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1. Appendix: Proofs

Proof (Proof of Theorem 4.1). Recall the definition of Qn(q,β) and define

Q(q,β) := (E[h(x, q,β)E(y,x, q,β)])TW (E[h(x, q,β)E(y,x, q,β)]). (1)

It follows from (C1) and (C4) that sup(q,β)∈Θ |Qn(q,β)−Q(q,β)| p→ 0, while it follows

from (C2), (C3), and (C5) that for any ε > 0, we have

Q(q∗,β∗) = 0 < inf
(q,β):distM(q,q∗)+‖β−β∗‖≥ε

Q(q,β).

Thus, consistency of (q̂, β̂) in (16) follows from Theorem 5.7 in (van der Vaart, 1998).

The proof of Theorem 4.1 (b) consists of two parts as follows.

• Part 1 is to show that Theorem 4.1 (b) is valid when M is an open subset of

the Euclidean space Rd and φ = id. Since this result is a classical result (Newey,

1993), we omit it for simplicity.

• Part 2 is to show that Theorem 4.1 (b) is valid when M is a RSS. We focus on

part 2 below.
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When M is a RSS, we consider a chart (U, φ) on M near q∗ with t∗ = φ(q∗). As

(q̂, β̂) is a consistent estimator for (q∗,β∗), q̂ ∈ U holds with probability approaching

one, as n → ∞. When q̂ ∈ U , we define t̂ = φ(q̂). If follows from the continu-

ous mapping theorem that (φ(q̂)T , β̂
T

)T is a consistent estimator for (φ(q∗)
T ,βT∗ )T in

R(dM+dβ). Conditions (C6)-(C10) hold for (φ(q∗)
T ,βT∗ )T and functions (tT ,βT )T 7→

h(x, φ−1(t),β)E(y,x;φ−1(t),β). Let Hn(q,β) = 0.5∂(q,β)Qn(q,β). To establish Theo-

rem 4.1 (b), we can apply the proof of part 1 in (Newey, 1993) to the following function

(tT ,βT )T 7→ Hn(φ−1(t),β).

Compared with Euclidean case, although Hn(φ−1(t),β) is a function of random vari-

ables (yi,xi) with yi being M-valued, E(yi,xi;φ
−1(t),β) and ∂(t,β)E(yi,xi;φ

−1(t),β)

are real vector-valued variables for all (t,β) and i. Thus, all arguments in part 1 still

hold for part 2.

By using the chain rule and φ′ = (φ′ ◦ φ−1) ◦ φ near q∗, we can establish the last

statement of Theorem 4.1 (b).

Proof (Proof of Theorem 4.2 ). Theorem 4.2 (i) directly follows from Theo-

rem 4.1 with Σ∗φ = (G∗>φ W ∗φG
∗
φ)−1, where G∗φ is given by

E
[
h∗φ(x)∂(t,β)E(y,x;φ−1(t),β∗)

∣∣
t=φ(q∗)

∣∣∣x] = E[Dφ(x)Ω(x)−1Dφ(x)T ].

and W ∗φ =
(

Var[h∗φ(x)E(y,x; q∗,β∗)]
)−1

= G∗−1
φ . Thus, we have

Σ∗φ = (G∗φG
∗−1
φ G∗φ)−1 = G∗−1

φ =
(
E[Dφ(x)Ω(x)−1Dφ(x)T ]T

)−1
.

To show Theorem 4.2 (ii), it is sufficient to show that (Σ∗φ)−1 − (Σopt
φ,h)−1 is non-

negative for any s× dM matrix-valued function h(x; q,β). With some simple calcula-

tions, we can show that (Σ∗φ)−1 − (Σopt
φ,h)−1 is equal to

E[(Ω−1/2{Dφ(x)−Ω(x)h(x)TE[h(x)Ω(x)h(x)T ]−1E[h(x)Dφ(x)T ]})⊗2],

which is non-negative definite.

Theorem 4.2 (iii) is derived in the main paper right after the theorem’s statement.

Proof (Proof of Theorem 4.3). The proof consists of two parts as follows.
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• Part 1 is to show (φ(q̃E), β̃E)→p (φ(q∗),β∗) as n→∞;

• Part 2 is to show that
√
n[(φ(q̃E)T , β̃

T
E)T − (φ(q∗)

T ,βT∗ )T ] is asymptotically nor-

mally distributed.

To prove Part 1, we proceed as follows. Recall the definitions of ĥE,φ(xi), ŴE,φ,

and (φ(q̃E), β̃E). We need to prove two sufficient results as follows:

(i) sup(q,β) ||Pn{[ĥE,φ(xi)− h∗E,φ(x)]E(y,x; q,β)}|| →p 0;

(ii) ||ŴE,φ −W ∗E,φ|| →p 0.

Based on the results (i) and (ii), we can show that in probability, Qn(q,β) based on

ĥE,φ(xi) and ŴE,φ converges uniformly to

Q1(q,β) := (E[h(x, q∗,β∗)E(y,x; q,β)])TW ∗E,φ(E[h(x, q∗,β∗)E(y,x; q,β)]).

Then, we can apply the same arguments of Theorem 4.1 to finish the proof of Part 1.

We prove Part 1 (i) as follows. It follows from the triangle inequality, the Cauchy-

Schwarz inequality, the trace inequality, and (C16) that

||Pn{[ĥE,φ(x)− h∗E,φ(x)]E(y,x; q,β)}||2

≤ [Pn{||ĥE,φ(x)− h∗E,φ(x)||2}][Pn{f0(y,x)2}] (2)

≤ Op(1)
[
Pn||D̂φ(x)−Dφ(x)||2||V̂ (q̂I , β̂I)

−1||2

+Pn||Dφ(x)||2||V̂ (q̂I , β̂I)
−1 − V −1

E∗ ||
2
]
.

It follows from (C3) and (C6) that V̂ (q̂I , β̂I)
−1 converges to V −1

E∗ in probability. Com-

bining this result with (C19) leads to Part 1 (i).

We prove Part 1 (ii) as follows. We first prove ||(ŴE,φ)−1 − (W ∗E,φ)−1|| →p 0. Now

(ŴE,φ)−1 − (W ∗E,φ)−1 can be decomposed as the sum of three terms given by

(ii.1) = Pn{[h∗E,φ(x)E(y,x; q∗,β∗)]
⊗2} − (W ∗E,φ)−1,

(ii.2) = Pn{[h∗E,φ(x)E(y,x; q̂I , β̂I)]
⊗2 − [h∗E,φ(x)E(y,x; q∗,β∗)]

⊗2},

(ii.3) = Pn{[ĥE,φ(x)E(y,x; q̂I , β̂I)]
⊗2 − [h∗E,φ(x)E(y,x; q̂I , β̂I)]

⊗2}.

It follows from (C15) that (ii.1) converges to zero in probability. It follows from (C17)

and a Taylor’s series expansion that

(ii.2) ≤ op(1)E[f0(y,x)2f1(x)2] = op(1).
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To prove (ii.3), we define

B̂(y,x) = ĥE,φ(x)E(y,x; q̂I , β̂I) and B̃(y,x) = h∗E,φ(x)E(y,x; q̂I , β̂I).

Then, similar to the arguments in (2), we have

|(ii.3)| = ‖Pn[B̂(y,x)B̂(y,x)T − B̃(y,x)B̃(y,x)T ]‖

≤ Pn{‖B̂(y,x)− B̃(y,x)‖2}+ 2Pn{‖B̂(y,x)− B̃(y,x)‖‖B̃(y,x)‖}

≤ Op(1)[Pn{||ĥE,φ(x)− h∗E,φ(x)||2}]1/2[Pn{f0(y,x)4f1(x)2}]1/2.

Therefore, it follows from (C3), (C6), (C17), (C19), and (2) that (ii.3) converges to

zero in probability. Therefore, this completes the proof of Part 1.

To prove Part 2, we proceed as follows. We define Hn(t,β) to be

(Pn[ĥE,φ(x)∂(t,β)E(y,x;φ−1(t),β)])>ŴE,φ(Pn[ĥE,φ(x)E(y,x;φ−1(t),β)]).

It follows from a Taylor’s series expansion and some simple calculations that as n→∞,

we have

√
n[(φ(q̃E)>, β̃

>
E)> − (t>∗ ,β

>
∗ )>] = [−∂(t,β)Hn(t,β)]−1√nHn(t∗,β∗),

where (φ−1(t),β) ∈ B((t∗,β∗), δ) for any δ > 0 in probability. We need to prove two

results as follows:

(i)
√
nHn(t∗,β∗) is asymptotically normal;

(ii) −∂(t,β)Hn(t,β) converges to a positive definite matrix in probability.

Combining Part 2 (i) and (ii) finishes the proof of Theorem 4.3.

To prove Part 2 (i), we need to show three results as follows:

(i.1)
√
nPn{h∗E,φ(x)E(y,x;φ−1(t∗),β∗)} →L N(0, (W ∗E,φ)−1);

(i.2) Pn{[ĥE,φ(x)− h∗E,φ(x)]∂(t,β)E(y,x;φ−1(t∗),β∗)} →p 0;

(i.3)
√
nPn{[ĥE,φ(x)− h∗E,φ(x)]E(y,x;φ−1(t∗),β∗)} →p 0.

Part 2 (i.1) follows from the standard central limit theorem. Part 2 (i.2) follows from

the same arguments used in (2). We prove Part 2 (i.3) as follows. Note that the left
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term in (i.3) can be written as the sum of two terms, given by

√
nPn{[D̂φ(x)−Dφ(x)]V̂ (q̂I , β̂I)

−1E(y,x;φ−1(t∗),β∗)}, (3)
√
nPn{Dφ(x)[V̂ (q̂I , β̂I)

−1 − V −1
E∗ ]E(y,x;φ−1(t∗),β∗)}. (4)

Let ej be the (dM + dβ)× 1 vector with a 1 at the j-th component and a 0 otherwise

for j = 1, . . . , dM + dβ. It follows from (C18) that

∣∣√nPn{e>j [D̂φ(x)−Dφ(x)]V̂ (q̂I , β̂I)
−1E(y,x;φ−1(t∗),β∗)}

∣∣
=

∣∣tr(V̂ (q̂I , β̂I)
−1√nPn{E(y,x;φ−1(t∗),β∗)e

>
j [D̂φ(x)−Dφ(x)]}

) ∣∣
≤ ‖V̂ (q̂I , β̂I)

−1‖ ‖
√
nPn{E(y,x;φ−1(t∗),β∗)e

>
j [D̂φ(x)−Dφ(x)]}‖

≤ Op(1)op(1) = op(1).

It follows from (C15) and (C16) and standard central limit theory that

√
nPn{Dφ(x)E(y,x;φ−1(t∗),β∗)} = Op(1).

Therefore, after some simple calculations, we have

∣∣√nPn{e>j Dφ(x)[V̂ (q̂I , β̂I)
−1 − V (q∗,β∗)

−1]E(y,x;φ−1(t∗),β∗)}
∣∣ ≤

‖V̂ (q̂I , β̂I)
−1 − V (q∗,β∗)

−1‖ ‖
√
nPn{E(y,x;φ−1(t∗),β∗)e

>
j Dφ(x)}‖ = op(1).

Based on these results, we obtain

√
nHn(t∗,β∗) = Gφ,h∗E,φW

∗
E,φ

√
nPn{h∗E,φ(x)E(y,x;φ−1(t∗),β∗)}

→L N(0, Gφ,h∗E,φW
∗
E,φGφ,h∗E,φ).

To prove Part 2 (ii), we need to show two results as follows:

(ii.1) as n→∞, Pn{h∗E,φ(x)E(y,x;φ−1(t∗),β∗)} →p 0;

(ii.2) as δn → 0,

sup
(φ−1(t),β)∈B((q∗,β∗),δn)

Pn{ĥE,φ(x)∂l(t,β)E(y,x;φ−1(t),β)−h∗E,φ(x)∂l(t,β)E(y,x; q∗,β∗)}

converges to zero in probability for l = 0, 1, and 2.
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Part 2 (ii.1) follows from the law of large numbers. We prove Part 2 (ii.2) as follows. It

can be shown that ĥE,φ(x)∂l(t,β)E(y,x;φ−1(t),β) − h∗E,φ(x)∂l(t,β)E(y,x; q∗,β∗) can be

written as the sum of three terms, given by

T1(y,x; t,β) = [D̂φ(x)−Dφ(x)]V̂ (q̂I , β̂I)
−1∂l(t,β)E(y,x;φ−1(t),β),

T2(y,x; t,β) = Dφ(x)[V̂ (q̂I , β̂I)
−1 − V −1

E,∗]∂
l
(t,β)E(y,x;φ−1(t),β),

T3(y,x; t,β) = h∗E,φ(x)[∂l(t,β)E(y,x;φ−1(t),β)− ∂l(t,β)E(y,x; q∗,β∗)].

By using the same reasoning as in (3), (4), and (C16), we have

sup
(φ−1(t),β)∈B((q∗,β∗),δn)

2∑
j=1

||Pn{Tj(y,x; t,β)}|| →p 0.

It follows from (C17) and the law of large numbers that

sup
(φ−1(t),β)∈B((q∗,β∗),δn)

|Pn{T3(y,x; t,β)}| ≤ op(1) =

sup
(φ−1(t),β)∈B((q∗,β∗),δn)

|E{T3(y,x; t,β)}|

+ sup
(φ−1(t),β)∈B((q∗,β∗),δn)

|Pn{T3(y,x; t,β)} − E{T3(y,x; t,β)}|.

Based on these results, we obtain

sup
(t,β)∈B((t∗,β∗),δn)

|| − ∂(t,β)Hn(t,β)−Gφ,h∗E,φW
∗
E,φGφ,h∗E,φ || →

p 0

as δn → 0 and n→∞.

Proof (Proof of Theorem 4.4). The proof follows similar steps as in Theorem

4.3 with straightforward modifications, which for brevity are omitted.

Proof (Proof of Theorem 4.5). Let (U, φ) be a chart on M near q∗.

(i) We only prove the result for W
(2)
n,φ as follows. Under H

(2)
0 , the true value q∗

equals q0 and (U, φ) is a chart near q0. As q̃E is a consistent estimator for q, it follows

that q̃E ∈ U , for n large enough, with probability approaching 1. From the CLT for

q̃E , we have that, under H
(2)
0 ,

√
n (φ(q̃E)− φ(q0))

d→ NdM(0, (IdM 0)ΣE,φ(IdM 0)T )
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As nΣ̂E,φ

p→ ΣE,φ, by the continuous mapping theorem, we get

1√
n

[
(IdM 0)Σ̂E,φ(IdM 0)T

]−1/2 p→
[
(IdM 0)ΣE,φ(IdM 0)T

]−1/2
.

Then, using Slutzky’s theorem, we have[
(IdM 0)Σ̂E,φ(IdM 0)T

]−1/2
(φ(q̃E)− φ(q0))

d→ NdM(0, IdM)

which implies W
(2)
n,φ

d→ χ2
dM

.

(ii) Since β̃E and the lower-right dβ × dβ submatrix of Σ̂E,φ are independent of the

chart (U, φ), so is W
(1)
n,φ.

(iii) Let (U ′, φ′) be another chart near q0 with q̂E ∈ U ′. A Taylor’s series ex-

pansion of the transition function φ′ ◦ φ about φ(q0) shows that φ′(qE) − φ′(q0) =

(J(φ′ ◦ φ)φ(q0) + op(1))(φ(qE) − φ(q0)). Let q̂ be the consistent estimator of q that

the asymptotic covariance estimator Σ̂E,φ is based on. As Σ̂E,φ is compatible with the

manifold structure of M and J(φ′ ◦ φ)φ(q̂) = J(φ′ ◦ φ)φ(q0) + op(1), we have

W
(2)
n,φ′ = [φ(q̃E)− φ(q0)]T [J(φ′ ◦ φ)φ(q0) + op(1)]T

×
[(
J(φ′ ◦ φ)φ(q̂) 0

)
Σ̂E,φ

(
J(φ′ ◦ φ)φ(q̂) 0

)T ]−1

×[J(φ′ ◦ φ)φ(q0) + op(1)][φ(q̃E)− φ(q0)]

= [φ(q̃E)− φ(q0)]T [J(φ′ ◦ φ)−1
φ(q0) + op(1)]−>

×
[(
J(φ′ ◦ φ)φ(q0) + op(1) 0

)
Σ̂E,φ

(
J(φ′ ◦ φ)φ(q0) + op(1) 0

)T ]−1

×[J(φ′ ◦ φ)−1
φ(q0) + op(1)]−1[φ(q̃E)− φ(q0)]

= [φ(q̃E)− φ(q0)]T
[
(IdM 0) Σ̂E,φ (IdM 0)T + op(1)

]−1
[φ(q̃E)− φ(q0)]

= W
(2)
n,φ + op(1).

Thus, W
(2)
n,φ′ and W

(2)
n,φ are asymptotically equivalent.

(iv) Let φ and φ′ be two normal charts on M centered at q̃E . Thus, φ(·) = A ◦
Logq̃E(·) and φ′(·) = A′ ◦ Logq̃E(·), where A,A′ : Tq̃EM→ RdM are two isomorphisms

of linear spaces induced by the coordinates with respect to two orthonormal bases of

Tq̃EM. Therefore, φ′(·) = Oφ(·), where O = A′A−1 corresponds to an orthonormal

matrix, and Σ̂E,φ′;11 = OΣ̂E,φ;11O
T . Thus, Σ̂E;11 := A−1 ◦ Σ̂E,φ;11 ◦ A is independent

of the chart φ and is a 1-1 linear map from Tq̃EM onto itself. Since A preserves the
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inner product, we have

W
(2)
n,φ = tr{[Σ̂−1

E,φ;11A(Logq̃E(q0))]>A(Logq̃E(q0))}

= tr{[A((Σ̂E;11)−1Logq̃E(q0))]>A(Logq̃E(q0))}

= mq̃E(Σ̂E;11)−1Logq̃E(q0),Logq̃E(q0)) = W
(2)
M,n.

Proof (Proof of Theorem 4.6). The proof follows from a straightforward ap-

plication of a Taylor’s series expansion and Slutzky’s theorem. We only prove (ii). We

have that, under H
(2)
1,n,

√
n (φ(q̃E)− φ(qn))

d→ NdM(0, (IdM 0)ΣE,φ(IdM 0)T ),

where qn = Expq0
(v/
√
n + o(1/

√
n)). As nΣ̂E,φ

p→ ΣE,φ, by the continuous mapping

theorem, we get nΣ̂E,φ;11
p→ ΣE,φ;11 Then, using Slutzky’s theorem, we have[

Σ̂E,φ;11

]−1/2
(φ(q̃E)− φ(qn))

d→ NdM(0, IdM)

From Taylor’s series expansion of the map φ ◦ Expq0
at 0, we have

√
n(φ(qn)− φ(q0)) = J(φ ◦ Expq0

)0(v) + o(1).

Thus, again using Slutzky’s theorem, we obtain that[
Σ̂E,φ;11

]−1/2
(φ(q̃E)− φ(q0))

d→ NdM([ΣE,φ;11]−1/2 J(φ ◦ Expq0
)0(v), IdM),

which implies that, under H
(2)
1,n, W

(2)
n,φ converges in distribution to a noncentral χ2

dM

with noncentrality parameter

J(φ ◦ Expq0
)0(v)T

[
Σ̂E,φ;11

]−1
J(φ ◦ Expq0

)0(v).

(iii) It follows from (ii) applied to a normal chart φ = Logq̃E near q̃E .

Proof (Proof of Theorem 4.7). Consider a Taylor’s series expansion of the

real-valued function distM(q, q0)2 around the point q∗

distM(q, q0)2 = distM(q∗, q0)2 + gradq∗(distM(·, q0)2)(Logq∗(q))

+
1

2
Hessq∗(distM(·, q0)2)(Logq∗(q),Logq∗(q))

+ O(‖Logq∗(q)‖3),
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for any q in a normal chart centered at q∗ with distM(q, q∗) < ρ∗M. The result depend-

ing on which method is used, implies

√
nLogq∗(q̃E)

d→ NdM(0,ΣE,Logq∗;11
), (5)

where ΣE,Logq∗
is the matrix representation of the asymptotic covariance matrix of

q̃E with respect to the orthonormal basis in Tq∗M associated with the normal chart

under consideration. The squared distance function becomes distM(Expq∗(v), q∗)
2 =

‖v‖2Tq∗M
, for any v ∈ Tq∗M with ‖v‖Tq∗M < ρ∗M, and the matrix representation of

its Hessian at the chart center q∗ is the identity matrix IdM , with respect to any

orthonormal basis of Tq∗M.

(a) Under the null hypothesis H
(2)
0 , q̃E belongs to a normal chart centered at q0

with probability approaching one, and

Wdist = mq0
(Logq0

(q̂E),Logq0
(q̂E)) = (Logq0

(q̂E))T (Logq0
(q̂E)),

when Logq0
(q̂E) is expressed in the orthonormal basis of Tq0

M associated with the

normal chart centered at q∗ = q0. From this and (5), it follows that nWdist
d→

χ2(λ1, . . . , λdM), where λ1, . . . , λdM are the eigenvalues of the matrix ΣE,Logq0
,11. Let

ΣE,Logq0
and Σ′E,Logq0

be the matrix representations of the asymptotic covariance ma-

trix of q̃E in two normal charts centered at q0. Then Σ′E,Logq0
,11 = OΣE,Logq0

,11O
T , for

some dM × dM orthogonal matrix O, so the eigenvalues λ1, . . . , λdM are independent

of the normal chart.

(b) Under the alternative hypothesis H
(2)
1 , from the Taylor’s series expansion above,

we have

Wdist − distM(q∗, q0)2 = gradq∗(distM(·, q0)2)[Logq∗(q̃E) +Op(‖Logq∗ q̃E‖
2)]

= [DT
dist + op(1)]Logq∗(q̃E).

Using Slutzky’s theorem, we get

√
n(Wdist − distM(q∗, q0)2)

d→ NdM(0, DT
distΣE,Logq∗ ,11Ddist).

In the case when q0 is close to q∗ so that q0 is in a normal chart centered at q∗, then

Ddist = gradq∗(distM(·, q0)2) = −2Logq∗q0 and we have

√
n(Wdist − distM(q∗, q0)2)

d→ NdM(0, 4[Logq∗q0]TΣE,Logq∗ ,11 [Logq∗q0],
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which completes the proof.

Proof (Proof of Theorem 4.8). We introduce some notation. For any chart

(U, φ) on M with q0 ∈ U , we define F ∗φi and U∗ in a similar way as Fφi and U∗,

respectively, by replacing (q0, β̃I) with (q∗,β∗). That is,

F ∗φi = (F ∗>φi,1, F
∗>
φi,2)> = ∂(t,β)distM(f(xi, φ

−1(t),β), yi)
2
∣∣
t=φ(q∗),β∗

,

U∗ =

(
U∗tt U∗tβ

U∗βt U∗ββ

)
=

n∑
i=1

∂2
(t,β)distM(f(xi, φ

−1(t),β), yi)
2
∣∣∣
t=φ(q∗),β∗

,

where the subcomponents F ∗>φi,1 and F ∗>φi,2 correspond to t and β, respectively.

(i) The key idea in deriving the asymptotic distribution of WSC,φ consists of two

steps. In Step 1, using a Taylor’s series expansion of
∑n

i=1 Ũi,2 at (φ(q∗),β∗), we can

show that, under the null hypothesis H
(2)
0 ,

β̃I − β∗ = (−U∗ββ)−1
n∑
i=1

F ∗φi,2 +Op(n
−1).

In Step 2, under H
(2)
0 , we expand

∑n
i=1 Fφi,1 at (φ(q∗),β∗) to get

n∑
i=1

Fφi,1 =

n∑
i=1

F ∗φi,1 + U∗tβ(β̃I − β∗)[1 + op(1)]

=

n∑
i=1

F ∗φi,1 −U∗tβU∗−1
ββ (

n∑
i=1

F ∗φi,2)[1 + op(1)]

= (IdM ,−U∗tβ(U∗ββ)−1)

(
n∑
i=1

F ∗φi

)
[1 + op(1)].

Thus, by using Slutzky’s theorem, we have

(IdM ,−U∗tβ(U∗ββ)−1)
1√
n

(
n∑
i=1

F ∗φi

)
d→ NdM(0,Σφ,q∗),

where Σφ,q∗ is given by

E
{

[(IdM ,−U∗tβ(U∗ββ)−1)∂t,βdistM(f(x, φ−1(t),β∗), y)2
∣∣
t=φ(q∗)

]⊗2
}
.

Since Σ̃φ,q =[n−1
∑n

i=1[(IdM ,−UtβU−1
ββ)(Fφi−F φ)]⊗2]

p→Σφ, it follows from the contin-

uous mapping theorem and Slutzky’s theorem that under H
(2)
0 , the score test statistic

WSC,φ = (
∑n

i=1 Fφi,1)>Σ̃−1
φ,q(
∑n

i=1 Fφi,1)
d→ χ2

dM
.
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(ii) Let (U ′, φ′) be another chart onM with q0 ∈ U ′. Under H

(2)
0 , by the chain rule,

we have Fφ′,i = diag(J(φ ◦ φ′−1)φ′(q0), Idβ)TFφ,i and Uφ′,t′β = J(φ ◦ φ′−1)Tφ′(q0)Uφ,tβ. It

immediately follows that

Fφ′i,1 = J(φ ◦ φ′−1
)Tφ′(q0)Fφi,1,

Σ̃φ′,q = J(φ ◦ φ′−1
)Tφ′(q0)Σ̃φ,qJ(φ ◦ φ′−1

)φ′(q0),

which implies WSC,φ′ = WSC,φ. Thus, the score test statistic WSC,φ is independent of

the chart (U, φ) near q0.

2. Intrinsic Regression Model - Multicenter link functions

In the paper, we mainly discussed single-center link functions, as defined (1) of Section

3.1. We may also consider a multicenter link function to account for the presence of

multiple discrete covariates, such as gender and diagnostic group. Let xi = (xi,C ,xi,D),

where xi,D and xi,C are, respectively, a dx,D×1 vector of all the discrete covariates and

a dx,C × 1 vector of all the continuous covariates and their potential interactions with

xi,D. We may introduce a center for each covariate class based on xi,D (McCullagh and

A.Nelder, 1989). In this case, we may define the multicenter link function as follows:

µ(x, q(xD),β) : Rdx ×MdD ×Rdβ →M, (6)

where dD is an integer associated with the number of covariate classes and β is primarily

associated with continuous covariates. Moreover, it is assumed that µ(x, q,β) satisfies

a multicenter property as follows:

µ((0,xD), q(xD),β) = µ(x, q(xD),0) = q(xD). (7)

When the regression coefficients vector β equals 0, the link function is independent of

continuous covariates and reduces to q(xD) in M. When all continuous covariates are

equal to zero, the link function is independent of the regression coefficients and reduces

to the center q(xD) inM. For instance, we may extend the geodesic link function (3),

Section 3.1 of the paper, to the scenarios with multiple discrete covariates by assuming

µ(x, q(xD),β) = ExpMq(xD)(

dx∑
k=1

xikVq(xD),k), (8)
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where Vq(xD),k’s are tangent vectors in Tq(xD)M for all possible xD.

More generally, we will consider a general link function defined as

µ(x,θ) : Rdx ×Θ→M, (9)

where θ is a vector of unknown parameters in a parameter space Θ. For the multicenter

link function (6), θ contains all unknown parameters in q(xD)’s and β and Θ equals

MdD × Rdβ . However, for notational simplicity, throughout the paper we focus on

single-center functions (1), as defined in Section 3.1 of the paper, since the extension

to (9) is trivial.

3. Differential Geometry - Technical Details

3.1. Riemannian Metric, Distance, and Geodesics

A Riemannian manifold (M,m) is a smooth manifold M together with a metric m.

The m = (mp)p∈M is a family of inner products mp on the tangent space TpM of M
at p ∈ M, and for any smooth vector fields X = (Xp)p∈M and Y = (Yp)p∈M on an

open set U ⊂ M, the real valued map p 7→ mp(Xp, Yp) is smooth on U . Let dM be

the dimension of M. The tangent space TpM is isomorphic to RdM . For a local chart

(U, φ), U is an open subset ofM and there is a homeomorphism φ : U → φ(U) ⊂ RdM ,

where φ(U) is an open set containing φ(p) = t = (t1, . . . , tdM)T . Let ∂j denote the

tangent vector with respect to the coordinate curves ∂/∂tj for j = 1, . . . , dM. The

vector fields ∂
∂t = (∂1, . . . , ∂dM)T induce a basis at each of the tangent spaces Tφ−1(t)M

for t ∈ φ(U). In this basis, the metric can be expressed by a symmetric positive definite

matrix Mφ(t) = [mjk(t)], where mj,k(t) = mφ−1(t)(∂j , ∂k). The matrix Mφ(t) is called

the local representation of the Riemannian metric in the chart (U, φ), and for any

p ∈ U , the inner product of v and w ∈ TpM is given by mp(v,w) = ṽTMφ(φ(p))w̃,

where ṽ = (v1, . . . , vdM)> and w̃ = (w1, . . . , wdM)> are the representations of v and

w, respectively, in the chart (U, φ), i.e., v =
∑dM

j=1 v
j∂j .

The length `(γ) of a C1−curve γ : [t0, t1] → M on a Riemannian manifold M is

defined by `(γ) =
∫ t1
t0

√
mγ(t)(γ′(t), γ′(t)) dt. The length of a continuous, piecewise

smooth curve on M is defined as the sum of the lengths of its smooth pieces. The

geodesic distance distM(p, q) between p and q ∈ M is defined as the infimum of L(γ)

taken over all continuous, piecewise smooth curves γ : [a, b] → M with γ(a) = p and
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γ(b) = q. The Riemannian manifold (M,distM) is a metric space and geodesics are

then, by definition, the locally distance-minimizing paths. The geodesics are the curves

satisfying the second order differential system in the chart (U, φ) given by

γ̈j +
∑
l′,l

Γjl′lγ̇
l′ γ̇l = 0,

where Γjl′l = 0.5
∑

j′ m
j′j(∂l′mli + ∂j′mll′ − ∂lmj′l′) are the Christoffel symbols of the

first kind.

For p ∈ M and v in TpM, there exists a unique geodesic γ = γ(·; p,v) : I → M
satisfying γ(0) = p and γ′(0) = v, where I is a maximal open interval in R containing

0. Moreover, γ depends smoothly on both p and v. In general, I may not be all of R.

The manifold is said to be geodesically complete if the maximal interval I is the entire

real line R for all geodesics. For example, the Euclidean space Rn and the unit sphere

Sn are geodesically complete manifolds, while R \ {0} is not. The Hopf-Rinow-De

Rham theorem states that a geodesically complete Riemannian manifold is complete

as a metric space with the distance induced by the Riemannian metric, and that there

always exists at least one distance minimizing geodesic between any two points of the

manifold.

3.2. Exponential and Logarithmic Maps

For a general Riemannian manifold, given a vector v in TpM and a real number τ ∈ R,

we have that γ(t; p, τv) = γ(tτ ; p,v), for all t ∈ R with tτ in the definition domain of

γ(·; p,v). Therefore, for a tangent vector v ∈ TpM with ‖v‖p := (mp(v,v))1/2 < r(p)

for some small r(p) > 0, the geodesic starting from p and with initial velocity v is

defined on an interval containing [0, 1]. The manifold exponential map at a point p ∈M,

ExpMp : Bp(0, r(p)) → M is defined by ExpMp (V ) = γ(1; p, V ) for V ∈ Bp(0, r(p)),

where, Bp(0, r(p)) denotes the ball of radius r(p) centered at the origin in TpM. The

exponential map ExpMp is a locally smooth diffeomorphism around 0 ∈ TpM, i.e. there

is a r∗(p) ∈ (0, r(p)) such that ExpMp is a diffeomorphism from Bp(0, r∗(p)) into M.

The inverse map is denoted by LogMp and it provides normal coordinates onM around

p.

For q ∈ ExpMp (Bp(0, r∗(p))), the geodesic distance from p to q can be expressed as

distM(p, q) = ‖Logpq‖p, and thus ExpMp (Bp(0, r∗(p))) is the ball BM(p, r∗(p)) in M,
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with the induced distance, centered at p of radius r∗(p). As the tangent space TpM
is isomorphic to RdM , the logarithmic map Logp provides a local chart near p. If the

tangent space of M at p is endowed with an orthonormal basis, then such a chart is

called a normal chart and the coordinates are called normal coordinates.

3.3. Cut Locus and Radius of Injectivity

From now on, we will assume that the manifold M is geodesically complete, and thus

the exponential map Expp is defined on the entire tangent space TpM. A geodesic

γ(t; p,v) is either always minimizing the distance from p to γ(t; p,v) from t = 0 to ∞,

or it is minimizing up to a finite point t0 and no more thereafter. In the latter case, the

point γ(t0; p,v) is called a cut point for the geodesic γ(·; p,v) and the tangent vector

t0v is called a tangential cut point. The set of cut points of all geodesics starting from

p is called the cut locus of p and denoted by C(p) ⊂ M. The set of corresponding

tangent vectors is called the tangential cut locus of p and denoted by C(p) ⊂ TpM. We

have C(p) = Expp(C(p)) and thus, the maximal definition domain of the normal chart

centered at p is the domain D(p) ⊂ TpM containing 0 and bounded by C(p). The

domain D(p) is connected and star-shaped with respect to the origin and its image via

Expp is the entire manifold except the cut locus of p (Pennec, 2006). Hence the normal

chart centered at p is given by

Logp : D(p) = M \ C(p)→ D(p) ⊂ RdM .

Here TpM is endowed with an orthonormal basis and identified with RdM . The size of

this chart is quantified by the radius of injectivity ofM at p, ρ∗(M,p) = distTp
(0, C(p)),

which is the maximal radius of origin centered balls in TpM on which the exponential

map is one-to-one. The radius of injectivity ρ∗M of the manifold M is the infimum

of the radii of injectivity at all points over the manifold. For example, in the case of

Euclidean space Rd, the maximal definition domain of the normal chart is D(t) = Rd,

for all t ∈ Rd, and therefore the radius of injectivity is ρ∗Rd =∞. In the case of the unit

sphere Sk, the Riemannian metric induced by the canonical inner product on Rk+1,

the cut locus of a point p ∈ Sk is C(p) = {−p}, and the tangential cut locus is C(p) =

Sk−1(π) ⊂ TpS
k. Therefore, we have D(p) = B(0, π) ⊂ TpS

k, D(p) = Sk \ {−p}, and

ρ∗(Sk,p) = π for all points p on Sk. Thus, the radius of injectivity of Sk is ρ∗Sk = π.
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3.4. Taylor’s Series Expansion of Real Functions on Riemannian Manifolds

Let f : M → R be a smooth real-valued function. The gradient gradpf of f at point p

is the linear form on TpM. Thus, it can be uniquely identified with a vector in TpM via

the inner product mp(·, ·) such that gradpf(v) corresponds to the directional derivative

∂vf . In a local chart (U, φ) near p with φ(p) = 0, the expression of the gradient is

gradφ−1(t)f = M−1
φ (t)

∂(f ◦ φ−1)T

∂t
=

dM∑
l=1

mjl(t)∂l(f ◦ φ−1).

The Hessian of f at p in a local chart (U, φ) near p is given by

Hessφ−1(t)f =

dM∑
j,j′=1

{∂jj′(f ◦ φ−1)−
dM∑
l=1

Γljj′∂l(f ◦ φ−1)}dtjdtj′ .

Let φp be a normal chart at p, i.e. φp(q) = Logp(q), and fp = f ◦ Expp. Thus,

fp(0) = f(p). The Taylor’s series expansion of fp(v) around 0 is given by

fp(v) = fp(0) + Jfp,0v +
1

2
vTHfp,0v +O(‖v‖3),

where Jfp,0 = [∂jfp(0)] and Hfp,0 = [∂jj′fp(0)]. In a normal chart, Jfp,0 reduces to

gradpf
T , and the Christoffel symbols vanishes at the origin such that Hfp,0 corresponds

to the Hessian Hesspf of f at p. Thus, for all v ∈ D(p), we have

f(Expp(v)) = f(p) + gradpf(v) +
1

2
Hesspf(v,v) +O(‖v‖3). (10)

3.5. Lie Groups

A Lie group G is a group together with a smooth manifold structure such that the

group operations are compatible with the smooth structure, that is, the operations of

multiplication (a, b) 7→ ab and inversion a 7→ a−1 are smooth maps. Let G be a C∞

Lie group of dimension dG and with the identity element e. Let TaG be the tangent

space of G at a ∈ G, which is a dG dimensional linear space, and let TG be the tangent

bundle on G, which itself is a 2dG dimensional manifold. For a ∈ G, let La and Ra be,

respectively, the left and right multiplications by a, which are defined by

La : G→ G, La(b) = ab, b ∈ G,

Ra : G→ G, Ra(b) = ba, b ∈ G.
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These maps are C∞-diffeomorphisms and the inverses are L−1

a = La−1 and R−1
a = Ra−1 ,

respectively. They include maps of the tangent bundle to itself given by La∗ : ThG →
TahG and Ra∗ : ThG → ThaG for a, h ∈ G. They are C∞-diffeomorphisms and their

inverses are, respectively, L−1
a∗ = La−1∗ and R−1

a∗ = Ra−1∗. Moreover, for any b ∈ G, we

have TabG = La∗(TbG) and TbaG = Ra∗(TbG). The fiber map La∗,b (or Ra∗,b) is the

restriction and corestriction of La∗ (or Ra∗) to TbG and is a linear isomorphism from

TbG onto TabG (or TbaG) with their inverse L−1
a∗,b = La−1∗,ab (or R−1

a∗,b = Ra−1∗,ba).

A Lie group is equipped with a canonical vector-valued one form, the so called

Maurer-Cartan form ω(Xa) = La−1∗(Xa) for Xa ∈ TaG. Thus, the tangent bundle to

G is trivial TG ∼= G×TeG. A left-invariant vector is completely defined by its value at

the group unity e. In particular, there is an isomorphism between the tangent space at

the origin and left-invariant vector fields. Since the Lie bracket of such fields is again a

left-invariant vector field, the Lie algebra structure on vector fields is inherited by the

tangent space at the origin TeG. This algebra is called the Lie algebra of the group G

and it is denoted by g. We also have TaG = La∗(g), for any a ∈ G.

The exponential map of G at the unity e is the map ExpGe : g→ G defined as follows.

For v ∈ g, the exponential of v is defined by ExpGe (v) = γG(1;v), where γG(·;v) : R→
G is the unique one-parameter subgroup of G with γG(0;v) = e and d

dtγ
G(0;v) = v.

It follows easily from the chain rule that ExpGe (tv) = γG(t;v). The map γG(·;v) may

be constructed as the integral curve of either the left- or right-invariant vector field

associated with v. The integral curve exists for all real parameters followed by left-

or right-translation of the solution near zero. Therefore, ExpGe is globally defined on g

with ExpGe (0) = e, and ExpGe (−v) = (ExpGe (v))−1 for v ∈ g. Moreover, the exponential

map ExpGe is a local C∞-diffeomorphism around 0 ∈ g = TeG.

For a ∈ G, the exponential map of G at a, ExpGa , is the unique map from TaG into

G that satisfies the following condition

ExpGa ◦ La∗ = La ◦ ExpGe (11)

on g. Therefore, ExpGa is globally defined on TaG, ExpGa (0) = a, and ExpGa is a local

C∞-diffeomorphism around 0 ∈ TaG. Assume that X1, . . . , XdG is a given basis for
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g = TeG. Any v ∈ TeG can be uniquely written as

v =

dG∑
`=1

v`X`.

Let X1,a, . . . , XdG,a be the (unique) left invariant tangent vector fields with values

X1, . . . , XdG at e, i.eX`,a = La∗(X`) for ` = 1, . . . , dG, and a ∈ G. Then, X1,a, . . . , XdG,a

at a form a basis for TaG, for all a ∈ G, so they define a trivialization of the tangent

bundle of G as follows:

f : TG→ G×RdG , f(

dG∑
`=1

c`X`,a) = (a, (c1, . . . cdG)). (12)

Let < ·, · >e be an inner product on TeG and < ·, · > be the Riemannian metric

defined as in (13). A Riemannian or pseudo-Riemannian metric on a Lie group G is

left invariant if it is preserved under every left multiplication La, that is,

< v,w >b=< La,∗(v), La,∗(w) >ab, for v,w ∈ TbG, and b, a ∈ G.

A left-invariant metric is uniquely defined by its restriction to the tangent space to

the group at unity, hence by an inner product on g. Therefore, any inner product

< ·, · >e on TeG can be extended to a (unique) left invariant Riemannian metric

< ·, · >= {< ·, · >a}a∈G on G, namely

< X,Y >a:=< La−1∗(X), La−1∗(Y ) >e, X, Y ∈ TaG, a ∈ G. (13)

The associated norm is denoted by ‖ · ‖a and ‖X‖a =< X,X >
1/2
a = ‖La−1∗(X)‖e.

It is easy to see that the exponential maps ExpGe and ExpGa defined as above using the

algebraic structure of G coincide with the manifold exponential maps defined when G is

viewed as a Riemannian manifold (with a left-invariant metric). Moreover, the maximal

domain on which the exponential map ExpGa is one-to-one is D(a) = La,∗(D(e)) and

so ρ∗(G, e) = ρ∗(G, a), for all a ∈ G. Therefore, the radius of injectivity of G is

ρ∗G = ρ∗(G, e). Let LogGe and LogGa be the inverse maps of ExpGe and ExpGa . We have

that LogGe (b−1) = −LogGe (b) provided b ∈ D(e). For b ∈ D(a) = ExpGa (D(a)), the

geodesic distance from b to a can be expressed as

distG(b, a) = ‖LogGa (b)‖a = ‖LogGe (a−1b)‖e. (14)



18 Cornea, Zhu, Kim, and Ibrahim
3.6. Riemannian Symmetric Spaces

A map f : M → M defined on a neighborhood of p ∈ M is said to be a geodesic

symmetry if it fixes the point p and reverses geodesics through that point, i.e. if

γ(·) is a geodesic with γ(0) = p and f(γ(t)) = γ(−t), for any t. A Riemannian

symmetric space RSS is a connected Riemannian manifold M with the property that

at each point, geodesic symmetries are isometric or distance preserving (Boothby, 1986;

Helgason, 1978). They arise in a wide variety of situations in both mathematics and

physics. Basic examples of RSS’s are Euclidean spaces, Rd, spheres, Sk, projective

spaces, PRd, and hyperbolic spaces, Hd, each with their standard Riemannian metric.

Symmetric spaces arise naturally from Lie group actions on manifolds. Many common

geometric transformations of Euclidean spaces - rotations, translations, dilations, and

affine transformations on Rd - form Lie groups. In general, Lie groups can be used to

describe transformations of smooth manifolds.

Given a smooth manifold M and a Lie group G, a smooth group action of G on

M is a smooth mapping G × M → M, (a, y) 7→ a · y, such that e · y = y and

(ab) · y = a · (b · y) for all a, b ∈ G and all y ∈ M, where e is the identity element

of G. The group action should be interpreted as a group of transformations of the

manifold M, namely, {La}a∈G, where La is the action of the group element a on M,

La :M→M, La(y) = a · y for y ∈ M and a ∈ G. La is a smooth diffeomorphism on

M and its inverse is La−1 . Given y ∈ M a point on M, let ιy denote the action of G

on the point y, i.e. ιy : G→M, ιy(a) = a · y = La(y) for all a ∈ G. The ιy is a smooth

map from G into M. For example, for any Lie group G, the group multiplication

defines a group action of G on itself, and the action of an element a on the group itself

is exactly the left-multiplication by a. Another example is SO(d), which is a Lie group

and it acts on Rd as rotations, i. e. R · y = Ry for all R ∈ SO(d) and y ∈ Rd.

We now introduce some common concepts related to group actions. The orbit of a

point y ∈M is defined as G(y) = {a ·y | a ∈ G}. The orbits form a partition ofM, and

we say that two points y, y′ ∈ M are equivalent if they belong to the same orbit. In

the case thatM consists of a single orbit, we say that the group action is transitive or

G acts transitively onM, and we callM a homogeneous space. The isotropy subgroup

of a point y ofM is defined as Gy = {a ∈ G | a · y = y}. For example, for the action of

the group, SO(2), the isotropy subgroup of the zero vector is G0 = SO(2) and for any
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non-zero vector y ∈ R2, the isotropy group Gy reduces to the trivial subgroup {I2}.

Let H be a closed Lie subgroup of the Lie group G. Then the left coset of an element

a ∈ G is defined by aH = {ah |h ∈ H}. The space of all such cosets is called a quotient

space of the group G with respect to the subgroup H, denoted by G/H, and it is a

smooth manifold with the quotient topology. When a Lie group G acts smoothly on a

smooth manifold M for any y ∈ M, there is a natural bijection from the orbit G(y)

onto the quotient manifold given by the mapping a · y 7→ aGy, which is well-defined

and smooth, so G(y) ∼= G/Gy.

Now let M be a symmetric space and choose an arbitrary base point p ∈ M. We

can always viewM as a homogeneous spaceM∼= G/Gp, where G is a connected group

of isometries of M and the isotropy subgroup Gp is compact. We call G a group of

isometries of M if for all a ∈ G, distM(y, z) = distM(a · y, a · z) for all y, z ∈M. Any

Lie group G can be viewed as a symmetric space with a Riemannian structure induced

by an inner product on TeG, and G acting on itself by left multiplication. Obviously,

this action is transitive and the isotropy subgroups are trivial, i.e. Ga = {e}, for all

a ∈ G.

A very common example of a symmetric space is S2, which is a 2-dimensional

compact Riemannian manifold. The Lie group, SO(3), of all rotations in R3 acts

smoothly and transitively on S2. For example, let us choose the north pole p =

(0, 0, 1) ∈ S2 as the base point. It is easy to see that the orbit of p is the entire

sphere and thus S2 is a homogeneous space. The isotropy subgroup of p is the group

of all rotations about the z-axis in R3, which can be identified with the group of

2D rotations, SO(2). Hence, S2 can be naturally identified with the quotient space

SO(3)/SO(2). Similarly, the k-dimensional unit sphere, Sk, can be identified as the

quotient space SO(k + 1)/SO(k). The sphere Sk is a compact Riemannian manifold.

Other examples of symmetric spaces can be obtained by taking Cartesian products

of symmetric spaces. Consider two manifoldsM1 andM2 and two Lie groups G1 and

G2 so that Gj acts transitively on Mj for j = 1, 2. Thus, the group G = G1 ×G2 is a

Lie group and acts transitively on the manifold M = M1 ×M2. Given a base point

p = (p1, p2) in M, the isotropy subgroup of p in G is Gp = G1,p1
× G2,p2

. Thus, we

can write M1 ×M2 as a homogeneous space G/Gp = (G1/G1,p1
)× (G2/G2,p2

).

An example of a symmetric space used in the study of 3D geometric objects is the
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Figure 3. (a) A medial representation model m = (O, r, s0, s1) at an atom, where O is the

center of the inscribed sphere, r is the common spoke length, abd {s0, s1} are the two unit

spoke directions; (b) a skeleton of a hippocampus with 24 medial atoms,; (c) the smoothed

surface of the hippocampus.

space of medial atoms, M = R3 ×R+ × S2 × S2 (Shi et al., 2012). See Figure 3 for an

illustration. The group G = R3 × R+ × SO(3) × SO(3) acts smoothly on M. For an

element a = (O′, r′, R0, R1) ∈ G and an medial atom q = (O, r, s0, s1) ∈ M, the group

action is defined by

a · q = (O +O′, rr′, R0s0, R1s1),

which is a transitive action. Consider the atom p located at O = (0, 0, 0) with radius

r = 1 and spokes s0 = s1 = (0, 0, 1). Then, the isotropy subgroup of p is Gp =

{0} × {1} × SO(2) × SO(2), and we can write the medial atom space as the quotient

space M = R3 ×R+ × (SO(3)/SO(2))× (SO(3)/SO(2)).

From now on, it is assumed that the manifoldM is a symmetric space,M = G/Gp

with G being a Lie group of isometries acting transitively on M. Geodesics on M are

computed through the action of G on M. Due to the transitive action of the group G

of isometries on M, it suffices to consider only the geodesic starting at the base point

p. For an arbitrary point y ∈ M, geodesics starting from y are of the form a · γ(·),
where γ(·) is a geodesic starting from p with γ(0) = p and y = a · p for some a ∈ G.

Due to the local uniqueness of geodesics, if y = a′ · p for some other a′ ∈ G, then

a · γ(·) = a′ · γ(·).
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Geodesics on M starting from p are the images of the action of a 1-parameter

subgroup of G acting on the base point p. In other words, for any geodesic γ on M,

γ(·) : I →M, starting from p, there exists a 1-parameter subgroup c(·) : R → G such

that γ(t) = c(t) ·p for all t ∈ I. The manifold exponential map ExpMp at the base point

p is defined by

ExpMp (tv) = γ(t; p,v) = c(t; e,u) · p,

where γ(0; p,v) = p, d
dtγ(0; p,v) = v ∈ TpM, c(0; e,u) = e, and d

dtc(0; p,u) = u ∈ TeG
with u so that ιp∗,e(u) = v for small t ∈ R. That is,

ExpMp (t ιp∗,e(u)) = ExpGp (tu) · p,

for all u ∈ TeG and t ∈ R with small ‖tu‖.
Moreover, the manifold exponential map ExpMq of M at a point q is defined by

ExpMq (La∗,pv) = a · ExpMp (v)

for any a ∈ G with q = a · p and any small v ∈ TpM, where La is the action of the

element a on the points of M. Due to the uniqueness of geodesics, if q = a1 · p =

a2 · p with a1, a2 ∈ G and w = La1∗,p(v1) = La2∗,p(v2) with v1,v2 ∈ TpM, then

a1 · ExpMp (v1) = a2 · ExpMp (v2). Since G is a group of isometries on M, the radius of

injectivity ExpMq of M at q is independent of the point q, so ρ∗M = ρ∗(M, p).

The unit sphere Sk is a compact Riemannian manifold of dimension d and injectivity

radius ρ = π. The tangent space at q ∈ Sk is

TqS
k = {v ∈ Rk+1 : vTq = 0}.

The tangent space is endowed with the metric tensor from Rk+1, mq(v1,v2) = vT1 v2

for all v1,v2 ∈ TqS
k. The geodesic distance between two points q1, q2 ∈ Sk is given by

distM(q1, q2) = arccos(qT1 q2), which lies between 0 and π. The exponential map takes

the form

Expq : TqS
k → Sk, Expq(v) = cos(‖v‖)q +

sin(‖v‖)
‖v‖

v.

It is a diffeomorphism from B(0, π) ⊂ TqS
k onto Sk \ {−q}, and the logarithmic map

is given by

Logq : Sk \ {−q} → B(0, π), Expq(q1) =
arccos(qT1 q)√

1− (qT1 q)2

(
q1 − (qT1 q)q

)
,
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for all q1 ∈ Sk with q1 6= −q.

3.7. Symmetric Positive-definite Matrices

We review some basic facts about the geometric structure of Sym+(k) (Schwartzman,

2006; Lang, 1999; Terras, 1988; Fletcher et al., 2004; Batchelor et al., 2005; Zhu et al.,

2009; Yuan et al., 2012; Osborne et al., 2013). Let Sym(k) be the set of k×k symmetric

matrices with real entries, which is a topological linear space of dimension k(k + 1)/2.

The Sym+(k) is an open subset of Sym(k) and TqSym+(k) is a copy of Sym(k) for

q ∈ Sym+(k). Let q = CqC
T
q be the Cholesky decomposition of q, where Cq is a lower

triangular matrix with strictly positive diagonal entries. Then, for q, q′ ∈ Sym+(k),

the map (q, q′) → q ◦ q′ := Cqq′CTq induces a (non-commutative) Lie group structure

on Sym+(k), denoted by G. The unit element of G is the identity matrix Ik and the

inverse of a matrix q ∈ G with respect to the operation on G is q∼1 = C−1
q C−>q . The

Lie group G can be entirely covered with a single chart. We also have Lq(q′) = Cqq′CTq

and Lq∗(A) = CqAC
T
q for q, q′ ∈ Sym+(k) and A ∈ Sym(k). The associated Lie

algebra is sym(k) = Sym(k) with the bracket map being [A1, A2] = A1A2 − A2A1 for

A1, A2 ∈ Sym(k). Let exp(·) and log(·) be, respectively, the matrix exponential and

logarithm. The manifold exponential at Ik, ExpIk , is the matrix exponential exp(·)
and its inverse map is LogIk = Exp−1

Ik
= log(·). For A ∈ Sym(k) and q′ ∈ Sym+(k), we

have

Expq(A) = (Lq ◦ ExpIk ◦ Lq∼1∗)(A) = Cq exp(C−1
q AC−>q )CTq ,

Logq(q′) = Exp−1
q (q′) = Cq log(C−1

q q′C−>q )CTq .

We consider the trace norm ‖A‖ =
√

tr(A2) on Sym(k), identified as TIkSym+(k).

This norm is actually the 2-norm of the in Rk
2

of the vectorized form of the matrix.

This allows to introduce the following metric on Sym+(k)

< A1, A2 >q:=< Lq∼1 ∗ (A1), Lq∼1 ∗ (A2) >Ik= tr(A1q−1A2q−1),

for A1, A2 ∈ TqSym+(k) and q ∈ Sym+(k). This metric induces a Riemannian structure

on the group Sym+(k), and the above Expq and Logq are the Riemannian exponential

and logarithmic maps, respectively. The curve t → γ(t; q, A) := Expq(tA) is the
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geodesic curve starting from q with initial tangent vector A ∈ TqSym+(k). The radius

of injectivity is ρ∗(Sym(k)) = ρ∗(Sym(k), Ik) =∞.

We introduce the intrinsic regression model for Sym+(k)−valued responses. Suppose

that we observe {(yi,xi) : i = 1, . . . , n}, where yi ∈ Sym+(k) for all i. We define a

function f(x,β) given by

f(·, ·) : Rdx ×Rdβ → Rk(k+1)/2 with f(0, ·) = f(·,0) = 0.

An example of f(·, ·) is f(xi,β) = Bxi (Zhu et al., 2009), where B is an k(k+1)/2×dx
matrix of regression coefficients and β includes all components of B. Let {Ej` : 1 ≤ ` ≤
j ≤ k} be the canonical basis of Sym(k), where Ej` is the m×m matrix with the (j, `)

and (`, j) entries being 1 and 0 otherwise; let f(xi,β)j(j−1)/2+` be the j(j − 1)/2 + `-th

component of f(xi,β). We consider a single-center link function given by

µ(x, q,β) = Expq(u(xi,β)) = Cq exp(C−1
q u(xi,β)C−>q )CTq ,

where u(xi,β) =
∑k

j=1

∑j
`=1 f(xi,β)j(j−1)/2+`Ej` and q = CqC

T
q ∈ Sym+(k) is the

’center’. The rotated residual is given by

E(yi,xi, q,β) = log(Ci(q,β)−1yiCi(q,β)−>),

where Ci(q,β)Ci(q,β)T is the Cholesky decomposition of f(xi, q,β).

3.8. Special Orthogonal Group SO(k)

We review some basic facts about the geometric structure of SO(k) (Grenander et al.,

1998; Moakher, 2002; Gallier and Xu, 2002). This is a compact (C∞) submanifold of

Rk×k of dimension k(k − 1)/2 as well as a Lie group with respect to matrix multi-

plication. The unit element of SO(k) is the identity matrix Ik and its associated Lie

algebra so(k) = TIkSO(k) is the linear space of all k × k skew-symmetric matrices q,

i.e. qT = −q, denoted by SkewSym(k). For q ∈ SO(k), TqSO(k) is given by

TqSO(k) = {A ∈ Rk×k : AT = −qTAqT } = q SkewSym(k).

We consider the trace metric on TqSO(k). The trace metric is also a left-invariant

Riemannian metric on SO(k). Specifically, since q qT = Ik, for A1, A2 ∈ TImSO(k), we

have

< qA1, qA2 >q= tr[(qA1)T (qA2)] = tr(AT1 A2) =< A1, A2 >Ik .
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The Lie exponential map at Ik is given by the usual matrix exponentiation. Although

the Lie logarithmic map at Ik has a closed form, the formula for a general k is quite

complicated. We present the Lie logarithmic map for k = 2 and 3 in the supplementary

document. Generally, the Lie exponential map of A ∈ TqSO(k) at q ∈ SO(k) and its

corresponding Lie logarithmic map are, respectively, given by

Expq(A) = q ExpIk(q
TA) = q exp(qTA) and Logq(q′) = q LogIk(q

Tq′).

We introduce the intrinsic regression model for SO(k)−valued responses. Suppose

that we observe {(yi,xi) : i = 1, . . . , n}, where yi ∈ SO(k) for all i. We define a function

f(x,β) given by

f(·, ·) : Rdx ×Rdβ → Rk(k−1)/2 with f(0, ·) = f(·,0) = 0.

An example of f(·, ·) is f(xi,β) = B1xi, where B1 is a k(k − 1)/2 × dx matrix of

regression coefficients and β includes all components of B1. Let {Ẽj` : 1 ≤ ` ≤ j ≤ k}
be the basis of SkewSym(k), where Ẽj` is a k × k matrix with the (j, `) and (`, j)

entries being (−1)j+`−1 and (−1)j+`, respectively, and 0 otherwise. Let q ∈ SO(k) be

the ‘center’, and we consider a single-center link function given by

µ(x, q,β) = Expq(u(xi,β)) = q exp(u(xi,β)),

where u(xi,β) =
∑k

j=2

∑j−1
`=1 f(xi,β)(j−2)(j−1)/2+`Ẽj` ∈ SkewSym(k). The rotated

residual is given by

E(yi,xi; q,β) = LogIk(exp(−u(xi,β))qT yi).

The explicit form of E(yi,xi; q,β) for k = 2, 3 can be found in the supplementary

document.

3.9. Unit circle S1 in the complex plane

Let S1 = {z = cos(φ) + j sin(φ) : φ ∈ R} be the unit circle in the complex plane C,

where j =
√
−1. The S1 with the usual multiplication of complex numbers forms a

compact 1-dimensional C∞ Lie group with 1 as the unity. The tangent space of S1 at

a = cos(θ0) + j sin(θ0) ∈ S1 is given by Ta(S
1) = {t (− sin(θ0) + j cos(θ0)) : t ∈ R},

which is a 1-dimensional real linear subspace of C formed by all z = zx+ jzy’s that are
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orthogonal to a as vectors in R2. The Lie algebra of S1 is T1S

1 = {jt : t ∈ R} and the

exponential map at unity is given by Exp1(jt) = ejt = cos t+ j sin t. Thus, we have

Expa (t (− sin(θ0) + j cos(θ0))) = cos(t+ θ0) + j sin(t+ θ0).

Geometrically, Expa “wraps” the tangent line at a around the circle, and thus the

injectivity radius ρ equals π.

Suppose that we observe {(yi,xi) : i = 1, . . . , n}, where yi = cos(φi) + j sin(φi) ∈ S1

for all i. We define

I(·, ·) : Rdx ×Rdβ → R with I(0, ·) = I(·,0) = 0.

For an a ∈ S1, we consider a single-center link function and its corresponding rotated

residual, which are, respectively, given by

µ(xi, a,β) = a ejI(xi,β) = ej(θ0+I(xi,β)),

Ei(a,β) = j(φi − θ0 − I(xi,β))mod 2π,

where tmod 2π is the unique number in (−π, π] so that t − tmod 2π ∈ 2πZ. Thus, the

intrinsic regression model is written as

E[Ei(a,β)|xi] = 0, i = 1, . . . , n. (15)

3.10. Lie Logarithmic Maps of SO(2) and SO(3)

When k = 2, SO(2) is the set of all 2×2 matrices of the form

(
x −y
y x

)
with x2+y2 = 1

for x, y ∈ R. The group SO(2) of rotations in R2 is isomorphic with S1. The canonical

isomorphism is

(
x −y
y x

)
→ z = x + jy. A 2 × 2 skew-symmetric matrix B can be

written as B = λJ , where λ ∈ R and

J =

(
0 −1

1 0

)
.

There is a canonical isomorphism from the linear space TI2SO(2) into the space of pure

imaginary numbers, jR, namely, λJ 7→ jλ for λ ∈ R. It can be shown that

eB = eλJ = cos(λ)I2 + sin(λ)J.
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and, since J2 = −I2, it follows

cos(λ) =
1

2
tr(eB) sin(λ) = −1

2
tr(eBJ).

Thus eB determines λ uniquely up to an additive multiple of 2π.

Given a rotation matrix O ∈ SO(2), the Lie logarithmic map at I2 of O is given by

LogI2(O) = λJ, (16)

where cos(λ) = 0.5tr(R) and sin(λ) = −0.5tr(RJ) for λ ∈ (−π, π]. Thus, when SO(2)

is endowed with the trace metric, it follows immediately that the radius of injectivity

of SO(2) is ρ∗SO(2) =
√

2π.

When k = 3, a 3× 3 skew-symmetric matrix B is of the form

B =


0 −c1 c2

c1 0 −c3

−c2 c3 0

 ,

and letting λ =
√
c2

1 + c2
2 + c2

3, we have the well-known Rodrigues formula

eB = I3 +
sin(λ)

λ
B +

[1− cos(λ)]

λ2
B2.

It may be more convenient to normalize B such that one can write B = λB1 (or,

equivalently, B1 = B/λ, assuming λ 6= 0). In this case, eB can be written as

eB = eλB1 = I3 + sinλB1 + (1− cosλ)B2
1 .

Observing that tr(eB) = 1 + 2 cos(λ) and 0.5[eB − (eB)T ] = sin(λ)B1, the logarithmic

map at I3 of a rotation O ∈ SO(3) is given by

LogI3(O) = λB1, (17)

where λ = arccos((tr(O)− 1)/2) and B1 = (O − OT )/(2 sinλ). When λ = 0 or λ = π,

the above formulae cannot be used. When λ = 0, we have O = I3 and B1 = 0, so

LogI(O) = LogI(I3) = O3, and Eq. (17) still holds. When λ = π, we need to find B1

such that B2
1 = 1

2(O− I3). As B1 is a skew-symmetric matrix, this amounts to solving

a simple system of equations with three unknowns. When SO(3) is endowed with the
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trace metric, elementary calculations on the Rodrigues formula yield that ExpI is one-

to-one on the ball B(0,
√

2π) in TI2SO(3), but not on any ball B(0, ρ) with ρ >
√

2π.

Therefore, the radius of injectivity of SO(3) is ρ∗SO(3) =
√

2π.

Suppose we observe an element qi ∈ SO(k) and a dx × 1 covariate vector xi

for i = 1, . . . , n. We consider an intercept rotation matrix O. Then, for a given

map f(xi,β) with f(·, ·) : Rdx × Rdβ → Rk(k−1)/2 with f(0, ·) = 0, let Λ(xi,β) =∑m
k=2

∑k−1
`=1 f(xi,β)(k−1)(k−2)/2+`Xk` ∈ SkewSym(k), and consider the “directional”

matrix u(xi, q,β) = qΛ(xi,β) as a tangent vector to SO(k) at q ∈ SO(k). By consid-

ering the “conditional mean”

µ(xi, q,β) = Expq(u(xi, q,β)) = q exp(Λ(xi,β)),

the intrinsic residual is given by

E(xi, q,β) = Ei(q,β) = Log(e−Λ(xi,β)qTqi).

When k = 2, both the manifold SO(2) and the linear space SkewSym(2) have

dimension 1, so f(xi,β) is a scalar map. We have

Λ(xi,β) = f(xi,β)J =

(
0 −f(xi,β)

f(xi,β) 0

)

q =

(
cos(θ0) − sin(θ0)

sin(θ0) cos(θ0)

)
, qi =

(
cos(θi) − sin(θi)

sin(θi) cos(θi)

)

where θi are in (−π, π] for i = 0, . . . , n. The “conditional mean” becomes

µ(xi, q,β) =

(
cos(θ0 + f(xi,β)) − sin(θ0 + f(xi,β))

sin(θ0 + f(xi,β)) cos(θ0 + f(xi,β))

)
and the “intrinsic residual” is

E(xi, q,β) = (φi − θ0 − I(xi,β))mod 2πJ.

We observe that we recapture, via the canonical isomorphism between SO(2) and S1,

the intrinsic model presented in Example 2. When SO(2) is endowed with the trace

metric, the Riemannian distance on SO(2) between two rotations is a constant multiple

of the Riemannian distance on S1 between their counterparts in S1; the multiplicative

factor is
√

2.
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When k = 3, the manifold SO(3) and the linear space SkewSym(3) have dimension

3, and the above “conditional mean” becomes

µ(xi, q,β) = q

(
I3 +

sinλ(xi,β)

λ(xi,β)
Λ(xi,β) +

(1− cosλ(xi,β))

λ(xi,β)2
Λ(xi,β)2

)
,

where λ(xi,β) = ‖f(xi,β)‖, and the “intrinsic residual” is

E(xi, q,β) =
θi(q,β)

2 sin(θi(q,β))
×[

(qTqi − qTi q)

− sin(λ(xi,β))

λ(xi,β)

(
Λ(xi,β)qTqi + qTi qΛ(xi,β)

)
+

[1− cos(λ(xi,β))]

λ(xi,β)2

(
Λ(xi,β)2qTqi − qTi qΛ(xi,β)2

)]
,

where θi(q,β) is given by

arccos

{
1

2

[
tr (qTqi) −

sin(λ(xi,β))

λ(xi,β)
tr (Λ(xi,β)qTqi)

+
(1− cos(λ(xi,β)))

λ(xi,β)2
tr (Λ(xi,β)2qTqi)

]
− 1

}
.

3.11. Kendall’s Planar Shape Space Σk
2

We review the definition and some basic facts about the geometric structure of the

shape space Σk
2 formed by k landmarks in R2, k > 2 (Kendall, 1984; Kendall et al.,

1999; Dryden and Mardia, 1998; Huckemann et al., 2010; Su et al., 2012). Geometrical

planar objects are studied by placing k > 2 landmarks at specific locations of each

object, usually on the boundary of the object. Then each object is described by a

k × 2 matrix y ∈ Rk×2, each row ym denoting the coordinates of a point in R2 for

m = 1, . . . , k. It is often convenient to identify points in R2 with complex numbers, i.e.

ym = (ym,1, ym,2) ≡ zm = ym,1 + jym,2 ∈ C, where j =
√
−1. In this representation, a

configuration y with k landmarks is an element z ∈ Ck. We remove the translations by

restricting to those elements of Ck whose average is zero,
∑k

m=1 z
m = 0, and the scale

variability by rescaling the matrix to have norm one, ‖z‖22 = z̄T z =
∑k

m=1 z
mzm = 1,

where the “overline” denotes complex conjugation. Thus, we obtain a set Dk = {z =

(z1, . . . , zk)T ∈ Ck | k−1
∑k

m=1 z
m = 0, ‖z‖2 = 1} called the pre-shape space. Here, Dk

is a unit sphere and we can utilize the geometry of a sphere to analyze points on it.
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Thus, Dk has the canonical structure of a real Riemannian manifold of real dimension

(2k− 3), with the metric induced by the standard inner product on Rk×2 which is the

real part of the complex inner product on Ck. The tangent space of Dk at a point z

is TzDk = {v = (v1, . . . , vk)T ∈ Ck |Re(z̄T v) = 0, k−1
∑k

m=1 v
m = 0} and the geodesic

distance on Dk is the spherical distance dDk(z, z
′) = arccos(Re(z̄′

T
z)). The special

unitary group G = SU(V) ∼= SU(k − 1) ⊂ SU(k) acts transitively on Dk, where V
is the complex-orthogonal complement of spanCk{(1, . . . , 1)T } in Ck. V has complex

dimension k− 1. SU(k− 1) is a real Lie group of dimension (k− 1)2 − 1. The isotropy

subgroup of z is Gz ∼= SU(k − 2). Thus, Dk is a Riemannian symmetric space.

To obtain the shape space, we remove the planar rotations of pre-shapes. For

z ∈ Dk, let [z] be the set of all planar rotations of a configuration z according to

[z] = {z′ = ejθz|θ ∈ S1}. One defines an equivalence relation on Dk by setting all

elements of the set [z] as equivalent, i.e. z ∼ z′ if there is an angle θ such that

z′ = ejθz. The set of all such equivalence classes is the quotient space Dk/S1. This

space is called Kendall’s planar shape space and is denoted by Σk
2. Since S1 acts freely

on Dk, i.e. the only element of S1 whose action has fixed points is the unit element

of S1, then the quotient space Σk
2 is a (2k− 4)-dimensional real Riemannian manifold.

In fact, this space can be identified with a complex projective space CP k−2. Since,

z ∼ z′ implies Uz ∼ Uz′, for any z, z′ ∈ Dk and any U ∈ SU(V), the group G acts

transitively on Σk
e as well, and the isotropy subgroup is G[z]

∼= SU(k − 2) × S1. The

natural Riemannian structure on Σk
2 (as CP k−2) is given by the Fubini-Study metric,

which is defined as follows.

The tangent space of Σk
2 at a point q = [zq], with zq ∈ Dk, is

TqΣk
2 = {v = (v1, . . . , vk)T ∈ Ck |Re

(
(ejθzq)

T
v
)

= 0, θ ∈ S1, k−1
k∑
i=1

vi = 0}

= {v = (v1, . . . , vk)T ∈ Ck | zq
Tv = 0, k−1

k∑
i=1

vi = 0},

and it is equipped with the complex inner product induced from Ck, that is, <

v,w >q:= wTv, for v,w ∈ TqΣk
2, which is well-defined.

A geodesic between two elements q1, q2 ∈ Σk
2, with ql = [zql ], l = 1, 2, is given

by a spherical geodesic on Dk between zq1
and z∗q2

, where z∗q2
= ejθ

∗
zq2

and θ∗ is the
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optimal rotational alignment of zq2

to zq1
given by z̄Tq2

zq1
= ejθ

∗ |z̄Tq2
zq1
|. The geodesic

distance on Σk
2 between q1, q2, dΣk2

(q1, q2), is the spherical distance dDkm(zq1
, z∗q2

) =

arccos(z∗q2

T
zq1

) = arccos(|zq2

T zq1
|). The definitions of both the geodesics and geodesic

distance are independent of the choice of representatives for the equivalence classes

q1 and q2. For v ∈ TqΣk
2, the Riemannian Exponential map is given by Expq(v) =

cos(‖v‖)zq + sin(‖v‖) v
‖v‖ . The exponential map is well-defined and it is a bijection on

the set of [(zq,v)] so that ‖v‖ ∈ [0, π2 ). The Riemannian Logarithmic map is given by

Logq(q′) = arccos(|zq′
T zq|)v/‖v‖ = r

sin(r)v, where v = z∗q′ − |zq′
T zq|zq, r = dΣk2

(q, q′),

and z∗q′ is the optimal alignment of zq′ to zq. It is easy to check that all the definitions

above are independent of the choice of representatives for the corresponding equivalence

classes.

Note that with respect to a chosen complex orthonormal basis {Z1, . . . , Zk−2} for

TpΣk
2, the normal chart φ centered at p has the expression

φ(q) = ζ = (ζ1, . . . , ζk−2)T ∈ Ck−2,

∼= t = (t1, . . . , t2k−4)T ∈ R2k−4 (18)

where ζ` = t2`−1 + jt2` and

ζ` =
r

sin(r)
ejθ Z`

T
zq, r = dΣk2

(q, p) = arccos(|zq
T zp|), ejθ =

zq
T zp

|zq
T zp|

(19)

for ` = 1, . . . , k − 2 (Bhattacharya and Bhattacharya, 2008).

We introduce the intrinsic regression model for Σk
2-valued responses. Suppose that

we observe {(yi,xi) : i = 1, . . . , n}, where yi ∈ Σk
2 and xi ∈ Rdx , for all i. We define a

function f(x,β) given by

f(·, ·) : Rdx ×Rdβ → R2k−4 with f(0, ·) = f(·,0) = 0. (20)

An example of f(·, ·) is f(xi,β) = Bxi, where B is a (2k − 4) × dx matrix of regres-

sion coefficients and β includes all components of B. We fix a point p ∈ Σk
2, as the

base point, and {Z1, . . . , Zk−2} an orthonormal basis for TpΣk
2/
√

(`+ 1)(`+ 2). Thus,

{Z1, . . . , Zk−2} forms a complex orthonormal basis of TpΣk
2 when viewed as a complex

linear space, and, equivalently, {Z1, jZ1, . . . , Zk−2, jZk−2} forms a real orthonormal

basis of TpΣk
2 when viewed as a real linear space. Letting q ∈ Σk

2 be the ‘center’, we
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consider a single-center link function given by

µ(xi, q,β) = Expq(u(xi, q,β)) ∈ Σk
2, (21)

where u(xi, q,β) ∈ TqΣk
2. An example of u(xi, q,β) is given by

u(xi, q,β) =

[
k−2∑
`=1

(f(xi,β)2`−1 + jf(xi,β)2`)Uzp,z∗qZ`

]
∈ TqΣk

2, (22)

where p = [zp], q = [zq], with zp, zq ∈ Dk. Here, for z1, z2 ∈ Dk, Uz1,z2 ∈ SU(V) ⊂
SU(k) denotes the unique special unitary map in the subspace generated by z1 and z2

that maps z1 onto z2. The map Uz1,z2 takes the form

Uz1,z2v = v − (z1
Tv)z1 − (z̃2

T
v)z̃2

+

(
(z1

T z2)(z1
Tv)−

√
1− |z1

T z2|2 (z̃2
T
v)

)
z1

+

(√
1− |z1

T z2|2 (z1
Tv) + (z1

T z2)(z̃2
T
v)

)
z̃2, (23)

for v ∈ Ck, where z̃2 = z2−(z1T z2)z1√
1−|z1T z2|2

. Thus, Uq1,q2
v := Uzq1 ,z∗q2v ∈ V, v ∈ V, and

Uq1,q2
q := [Uzq1 ,z∗q2zq] ∈ Σk

2, q ∈ Σk
2, are well defined, independently of the choice of

representatives zq1
, zq2

, and zq for q1, q2, and q, respectively. The rotated residual is

given by

E(yi,xi; q,β) = U−1
p0,µ(xi,q,β)(Logµ(xi,q,β)yi) = Logp0

(Up0,µ(xi,q,β)
T
yi). (24)

We consider the intrinsic model

E(E(yi,xi, q,β) |xi) = 0, i = 1, . . . , n. (25)

4. Annealing evolutionary stochastic approximation Monte Carlo

We now develop an annealing evolutionary stochastic approximation Monte Carlo al-

gorithm for computing θ̂I = (q̂I , β̂I) and θ̂E = (q̂E , β̂E). Quite recently, the stochastic

approximation Monte Carlo algorithm (Liang et al., 2010) has been proposed in the

literature as a general simulation technique, which possesses a nice feature in that the

moves are self-adjustable and thus not likely to get trapped by local energy minima.

The annealing evolutionary SAMC algorithm (Liang et al., 2010) represents a further
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improvement of stochastic approximation Monte Carlo for optimization problems by

incorporating some features of simulated annealing and the genetic algorithm into its

search process.

Like the genetic algorithm, annealing evolutionary stochastic approximation Monte

Carlo works on a population of samples. Let θl = (θ(1), . . . ,θ(l)) denote the population,

where l is the population size, and θ(k) = (θk1, . . . , θkpθ) is a pθ-dimensional vector called

an individual or chromosome in terms of genetic algorithms. Thus, the minimum of

the objective function Qn(θ), θ ∈ Θ, can be obtained by minimizing the function

U(θl) =
∑l

k=1Qn(θ(k)). An unnormalized Boltzmann density can be defined for the

population as follows,

ψ(θl) = exp
{
−U(θl)/τ

}
, θl ∈ Θl, (26)

where τ = 1 is called the temperature, and Θl = Θ×· · ·×Θ is a product sample space.

The sample space can be partitioned according to the function U(θl) into b subregions:

E1 = {θl : U(θl) ≤ δ1}, E2 = {θl : δ1 < U(θl) ≤ δ2}, · · · , Eb−1 = {θl : δb−2 < U(θl) ≤
δb−1}, and Eb = {θl : U(θl) > δb−1}, where δ1 < δ2 < . . . < δb−1 are b − 1 known real

numbers. We note that here the sample space is not necessarily partitioned according

to the function U(θl), for example, the function λ(θl) = min{Qn(θ(1)), . . . ,Qn(θ(l))}
also works.

Let $(δ) denote the index of the subregion that a sample with energy U(θl) belongs

to. For example, if θl ∈ Ej , then $(U(θl)) = j. Let B(t) denote the sample space at

iteration t. The algorithm initiates its search in the entire sample space B0 =
⋃b
j=1Ej ,

and then iteratively searches in the set

Bt =

$(U
(t)
min+ℵ)⋃
j=1

Ej , t = 1, 2, . . . , (27)

where U
(t)
min is the best function value obtained until iteration t, and ℵ > 0 is a user

specified parameter which determines the broadness of the sample space at each iter-

ation. Note that in this method, the sample space shrinks iteration by iteration. To

ensure the convergence of the algorithm to the set of global minima, the moves at each
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itertaion are required to admit the following distribution as the invariant distribution,

fw(t)(θl) ∝
$(U

(t)
min+ℵ)∑
j=1

ψ(θl)

ew
(t)
j

I(θl ∈ Ej), (28)

where w
(t)
j are the working parameters which will be updated from itertaion to iteration

as described in the algorithm below.

The annealing evolutionary stochastic approximation Monte Carlo includes five

types of moves, the MH-Gibbs mutation, K-point mutation, K-point crossover, snooker

crossover, and linear crossover operators. See Liang et al. (2010) for the details of the

moves. Let ρ1, . . . , ρ5, 0 < ρk < 1 and
∑5

k=1 ρk = 1, denote the respective working

probabilities of the five types of moves. The algorithm can be summarized as follows.

The algorithm:

(a) (Initialization) Partition the sample space Bl into b disjoint subregions E1, . . . ,Eb;
choose the threshold value ℵ and the working probabilities ρ1, . . . , ρ5; initialize

a population θl(0) at random; and set w(0) = (w
(0)
1 , . . . , w

(0)
b ) = (0, 0, . . . , 0),

Bl0 =
⋃b
j=1 Ej , U

(0)
min = U(θl(0)) and t = 0. Let W be a compact set in Rb.

(b) (Sampling) Update the current population θl(t) using the MH-Gibbs mutation,

K-point mutation, K-point crossover, snooker crossover, and linear crossover op-

erators according to the respective working probabilities.

(c) (Working weight updating) Update the working weight w(t) by setting

w∗j = w
(t)
j + γt+1Hj(w

(t),θl(t+1)), j = 1, . . . , $(U
(t)
min + ℵ),

whereHj(w
(t),θl(t+1)) = I(θl(t+1) ∈ Ej) for the crossover operators, Hj(w

(t),θl(t+1)) =∑l
k=1 I(θl(t+1,k) ∈ Ej)/l for the mutation operators, and γt+1 is called the gain

factor. If w∗ ∈ W, set w(t+1) = w∗; otherwise, set w(t+1) = w∗ + c∗, where

c∗ = (c∗, . . . , c∗) and c∗ is chosen such that w∗ + c∗ ∈ W.

(d) (Termination Checking) Check the termination condition, e.g., whether a fixed

number of iterations has been reached. Otherwise, set t → t + 1 and go to step

(b).
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In this article, we follow Liang et al. (2010) to set ρ1 = ρ2 = 0.05, ρ3 = ρ4 = ρ5 = 0.3,

and the gain factor sequence

γt =
t0

max(t0, t)
, t = 0, 1, 2, . . . , (29)

with t0 = 5000. In general, a large value of t0 will allow the sampler to reach all

the subregions very quickly even for a large system. As shown in Liang et al. (2010),

it can converge weakly toward a neighboring set of global minima of U(θl) in the

space of energy. More precisely, the sample θl(t) converges in distribution to a random

population with the density function

fw(θl) ∝
$(Umin+ℵ)∑

j=1

ψ(θl)∫
Ej ψ(θl)dθl

I(x ∈ Ej), (30)

where Umin is the global minimum value of U(θ),

Regarding the setting of other parameters, we have the following suggestions. In

the algorithm, the moves are reduced to the Metropolis-Hastings moves (Metropolis et

al., 1953; Hastings, 1970) within the same subregions. Hence, the sample space should

be partitioned such that the MH moves within the same subregion have a reasonable

acceptance rate. In this article, we set δj+1 − δj ≡ 0.2 for j = 1, . . . , b− 1.

The crossover operator has been modified to serve as a proposal for the moves, and

it is no longer as critical as to the genetic algorithm. Hence, the population size l is

usually set to a moderate number, ranging from 10 to 100. Since ℵ determines the

size of the neighboring set toward which the method converges, ℵ should be chosen

carefully for efficiency of the algorithm. If ℵ is too small, it may take a long time for

the algorithm to locate the global minima. In this case, the sample space may contain

a lot of separated regions, and most of the proposed transitions will be rejected if the

proposal distribution is not spread out enough. If ℵ is too large, it may also take a long

time for the algorithm to locate the global energy minimum due to the broadness of

the sample space. In practice, the values of l and ℵ can be determined through a trial

and error process based on the diagnosis for the convergence of the algorithm. If it fails

to converge, the parameters should be tuned to larger values. The convergence of the

method can be diagnosed by examining the difference of the patterns of the working

weights obtained in multiple runs. In this article, we set l = 50 and ℵ = 50.
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