studied the cross-over between Wenzel and Cassie-Baxter wetting  
[Europhysics Letters, 2004, 68, 419] for pillar arrays and suggested that the penetration versus air-
pocket state wetting depends strongly on the roughness r f and the solid fraction f of the surface 
structures. The roughness of liquid−solid contact was further calculated according to the threshold 
value of slope and the hemispheric top model taking into the consideration the roughness of both micro 
and nano structures. [Langmuir, 2015, 31, 10807] The contact angle of rough surfaces (i.e., cone 
structures and CNT-like surfaces) with rose-petal and lotus-leaf effects can be extracted from the 
modified Cassie-Baxter equation, as described in on Pg10 of the manuscript: 
 
cosθr = ρfscosθ-fv  

where, θr is the apparent contact angle of the micro- and nano structured surfaces,  fs  is the fraction of 

the areas occupied by the solid-water interface and fv is the fraction that correspond to the vapour 

gaps, θ  is the Young’s contact angle  and ρ is the roughness factor, which can be simplistically 

calculated from triadic curve for fractal geometry [Advanced Materials, 2002, 14, 1857]: 
 

ρ = (R/r) D-2                                                                                                                                   
 

For a hexagonal array of cones, the area fraction of the solid surface that is in contact with the liquid is 

given by fs ≈ π
4√3

(r/R)2. 

For instance, for S2L structure with r = 300nm, R =1000nm (see Fig. 4), fs = 0.040, fv= 0.96, based on 
the modified Cassie-Baxter equation: 

cosθr = 0.040 x cos(119°) - 0.96= -0.9792 and therefore, θr = 168.2°. 

For the surfaces topographies shown in Figure 4a, the solid fraction of CNH structures is 0.055 (only 
the top of the nano-hair like surfaces roughness is considered), R = 3.5nm. r = 1.3nm, 

Therefore, ρ = (R/r) D-2 = (3.5/1.3)0.2618 = 1.29 

cosθr = 1.29 x 0.055 x (-0.48) and thus, θr= 167° 

 

 



S3: Casie-Baxter Equation in terms of Structures’ Geometrical Parameters 

For the hexagonal packing geometries, typically generated during the EHL process, the Casie-Baxter 
equation: 

cosθr = fscosθ-fv 

can be reformulated taking into account the geometrical parameters: 

𝑓𝑓𝑣𝑣 = (2√3𝐻𝐻2 − 𝜋𝜋ℎ2)
𝑟𝑟2

ℎ2 + 𝑟𝑟2
 

 

𝑓𝑓𝑠𝑠 =
𝜋𝜋ℎ3𝑟𝑟
ℎ2 + 𝑟𝑟2

𝜋𝜋ℎ3𝑟𝑟
ℎ2 + 𝑟𝑟2 + 2√3𝐻𝐻2𝑟𝑟2

ℎ2 + 𝑟𝑟2 − 𝜋𝜋ℎ2𝑟𝑟
ℎ2 + 𝑟𝑟2

=
𝜋𝜋ℎ3𝑟𝑟

𝜋𝜋ℎ3𝑟𝑟 + 2√3𝐻𝐻2𝑟𝑟2 − 𝜋𝜋ℎ2𝑟𝑟
=

𝜋𝜋ℎ3

𝜋𝜋ℎ2(ℎ − 𝑟𝑟) + 2√3𝐻𝐻2𝑟𝑟
 

  

=
ℎ

(ℎ − 𝑟𝑟) + 2√3
𝜋𝜋 (𝐻𝐻ℎ)2𝑟𝑟

 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑟𝑟 =
ℎ

(ℎ − 𝑟𝑟) + 2√3
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2
𝑟𝑟
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𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑟𝑟 =
�ℎ𝑟𝑟�𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐−[2√3𝜋𝜋 �𝐻𝐻ℎ�

2
−1]

(ℎ𝑟𝑟)+[2√3𝜋𝜋 (𝐻𝐻ℎ)2−1]
. 

 

Resulting in: 



𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑟𝑟 =
�𝐻𝐻𝑅𝑅� 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − [2√3

𝜋𝜋 �𝑅𝑅𝑟𝑟�
2
− 1]

(𝐻𝐻𝑅𝑅) + [2√3
𝜋𝜋 (𝑅𝑅𝑟𝑟)2 − 1]

 

 

 

S4: Triple Line Length vs the Contact Angle Hysteresis  

For rough superhydrophobic surfaces, Schneider et al. [Scientific Reports, 2016, 6, 21400] have 
recently demonstrated the importance of using the triple line length, ωtf over the drop’s diameter. For 
cone structures with hexagonally symmetry: 

  

𝜔𝜔𝑡𝑡𝑡𝑡 = 2𝑟𝑟 �
1 − 𝑅𝑅ℎ

𝐻𝐻
𝑅𝑅𝐻𝐻
𝐻𝐻

+ 1� = 2𝑟𝑟 �
1
𝑅𝑅
−
ℎ
𝐻𝐻

+ 1� = 2𝑟𝑟(
1 − 𝑟𝑟
𝑅𝑅

+ 1) 

Plotting the dependence of the cones’ surface roughness in Figure S5 reveals that the triple-phase 
contact length has a linear dependence on the contact angle hysteresis. 

 

Figure S5: Triple-line length versus the contact angle hysteresis dependence for cone structures. 
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