

Supplemental Figure 1. *cpk5-2* suppresses the expression of defense-related genes in *exo70B1-3*. (Supports Figure 1)

Transcript accumulation of *PR1*, *PR2*, *SID2*, and *PAD4* was examined by reverse transcription quantitative PCR (RT-qPCR). RNA was isolated from leaves of four-week-old plants at different time points after infection with *G. cichoracearum*. *ACT2* was used as an internal control. Results represent mean and standard deviation from three independent biological samples. The asterisks indicate statistically significant differences (P < 0.05; one-way ANOVA). The experiments were repeated three times with similar results.

Supplemental Figure 2. *cpk5-2* suppresses powdery mildew-induced salicylic acid accumulation in *exo70B1-3*.

(Supports Figure 1)

Four-week-old plants were infected with *G. cichoracearum*. Salicylic acid was extracted from leaves at 0 dpi and 3 dpi. FW , fresh weight. Bars represent mean and standard deviation from three biological samples. Lower-case letters indicate statistically significant differences (P < 0.05, one-way ANOVA).

Supplemental Figure 3. *cpk5-2* suppresses *exo70B1-3*-mediated resistance to *Pto* DC3000. (Supports Figure 1)

Four-week-old plants were inoculated with *Pto* DC3000 at OD600 = 0.0005. The number of bacteria was counted at 3 hours and 3 days post inoculation. Bars represent mean and standard deviation of three biological samples. The asterisk indicates statistically significant difference (P < 0.05, one-way ANOVA). The experiment was performed three times with similar results.

Supplemental Figure 4. Map-based cloning of CPK5. (Supports Figure 1)

(A) The *cpk5-2* mutation was identified by standard map-based cloning. Markers and bacterial artificial chromosome (BAC) clones are indicated.

(B) Structure of *CPK5*. The *cpk5-2* mutation is a nucleotide change (G1522A), leading to premature termination. The *cpk5-1* mutant is a previously identified T-DNA insertion mutation; the insertion site is indicated. Lines represent introns, and black and gray boxes represent exons and untranslated regions, respectively.

(C) The *cpk5-2* mutation results in a premature stop codon. The *CPK5* genomic DNA, cDNA and protein sequences are shown. In the genomic DNA sequence, the lower-case and upper-case letters represent introns and exons, respectively. The *cpk5-2* mutation (G1522A) in the intron is shown in red. The 8-bp nucleotide deletion in the *CPK5* cDNA sequence resulting from *cpk5-2* mutation is shown in red. The premature stop codon in the *cpk5-2* protein sequence is indicated by red asterisk.

(D) Structure of CPK5. V, N-terminal variable domain; K, kinase domain; J, autoinhibitory junction domain; C, CaM-like domain. The arrows indicate four additional *cpk5* mutations identified in an *exo70B1-3* suppressor screen.

Supplemental Figure 5. The *cpk5* alleles suppress cell death and resistance to *G. cichoracearum* as **well as** *PR1* **accumulation in exo70B1-3.** (Supports Figure 1)

(A) Six-week-old plants were photographed under short-day conditions. The wild type and *cpk5* exo70B1-3 mutants did not show cell death, but pronounced cell death was observed in the exo70B1-3 mutant. Bar = 2.4 cm.

(B) Four-week-old plants were infected with *G. cichoracearum*. The leaves were detached and photographed at 8 dpi. The wild type and *cpk5 exo70B1-3* mutants were susceptible, but *exo70B1-3* was resistant to *G. cichoracearum*. Bar = 0.5 cm.

(C) The leaves were stained with trypan blue after infection with *G. cichoracearum* at 8 dpi. Bar = 50 µm. (D) Quantification of fungal growth in plants at 5 dpi by counting the number of conidiophores per colony. Bars represent means and standard deviation ($n \ge 24$). Lower-case letters indicate statistically significant differences (P < 0.05, one-way ANOVA). The experiments were repeated two times with similar results. (E) *PR1* transcript level was examined by RT-qPCR. RNA was isolated from four-week-old plants at indicated time points after infection with *G. cichoracearum*. *ACT2* was used as an internal control. Bars represent standard deviation from three independent biological samples. Three technical replicates for each biological sample were performed. The asterisks indicate statistically significant differences (P < 0.05; one-way ANOVA). The experiments were repeated two times with similar results. "exo70B1" indicates plants carrying the exo70B1-3 allele.

Supplemental Figure 6. Complementation of the *cpk5-2* mutation.

(Supports Figure 1)

(A) Six-week-old plants were photographed under short-day conditions. The *CPK5* genomic sequence under its native promoter was transformed into *cpk5-2 exo70B1-3* plants. The *CPK5* genomic clone complemented the *cpk5-2* mutation. Bar = 2.4 cm.

(B) Four-week-old plants were infected with *G. cichoracearum* and the leaves were photographed at 8 dpi. Bar = 0.5 cm.

(C) Infected leaves were stained with trypan blue at 8 dpi to visualize fungal structures and dead cells. Bar = 50 μ m.

(D) Fungal growth was assessed by counting the number of conidiophores per colony at 5 dpi. Bars represent means and standard deviation ($n \ge 24$). Lower-case letters indicate statistically significant differences (P < 0.05, one-way ANOVA). The experiments were repeated two times with similar results.

(E) *CPK5* transcript level was examined by RT-qPCR. RNA was isolated from five-week-old plants. Bars represent standard deviation from three independent biological samples. Three technical replicates for each biological sample were performed. The asterisks indicate statistically significant differences (P < 0.05; one-way ANOVA). The experiments were repeated two times with similar results.

Supplemental Figure 7. *cpk5-2* does not suppress *edr2-*, *pmr4-*, or *acd5-*mediated resistance to *G. cichoracearum*. (Supports Figure 3)

(A) Four-week-old plants were infected with *G. cichoracearum*. Representative leaves were removed and photographed at 8 dpi. The *edr2*, *pmr4-1*, and *acd5* mutants were more resistant to *G. cichoracearum* than wild type, and the resistance of the *cpk5-2 edr2*, *cpk5-2 pmr4-1*, and *cpk5-2 acd5* double mutants was similar to that of the respective single mutants. Bar = 0.5 cm.

(B) Leaves were stained with trypan blue after infection with *G. cichoracearum* at 8 dpi. Bar = 50 μ m.

(C) Fungal growth in plants was quantified at 5 dpi by counting the number of conidiophores per colony. Bars represent means and standard deviation ($n \ge 27$). Lower-case letters indicate statistically significant differences (P < 0.05, one-way ANOVA). The experiment was performed three times with similar results.

Supplemental Figure 8. *CPK5* transcript level was not significantly changed in *exo70B1-3*. (Supports Figure 5)

CPK5 and *TN2* transcript levels were examined by RT-qPCR. The RNA was extracted from five-week-old plants. Bars represent standard deviation from three independent biological samples. Three technical replicates for each biological sample were performed. The lower-case letters indicate statistically significant differences (P < 0.05; Student's *t*-test). This experiment was performed three times with similar results.

Supplemental Figure 9. The K126 and D221 residues of CPK5 are critical for the interaction between CPK5-VK and TN2.

(Supports Figure 5)

Yeast two-hybrid assay. The coding sequences of CPK5-VK-K126M and CPK5-VK-D221A were fused to the AD. The coding sequences of TN2 were fused to BD. Different pairs of constructs were cotransformed into AH109. Yeast cells with the indicated plasmids were dropped onto SD-Leu-Trp or SD-Ade-His-Leu-Trp with or without X- α -Gal, respectively. Photographs were taken after 5 days of incubation.

Supplemental Figure 10. CPK5-VK interacts with the TN2-NBS domain, but not the TIR domain. (Supports Figure 5)

Yeast two-hybrid assay. Different truncated fragments of TN2 and CPK5-VK were fused to BD and AD, respectively. Different pairs of constructs were cotransformed into AH109. Yeast cells containing the indicated plasmids were spotted onto SD-Leu-Trp or SD-Ade-His-Leu-Trp with or without X- α -Gal, respectively. Photographs were taken after 5 days incubation.

Supplemental Figure 11. CPK4-VK and CPK6-VK do not interact with TN2.

(Supports Figure 5)

(A) Yeast two-hybrid assay. The coding sequences of CPK4-VK and CPK6-VK were fused to AD. The coding sequence of TN2 was fused to BD. Different pairs of constructs were cotransformed into AH109. A 10 μ L suspension (OD600 = 0.5) of each cotransformant was dropped onto Synthetic Dropout (SD) medium lacking Leu and Trp and SD medium lacking Ade, His, Leu, and Trp with or without X- α -Gal, respectively. Photographs were taken after 5 days of incubation.

(B) Firefly luciferase complementation imaging (LUC) assay. *N. benthamiana* leaves were co-infiltrated with agrobacterium strains containing different pairs of constructs. LUC images were captured using a cooled CCD imaging apparatus.

Supplemental Figure 12. CPK5-OE transgenic plants display cell death and resistance to G. cichoracearum.

(Supports Figure 6)

(A) Four-week-old plants were infected with *G. cichoracearum*. The leaves were detached and photographed at 8 dpi. Bar = 2.4 cm.

(B) The leaves were stained by trypan blue after infection with *G. cichoracearum* at 8 dpi. Bar = 50 μ m. (C) Quantification of fungal growth in plants at 5 dpi by counting the number of conidiophores per colony. Bars represent means and standard deviation ($n \ge 18$). Lower-case letters indicate statistically significant differences (P < 0.05, one-way ANOVA). The experiment was performed three times with similar results.

Supplemental Figure 13. *TN2* transcript accumulates in the *CPK5* overexpression line. (Supports Figure 6)

TN2 transcript levels were examined by RT-qPCR. Leaves were detached from five-week-old plants for RNA isolation. *ACT2* was used as an internal control. Bars represent mean and standard deviation of values obtained from three independent biological samples. Lower-case letters indicate statistically significant differences (P < 0.05, one-way ANOVA). The experiment was performed three times with similar results.

Supplemental Figure 14. CPK5 and CPK5-G2A accumulate after ectopic expression in *exo70B1-3* but not in *tn2-1*.

(Supports Figure 7)

(A) CPK5-StrepII was transiently expressed in mesoph yll protoplasts derived from six-week-old wild type, mutant lines *exo70B1-3* or *tn2-1*, or double mutant line *exo70B1-3 tn2-1*, and CPK5 protein levels were assessed by immunoblotting after treatment for 15 min with flg22 (+) or buffer (-). The experiment was performed several times with similar results.

(B) The CPK5-G2A-StrepII variant, which lacks plasma membrane localization, was transiently expressed in protoplasts and elicited as above, and proteins were analyzed for kinase activity via an in-gel kinase assay using MBP as substrate (autoradiography, lower panel) or visualized by immunoblot with Strep-Tactin HRP (upper panel). The experiment was performed two times with similar results.

Supplemental Table 1. Primers used in this study

Primer name: 5′-3′ sequence (enzyme)
cpk5-2-dCaps-F: TATTGCTAAGCGGAGTCCCACC (Xmnl cuts)
cpk5-2-dCaps-R: ACAGCATCAAATATCCCTTGAAGTGTT
CPK5-genomic-pEGAD-F: TGCAGAGCTCACCATGTGACTACGACAACTACT(Sacl)
CPK5-genomic-pEGAD-R: ATGTACCGGTTGCGCGTCTCTCATGCTAATGTTT(Agel)
CPK5-VKJC-AD-F: GTACCATATGATGGGCAATTCTTGCCGTGGAT(Ndel)
CPK5-VKJC-AD-R: AGTCGGATCCCTACGCGTCTCTCATGCTAATG(BamHI)
CPK5-VK-AD-F: GTACCATATGATGGGCAATTCTTGCCGTGGAT(Ndel)
CPK5-VK-AD-R: GCTAGGATCCCTAGATCCATGGATGACGCAAGAC (BamHI)
CPK5-JC-AD-F: GTACCATATGTGTGAGAATGGTGTTGCACCAG(Ndel)
CPK5-JC-AD-R: AGTCGGATCCCTACGCGTCTCTCATGCTAATG(BamHI)
CPK6-VK-AD-F: GTTCCATATGGGCAATTCATGTCGTGGTTCTTT (Ndel)
CPK6-VK-AD-R: TAATCCCGGGCTAGATCCATGGATGACGCAAGA (Xmal)
CPK4-VK-AD-F: GTAGCATATGATGGAGAAACCAAACCCTAGAAG (Ndel)
CPK4-VK-AD-R: ATTAGGATCCCTAAATCCAAGGGTGACACAATG (BamHI)
TN2-1-318-BD-F: GTCGCATATGTATTCATCATCGTCTTCTTC (Ndel)
TN2-1-318-BD-R: TATAGAATTCTCAAGAAGATTCAGTCCCGG (EcoRI)
TN2-1-160-BD-F: GTCGCATATGTATTCATCATCGTCTTCTTC (Ndel)
TN2-1-160-BD-R: TATACTGCAGTCAGCAATCACGAGAACAATG (PstI)
TN2-161-318-BD-F: GTCACATATGCTGAAGATGACTCGAAGCTA (Ndel)
TN2-161-318-BD-R: TATAGAATTCTCAAGAAGATTCAGTCCCGG (EcoRI)
TN2-1-219-BD-F: GTCGCATATGTATTCATCATCGTCTTCTTC (Ndel)
TN2-1-219-BD-R: TATAGAATTCTCACCAAATTCCAACCACTCTC (EcoRI)
TN2-220-318-BD-F: GTCGCATATGGCAAGAGGAGGTAATGGAAG (Ndel)
TN2-220-318-BD-R: TATAGAATTCTCAAGAAGATTCAGTCCCGG (EcoRI)
CPK5-VKJC-pSY738-F: GTACGTCGACATGGGCAATTCTTGCCGTGG(Sall)
CPK5-VKJC-pSY738-R: ATTGGCGGCCGCTTCGCGTCTCTCATGCTAAT(NotI)
CPK5-VK-pSY738-F: GTACGTCGACATGGGCAATTCTTGCCGTGG (Sall)
CPK5-VK-pSY738-R: GCTAGCGGCCGCTTGATCCATGGATGACGCAAG (Notl)
CPK5-VKJC-nLUC-F: GTACGGTACCATGGGCAATTCTTGCCGT(KpnI)
CPK5-VKJC-nLUC-R: ATTGGTCGACCGCGTCTCTCATGCTAAT(Sall)

CPK5-VK-nLUC-F: GTACGGTACCATGGGCAATTCTTGCCGT(Kpnl) CPK5-VK-nLUC-R: TATAGTCGACGATCCATGGATGACGCAAG (Sall) CPK6-VK-nLUC-F: GTACGGTACCATGGGCAATTCATGTCGTGGTTCT (Kpnl) CPK6-VK-nLUC-R: TAAAGTCGACGATCCATGGATGACGCAAGA (Sall) CPK4-VK-nLUC-F: GTACGGTACCATGGAGAAACCAAACCCTAG (Kpnl) CPK4-VK-nLUC-R: GATAGTCGACAATCCAAGGGTGACACAATG (Sall) TN2-cLUC-F: GTCGGGTACCTATTCATCATCGTCTTCTTCT (Kpnl) TN2-cLUC-R: TATACTGCAGTCAAGAAGATTCAGTCCCGG (Pstl) CPK5-genomic-G2A-F: TCCCATTGTTTCATGGCCAATTCTTGCCGTGGA CPK5-genomic-G2A-R: TCCACGGCAAGAATTGGCCATGAAACAATGGGA CPK5-genomic-K126M-F: GTTGACTACGCTTGTATGTCAATATCCAAGAGG CPK5-genomic-K126M-R: CCTCTTGGATATTGACATACAAGCGTAGTCAAC CPK5-VK-K126M-F: GTTGACTACGCTTGTATGTCAATATCCAAGAGG CPK5-VK-K126M-R: CCTCTTGGATATTGACATACAAGCGTAGTCAAC CPK5-VK-D221A-F: GGTGTGATGCATAGAGCCTTGAAGCCTGAGAAT CPK5-VK-D221A-R: ATTCTCAGGCTTCAAGGCTCTATGCATCACACC CPK5-genomic-attB-pDONR207-F: GGGGACAAGTTTGTACAAAAAGCAGGCTTCACCATGTGACTACGACAACTACT CPK5-genomic-attB-pDONR207-R: GGGGACCACTTTGTACAAGAAAGCTGGGTCCGCGTCTCTCATGCTAATGTTTAG CPK5-CDS-attB-pDONR207-F: GGGGACAAGTTTGTACAAAAAAGCAGGCTTCGAAGGAGATAGAACCATGGTCATGGGCAA TTCTTGCCGTGGAT YC-attB-pDONR207-R: GGGGACCACTTTGTACAAGAAAGCTGGGTCCTAGTACAGCTCGTCCATGCCGAGAG

Supplemental Table 2. ANOVA tables for statistical analyses.

For Figure 1 D

	Samples	Ν	а	lpha = 0.0	5
			1	2	3
	exo70b1-3	18	17.9444		
	Col-0	14		46.0000	
Duncan ^{a,b}	cpk5-2 exo70b1-3	14			70.2857
	Significance		1.000	1.000	1.000

For Figure 2 D

	Samples	Ν		alpha = 0	.05
			1	2	3
	exo70b1-3 cpk11	26	14.1538		
	exo70b1-3	30	15.1000		
	exo70b1-3 cpk6	30	15.6333		
	exo70b1-3 cpk4	28	15.7500		
	cpk6	37		33.6486	
Duncan ^{a,b}	cpk11	33		34.7273	
	cpk4	41		35.3415	
	Col-0	37		39.1351	
	cpk5-1	28			51.6786
	exo70b1-3 cpk5-1	29			56.2069
	Significance		.650	.112	.150

For Figure 3 A

	Samples	Ν		alpha = 0.0)5
			1	2	3
	Col-0	14	43.7857		
	cpk5-2	14		76.8571	
Duncan ^a	cpk5-1	14		82.1429	
	pad4	14			125.7143
	Significance		1.000	.363	1.000

For Figure 3 B

0 dpi	Samples	Ν	alpha = 0.05	3 dpi	Samples	Ν	alpha	= 0.05
			1				1	2
	pad4	3	3.3998		cpk5-2	3	5.7609	
	cpk5-1	3	3.4066		cpk5-1	3	6.2109	
Duncan ^a	cpk5-2	3	3.4424	Duncan ^a	Col-0	3	6.3532	
	Col-0	3	3.6213		pad4	3		7.6971
	Significance		.229		Significance		.079	1.000

Supplemental Table 2. ANOVA tables for statistical analyses. (Continued)

For Figure 3 C

For Figure 3 D

0 dpi	Samples	Ν	alpha	= 0.05	3 dpi	Samples	Ν	alpha	= 0.05
			1	2				1	2
	Col-0	3	2.9566			Col-0	3	5.7112	
	cpk5-1	3	3.1181	3.1181		cpk5-1	3	5.7511	
Duncan ^a	rps2	3	3.2671	3.2671	Duncan ^a	cpk5-2	3	5.9642	
	cpk5-2	3		3.3474		rps2	3		6.7020
	Significance		.080	.178		Significance		.168	1.000
<u></u>	-		-		-	-			
) api	Samples		V alpha	a = 0.05	3 dpi	Samples	N	alpha	= 0.05
рарі	Samples	٢	N alpha	a = 0.05 1	3 dpi	Samples	Ν	alpha 1	= 0.05 2
Јарі	Samples cpk5-1	٢	N alpha	a = 0.05 1 3.4945	3 dpi	Samples Col-0	N 3	alpha 1 5.1142	= 0.05 2
σρι	Samples cpk5-1 cpk5-2	٩	N alpha 3 3	a = 0.05 1 3.4945 3.5816	3 dpi	Samples Col-0 <i>cpk5-2</i>	N 3 3	alpha 1 5.1142 5.2038	= 0.05 2
Duncan ^a	Samples cpk5-1 cpk5-2 Col-0	٩	N alpha 3 3 3	a = 0.05 1 3.4945 3.5816 3.6565	3 dpi Duncan ^a	Samples Col-0 cpk5-2 cpk5-1	N 3 3 3	alpha 1 5.1142 5.2038 5.4460	= 0.05 2 5.4460
Duncan ^a	Samples cpk5-1 cpk5-2 Col-0 pad4	1	N <u>alpha</u> 3 3 3 3 3	a = 0.05 1 3.4945 3.5816 3.6565 3.6666	3 dpi Duncan ^a	Samples Col-0 cpk5-2 cpk5-1 pad4	N 3 3 3 3	alpha 1 5.1142 5.2038 5.4460	= 0.05 2 5.4460 6.1056

For Supplemental Figure 1 PR1

0 dpi	Samples	Ν	alpha	= 0.05	3 dpi	Samples	Ν	alpha	= 0.05	5 dpi	Samples	Ν	alpha	= 0.05
			1	2				1	2				1	2
	Col-0 cpk5-2	3	.0065870	000007		cpk5-2 exo70b1-3	3	.0998923			cpk5-2 exo70b1-3	3	.4858990	
Duncan ^a	exo70b1-3	3	.2868027	.2868027	Duncan ^a	Col-0	3	.2785110		Duncan ^a	Col-0	3	1.2701640	
	exo70b1-3	3		.8618200		exo70b1-3	3		6.6409353		exo70b1-3	3		7.0522263
	Significance		.415	.123		Significance		.616	1.000		Significance		.543	1.000

For Supplemental Figure 1 PR2

0 dpi	Samples	Ν	alpha :	= 0.05	3 dpi	Samples	Ν	alpha	= 0.05	5 dpi	Samples	Ν	alpha	= 0.05
			1	2				1	2				1	2
	Col-0	3	.0067653			cpk5-2	0	4405000			Col-0	3	1.4502477	
	cpk5-2	2	0101074			exo70b1-3	3	.4405329			cpk5-2	2	1 4903997	
Duncan ^a	exo70b1-3	3	.0101274		Duncan ^a	Col-0	3	.4809249		Duncan ^a	exo70b1-3	3	1.4003007	
	exo70b1-3	3		.1423141		exo70b1-3	3		2.0618184		exo70b1-3	3		2.9485384
	Significance		.692	1.000		Significance		.455	1.000		Significance		.549	1.000

For Supplemental Figure 1 SID2

0 dpi	Samples	Ν	alpha	= 0.05	
			1	2	
	Col-0	3	.0127833		
Duncan ^a	cpk5-2 exo70b1-3	3	.0200796		
	exo70b1-3	3		.0555138	
	Significance		.122	1.000	

3 dpi	Samples	Ν	alpha	= 0.05
			1	2
	cpk5-2 exo70b1-3	3	.0261251	
Duncan ^a	Col-0	3	.0269666	
	exo70b1-3	3		.1569492
	Significance		.981	1.000

5 dpi	Samples	Ν	alpha	= 0.05
			1	2
	cpk5-2 exo70b1-3	3	.0916237	
Duncan ^a	Col-0	3	.1348391	
	exo70b1-3	3		.3717127
	Significance		.254	1.000

Supplemental Table 2. ANOVA tables for statistical analyses. (Continued)

3 dpi

Duncan^a

For Supplemental Figure 1 PAD4

0 dpi	Samples	Ν	alpha	= 0.05
			1	2
	Col-0	3	.0011683	
Duncan ^a	cpk5-2 exo70b1-3	3	.0046389	
	exo70b1-3	3		.0552615
	Significance		.757	1.000

3 dpi	Samples	Ν	alpha = 0.05		
			1	2	
	Col-0	3	.0043106		
Duncan ^a	cpk5-2 exo70b1-3	3	.0068724		
	exo70b1-3	3		.0753591	
	Significance		.850	1.000	

5 dpi	Samples	Ν	alpha = 0.05		
			1	2	
	cpk5-2 exo70b1-3	3	.0116196		
Duncan ^a	Col-0	3	.0225771		
	exo70b1-3	3		.1090998	
	Significance		.486	1.000	

For Supplemental Figure 2

0 dpi	Samples	Ν	alpha = 0.05
			1
	Col-0	3	.05644650
	sid2	3	.06373000
Duncanª	cpk5-2 exo70b1-3	3	.06537550
	exo70b1-3	3	.08417600
	Significance		.074

3 dpi	Samples	Ν	alpha = 0.05				
			1	2	3		
	sid2	3	.04454650				
	Col-0	3		.31236950			
Duncan ^a	cpk5-2 exo70b1-3	3		.36756500			
	exo70b1-3	3			.89499900		
	Significance		1.000	.089	1.000		

Ν

3

3

3

Samples

exo70b1-3 cpk5-2

exo70b1-3

Significance

Col-0

alpha = 0.05

2

6.193469

6.273091

.469

1

5.556497

1.000

For Supplemental Figure 3

0 dpi	Samples	Ν	alpha = 0.05
			1
	exo70b1-3	3	3.090638
Duncan ^a	cpk5-2 exo70b1-3	3	3.151615
	Col-0	3	3.264296
	Significance		.397

For Supplemental Figure 5 D

Samples			alpha = 0.05			
			1	2	3	
	exo70b1-3	26	13.5385			
	Col-0	27		35.1852		
	cpk5-6 exo70b1-3	29		39.3103		
Duncan ^{a,b}	cpk5-5 exo70b1-3	27			64.6667	
	cpk5-3 exo70b1-3	32			67.7188	
	cpk5-4 exo70b1-3	32			70.5000	
	Significance		1.000	.253	.128	

For Supplemental Figure 5 E

0 dpi	Samples	Ν	alpha	= 0.05	5 dpi	Samples	Ν		alpha = 0.05	
			1	2				1	2	3
	Col-0	4	.00179348			cpk5-6 exo70b1-3	4	6.56568214		
	cpk5-5 exo70b1-3	4	.00330734			Col-0	4	8.42062563		
	cpk5-3 exo70b1-3	4	.00759653			cpk5-5 exo70b1-3	4	9.64448648	9.64448648	
Duncan ^{a,b}	cpk5-6 exo70b1-3	4	.01925924		Duncan ^{a,b}	cpk5-3 exo70b1-3	4	11.15078572	11.15078572	
	cpk5-4 exo70b1-3	4	.05559451			cpk5-4 exo70b1-3	4		16.48335879	
	exo70b1-3	3		3.43180783		exo70b1-3	3			35.20505582
	Significance		.970	1.000		Significance		.240	.078	1.000

Supplemental Table 2. ANOVA tables for statistical analyses. (Continued)

For Supplemental Figure 6 D

For Supplemental Figure 6 E

Samples		Ν	alpha = 0.05				
			1	2	3		
	exo70b1-3	26	13.5385				
D ab	ProCPK5:gCPK5 in cpk5-2 exo70b1-3	24	15.0833				
Duncan	Col-0	27		35.1852			
	cpk5-2 exo70b1-3	26			64.6538		
	Significance		.585	1.000	1.000		

Ν alpha = 0.05 Samples 1 2 cpk5-2 4 .03355315 exo70b1-3-105 ProCPK5:gCPK5 in 3 .15990554 Duncan^{a,b} cpk5-2 exo70b1-3 4 .19125525 Col-0 exo70b1-3 3 .21282497 Significance 1.000 .114

For Supplemental Figure 7 C

	Samples	Ν	alpha = 0.05				
			1	2	3	4	
	cpk5-2 pmr4-1	29	5.3793				
	pmr4-1	31	5.5806				
	cpk5-2 acd5	33		13.5455			
	edr2	33		15.3030			
Duncan ^{a,b}	acd5	36		16.3056			
	cpk5-2 edr2	38		19.6579			
	Col-0	29			46.4138		
	cpk5-2	29				57.8621	
	Significance		.947	.065	1.000	1.000	

For Supplemental Figure 12 C

Samples			alpha = 0.05		
			1	2	
	CPK5-OE-#7	23	20.8261		
	exo70B1-3	18	22.0000		
Duncan ^{a,b}	CPK5m-OE-#15	28		51.0714	
	Col-0	23		54.3913	
	Significance		.718	.308	

For Supplemental Figure 13

Samples			alpha	= 0.05
			1	2
	Col-0	4	.00009425	
	CPK5-OE-#15	4	.00459800	
Duncan ^a	CPK5m-OE-#7	4		.07316925
	exo70B1-3	4		.08081900
	Significance		.579	.351