Electronic Supplementary Information

An Aqueous Molecular Tube with Polyaromatic Frameworks Capable of Binding Fluorescent Dyes

Keita Hagiwara, Munetaka Akita, Michito Yoshizawa*

Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan

Fax: (+81)45-924-5230, E-mail: yoshizawa.m.ac@m.titech.ac.jp

Contents

- Materials and methods
- Synthetic routes of tubes 1' and 1"
- Synthesis of 3-bromo-5-methoxyphenylboronic acid pinacol ester
- Synthesis of anthracene dimer **3b**
- Synthesis of half-tube 2a (¹H and ¹³C NMR, ¹H-¹H COSY, HSQC, MALDI-TOF MS spectra)
- Synthesis of half-tube **2b** (¹H and ¹³C NMR, MALDI-TOF MS spectra)
- Synthesis of tube **1**" (¹H NMR and MALDI-TOF MS spectra)
- Synthesis of tube 1 (¹H and ¹³C NMR, HSQC, ESI-TOF MS, UV-vis, fluorescence spectra)
- Synthesis and properties of 1⊃(4a)₂ (¹H NMR, UV-vis, fluorescence, ESI-TOF MS spectra, and DLS, fluorescence lifetime, optimized structure)
- Synthesis and properties of 1⊃(4b)₂ (UV-vis, fluorescence, ESI-TOF MS spectra, and optimized structure)
- Synthesis and properties of 1⊃4c (UV-vis, fluorescence, ESI-TOF MS spectra, and optimized structure)
- Synthesis and properties of 1⊃4d (UV-vis, fluorescence, ESI-TOF MS spectra, and optimized structure)
- CIE diagram of tube **1** and host-guest complexes
- Competitive binding experiment of coumarin guests

Materials and methods

NMR: Bruker AVANCE-400 (400 MHz), GC MS: Shimadzu Parvum2/ULBON HR-1, MALDI-TOF MS: Shimadzu AXIMA-CFR Plus, ESI-TOF MS: Bruker micrOTOF II, FT IR: JASCO FT/IR-4200, UV-vis: JASCO V-670DS, Fluorescence: SHIMADZU RF-5300PC, Elemental analysis: LECO CHNS-932 VTF-900, Absolute PL quantum yield: Hamamatsu C9920-02G with an integration sphere, Fluorescence lifetime: Hamamatsu C11367-01, Recycled GPC: JAI LC-9225NEXT, DLS: Wyatt Technology DynaPro NanoStar, Force-field calculation: Materials Studio version 5.0 (Accelrys Software Inc., San Diego, CA).

Solvents and reagents: TCI Co., Ltd., WAKO Pure Chemical Industries Ltd., KANTO CHEMICAL CO., INC., Sigma-Aldrich Co., and Cambridge Isotope Laboratories, Inc. Anthracene dimers **3a** and **3b** were synthesized according to previously reported procedures (M. Yoshizawa *et al.*, *J. Am. Chem. Soc.*, **2011**, *133*, 11438–11441 and *Chem. Asian J.*, **2014**, *9*, 1016–1019).

Scheme S1. Previous synthetic route of tube 1'.

Scheme S2. New synthetic route of tube 1".

Synthesis of 3-bromo-5-methoxyphenylboronic acid pinacol ester KH-268, (283, 296)

1,3-Dibromo-5-methoxybenzene (2.010 g, 7.558 mmol) and dry THF (100 mL) were added to a 2-necked 200 mL glass flask filled with N₂. A hexane solution (2.69 M) of *n*-butyllithium (3.0 mL, 7.8 mmol) was then added dropwise to this flask at $-80 \text{ }^{\circ}\text{C}$ under N₂. After the mixture was stirred at $-80 \text{ }^{\circ}\text{C}$ for 1 h, a dry THF solution (5 mL) of B(OCH₃)₃ (1.0 mL, 9.0 mmol) was added to the solution. The resultant mixture was further stirred at $-80 \text{ }^{\circ}\text{C}$ for 1 h and then warmed to r.t. for 1 h. Pinacol (1.280 g, 1.083 mmol) and AcOH (1 mL) were added to the solution and the resultant solution was stirred at r.t. for 24 h. The products were extracted with CH₂Cl₂ and the combined organic phase was dried over MgSO₄, filtrated, and concentrated under reduced pressure. The crude product was purified by silica-gel column chromatography (hexane:ethyl acetate = 10:1) to afford 3-bromo-5-methoxyphenylboronic acid pinacol ester as a yellow solution (1.975 g, 6.310 mmol, 83%).

¹H NMR (400 MHz, CDCl₃, r.t.): δ 7.52 (d, J = 2.0 Hz, 1H), 7.24 (d, J = 2.0 Hz, 1H), 7.15 (dd, J = 2.0, 2.0 Hz, 1H), 3.81 (s, 3H), 1.34 (s, 12H). GC-MS: *m/z* Calcd. for C₁₃H₁₈BBrO₃ 312, Found 312 [M]⁺.

Synthesis of anthracene dimer 3b KH-287, (267, 283)

Anthracene dimer **3a** (7.762 g, 15.82 mmol) and THF (100 mL) were added to a 200 mL glass flask. 1,3-Diiodo-5,5-dimethylhydantoin (DIH; 8.036 g, 20.43 mmol) was added to the solution at 0 °C and then concentrated H_2SO_4 (0.5 mL) was added to the solution. The resultant mixture was stirred at r.t. for 1 d. A precipitated crude product was washed with CH₃OH, H₂O, and hexane to afford **3b** as a yellow solid (7.679 g, 10.34 mmol; 65%).

¹H NMR (400 MHz, CDCl₃, r.t.): δ 8.54 (d, J = 8.8 Hz, 4H), 7.86 (d, J = 8.8 Hz, 4H), 7.57-7.52 (m, 4H), 7.46-7.43 (m, 4H), 7.15 (s, 1H), 6.97 (s, 1H), 3.78 (s, 6H). ¹³C NMR (100 MHz, CDCl₃, r.t.): δ 159.1 (C_q), 136.5 (CH), 135.5 (C_q), 134.0 (CH), 133.8 (C_q), 131.7 (C_q), 127.6 (CH), 127.5 (CH), 125.8 (CH), 119.2 (C_q), 105.9 (C_q), 96.3 (CH), 56.2 (CH₃). FT-IR (KBr, cm⁻¹): 3440, 3068, 2942, 2836, 1606, 1506, 1450, 1330, 1261, 1201, 1157, 1029, 866, 752. MALDI-TOF MS (dithranol): *m*/*z* Calcd. for C₃₆H₂₄I₂O₂ [M]⁺ 741.99, Found 741.80.

Figure S2. ¹³C NMR spectrum (100 MHz, CDCl₃, r.t.) of **3b**.

Anthracene dimer **3b** (1.952 g, 2.629 mmol), 3-bromo-5-methoxyphenylboronic acid pinacol ester (1.975 g, 6.310 mmol), Pd(PPh₃)₄ (0.154 g, 0.133 mmol), and toluene (150 mL) were added to a 2-necked 100 mL glass flask filled with N₂. A degassed aqueous solution (25 mL) of Na₂CO₃ (3.824 g, 36.07 mmol) was added to this flask and the resultant mixture was stirred at 100 °C for 48 h. The mixture was concentrated under reduce pressure and the crude product was extracted with CHCl₃. The obtained crude product was purified by silica-gel column chromatography (hexane:ethyl acetate = 10:1) and GPC (CHCl₃) to afford half-tube **2a** as a yellow solid (1.233 g, 1.432 mmol; 54%). ¹H NMR (400 MHz, CDCl₃, r.t.): δ 7.97 (d, J = 8.8 Hz, 4H), 7.68 (d, J = 8.8 Hz, 4H), 7.43 (dd, J = 8.8, 7.6 Hz, 4H), 7.36 (dd, J = 8.8, 7.6 Hz, 4H), 7.29 (s, 1H), 7.26 (s, 1H, overlapped by CHCl₃), 7.24 (s, 2H), 7.16 (s, 1H), 7.03-7.02 (m, 2H), 6.89 (s, 1H), 3.86 (s, 3H), 3.85 (s, 3H), 3.84 (s, 3H), 3.81 (s, 3H). ¹³C NMR (100 MHz, CDCl₃, r.t.): δ 160.4 (C_a), 159.1 (C_a), 142.4 (C_a), 137.1 (CH), 135.2 (C_a), 134.1 (C_a), 130.5 (C_a), 129.9 (C_a), 127.1 (CH), 126.9 (CH), 126.8 (CH), 125.4 (CH), 125.2 (CH), 123.0 (C_a), 119.5 (C_a), 116.7 (CH), 116.1 (CH), 96.3 (CH), 56.2 (CH₃), 55.8 (CH₃). FT-IR (KBr, cm⁻¹): 3068, 3007, 2941, 2837, 1597, 1454, 1371, 1259, 1201, 1041, 847, 766. MALDI-TOF MS (dithranol): m/z Calcd. for $C_{50}H_{36}Br_2O_4$ [M]⁺ 860.10, Found 859.88. E.A.: Calcd. for C₅₀H₃₆Br₂O₄•0.5CH₂Cl₂: C, 67.16; H, 4.13. Found: C, 67.27; H, 4.00.

Figure S4. ¹³C NMR spectrum (100 MHz, CDCl₃, r.t.) of 2a.

Figure S5. ¹H-¹H COSY spectrum (400 MHz, CDCl₃, r.t.) of **2a** (aromatic region).

Figure S6. HSQC spectrum (400 MHz, CDCl₃, r.t.) of 2a (aromatic region).

Figure S7. MALDI-TOF MS spectrum (dithranol) of 2a.

Synthesis of half-tube 2b

KH-279, (286, 298)

Dry CH_2Cl_2 (50 mL) and half-tube **2a** (0.500 g, 0.581 mmol) were added to a 2-necked 200 mL glass flask filled with N₂. A CH_2Cl_2 solution (1.0 M) of BBr₃(5.4 mL, 5.4 mmol) was slowly added to the solution at 0 °C and then the combined solution was stirred at 40 °C for 12 h. The reaction was quenched with H₂O. The two layers were separated and the aqueous layer was extracted with CH_2Cl_2 . The combined organic layers were dried over MgSO₄, filtrated, and concentrated under reduced pressure. The resultant solid was washed with H₂O and hexane to afford a yellow solid. The resulted solid, Cs_2CO_3 (1.21 g, 3.73 mmol), and dry CH_3CN (30 mL) were added to a 2-necked 300 mL glass flask filled with N₂. After the mixture was stirred at r.t. for 30 min,

chloromethyl methyl ether (0.45 g, 5.7 mmol) was added to the solution. The resultant solution was stirred at r.t. for 16 h. The reaction was quenched with H_2O . The crude product was extracted with CH_2Cl_2 and the combined organic phase was dried over MgSO₄, filtrated, and concentrated under reduce pressure. The crude product was purified by silica-gel column chromatography (hexane:ethyl acetate = 10:1) to give **2b** as a yellow solid (0.400 g, 0.408 mmol, 70%).

¹H NMR (400 MHz, CDCl₃, r.t.): δ 8.00 (d, J = 8.4 Hz, 4H), 7.69 (d, J = 8.4 Hz, 4H), 7.47-7.35 (m, 12H), 7.29 (s, 1H), 7.22 (s, 1H), 7.15 (s, 1H), 7.02 (s, 1H), 5.24 (s, 2H), 5.19 (s, 2H), 5.11 (s, 4H), 3.53 (s, 3H), 3.49 (s, 3H), 3.22 (s, 3H), 3.20 (s, 3H). ¹³C NMR (100 MHz, CDCl₃, r.t.): δ 158.2 (C_q), 156.6 (C_q), 142.4 (C_q), 137.0 (CH), 135.1 (C_q), 134.1 (C_q), 130.5 (C_q), 129.9 (C_q), 128.1 (CH), 127.2 (CH), 126.8 (CH), 125.5 (CH), 125.3 (CH), 122.9 (C_q), 122.2 (C_q), 118.9 (CH), 118.8 (CH), 118.5 (CH), 103.4 (CH), 95.0 (CH₂), 56.4 (CH₃). FT-IR (KBr, cm⁻¹): 3438, 3068, 2949, 2916, 2839, 1597, 1566, 1371, 1248, 1151, 1072, 1018, 920, 766. MALDI-TOF MS (dithranol): *m/z* Calcd. for C₅₄H₄₄Br₂O₈ [M]⁺ 980.14, Found 979.93. E.A.: Calcd. for C₅₄H₄₄Br₂O₈: C, 66.13; H, 4.52. Found: C, 66.13; H, 4.25.

Figure S8. ¹H NMR spectrum (400 MHz, CDCl₃, r.t.) of **2b**.

KH286 Data: kh286-1-dith-0001.F11[c] 9 Jul 2013 20:12 Cal: akita-yoshizawa-ref 9 Jul 2013 20:07 Shimadzu Biotech Axima CFRplus 2.9.3.20110624: Mode Reflectron, Power: 80, P.Ext. @ 978 (bin 78)

Figure S10. MALDI-TOF MS spectrum (dithranol) of 2b.

Synthesis of tube 1"

Half-tube **2b** (0.150 g, 0.153 mmol), Ni(cod)₂ (0.098 g, 0.36 mmol), 2,2'-bipyridyl (0.064 g, 0.41 mmol), and dry DMF (50 mL) were added to a 2-necked 100 mL glass flask filled with N₂ and the resultant mixture was stirred at 90 °C for 24 h. The reaction was quenched with H₂O. The two layers were separated and the aqueous layer was extracted with CH₂Cl₂. The combined organic layers were concentrated under reduced pressure and washed with H₂O, CH₃OH, and acetone. The crude product was purified by silica-gel column chromatography (hexane:CHCl₃ = 10:1) to give **1**" as a yellow solid (0.037 g, 0.023 mmol, 30%).

¹H NMR (400 MHz, CDCl₃, r.t.): δ 7.82 (d, *J* = 8.4 Hz, 8H), 7.65 (m, 4H), 7.61 (d, *J* = 8.4 Hz, 4H), 7.40 (s, 2H), 7.27-7.18 (m, 24H), 7.03 (s, 2H), 5.34 (s, 8H), 5.04 (s, 8H), 3.60 (s, 12H), 3.19 (s, 12H). FT-IR (KBr, cm⁻¹): 3460, 3063, 2952, 2925, 2851, 2827, 1587, 1379, 1150, 1082, 1000, 923, 768. MALDI-TOF MS (dithranol): *m/z* Calcd. for C₁₀₈H₈₈O₁₆ [M]⁺ 1641.61, Found 1641.44. HR MS (ESI): *m/z* Calcd. for C₁₀₈H₈₈O₁₆ [M]⁺ 1641.6106, Found 1641.6082.

Figure S11. ¹H NMR spectrum (400 MHz, CDCl₃, r.t.) of 1".

KH304-3 Data: KH304-2-dith-1-10-0001.P1[c] 13 Jun 2013 18:43 Cal: akita-yoshizawa-ref 13 Jun 2013 18:40 Shimadzu Biotech Axima CFRplus 2.9.3.20110624: Mode Reflectron, Power: 70, P.Ext. @ 1641 (bin 101)

Figure S12. MALDI-TOF MS spectrum (dithranol) of 1".

Tube **1**" (74.3 mg, 0.0452 mmol), THF (40 mL), and methanol (10 mL) were added to a 100 mL glass flask. Concentrated hydrochloric acid (50 mL) was added to this flask and stirred at 50 °C for 24 h. The mixture was concentrated under reduce pressure. The crude product was washed with H₂O and CHCl₃, and purified by silica-gel column chromatography (hexane:acetone = 1:1) to give a deprotected tube as a white solid. NaH (60% in oil; 44.5 mg, 1.11 mmol) was added to a 100 mL glass flask and washed with hexane under N₂. The resultant deprotected tube and dry THF (20 mL) were added to this flask and stirred at r.t. for 1 h. 1,3-Propanesultone (0.135 g, 1.11 mmol) was added dropwise to this flask. The resultant mixture was stirred overnight at 80 °C. The mixture was concentrated under reduce pressure and the crude product was washed with ether, acetone, and 1-propanol to afford **1** as a yellow solid (54.9 mg, 0.0225 mmol, 50%).

¹H NMR (400 MHz, CD₃OD, r.t.): δ 7.79 (d, *J* = 8.4 Hz, 8H), 7.65 (s, 4H), 7.62 (d, *J* = 8.4 Hz, 4H), 7.31-7.22 (m, 18H), 7.12 (s, 4H), 7.09 (m, 4H), 6.83 (s, 2H), 4.33 (t, *J* = 6.0 Hz, 8H), 4.23 (t, *J* = 6.0 Hz, 8H), 3.12 (t, *J* = 7.6 Hz, 8H), 2.47 (t, *J* = 7.6 Hz, 8H), 2.37 (q, *J* = 7.2 Hz, 8H), 1.95 (q, *J* = 7.2 Hz, 8H). ¹³C NMR (100 MHz, CD₃OD, r.t.): δ 161.2 (C_q), 159.4 (C_q), 142.7 (C_q), 142.5 (C_q), 137.9 (CH), 137.5 (C_q), 134.9 (C_q), 131.5 (C_q), 131.0 (C_q), 127.9 (CH), 127.8 (CH), 126.1 (CH), 125.9 (CH), 123.0 (CH), 121.1 (C_q), 118.1 (CH), 113.4 (CH), 99.9 (CH), 68.6 (CH₂), 68.2 (CH₂), 49.4-48.6 (overlapped with MeOH), 26.5 (CH₂), 26.1 (CH₂). FT-IR (KBr, cm⁻¹): 3451, 1504, 1440, 1380, 1311, 1190, 1101, 1046, 801, 770, 606, 528. ESI-TOF MS (CH₃OH): *m*/z 383.8 [**1** – 6Na⁺]⁶⁻, 465.2 [**1** – 5Na⁺]⁵⁻, 587.2 [**1** – 4Na⁺]⁴⁻, 791.0 [**1** – 3Na⁺]³⁻.

Figure S16. HSQC spectrum (400 MHz, CD₃OD, r.t.) of 1 (aromatic region).

Figure S18. (a) UV-vis (10 μ M, r.t.) and (b) fluorescence spectra ($\lambda_{ex} = 377$ nm, 10 μ M, r.t.) of **1**" in CH₂Cl₂ and **1** in H₂O and CH₃OH.

Synthesis and properties of 1⊃(4a)₂ KH-347

Coumarin 337 (4a; 0.05 mg, 0.2 μ mol) was added to an H₂O solution (0.5 mL) of tube 1 (0.25 mg, 0.10 μ mol) in a glass test tube. The solution was stirred at r.t. for 1 h. After filtration, the quantitative formation of a 1 \supset (4a)₂ complex was confirmed by UV-vis, fluorescence, DLS, and MS analyses.

ESI-TOF MS (H₂O): m/z 348.8 $[1 \supset (4a)_2 - 8Na^+]^{8-}$, 401.9 $[1 \supset (4a)_2 - 7Na^+]^{7-}$, 472.7 $[1 \supset (4a)_2 - 6Na^+]^{6-}$, 571.7 $[1 \supset (4a)_2 - 5Na^+]^{5-}$, 720.6 $[1 \supset (4a)_2 - 4Na^+]^{4-}$.

TDCMAS ESI-TOF

Figure S19. ESI-TOF MS spectrum (H₂O) of 1⊃(4a)₂.

Figure S20. ¹H NMR spectra (400 MHz, r.t.) of tube 1 in (a) CD₃OD, (b) D₂O and (c) D₂O (at 80 °C), and (d) $1\supset$ (4a)₂ in D₂O.

Figure S21. Particle size distribution (H₂O, r.t.) of (a) 1 and (b) $1 \supseteq (4a)_2$ by DLS analysis.

Figure S22. (a) Titration UV-vis spectra (0.2 mM, H₂O, r.t.) and (b) the plot ($\lambda_{abs} = 446$ nm) of 1 by the addition of 4a ([4a]/[1] = 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0).

Figure S23. (a) Titration fluorescence spectra ($\lambda_{ex} = 378 \text{ nm}$, 0.2 mM, H₂O, r.t.) of **1** by the addition of **4a** ([**4a**]/[**1**] = 0.5, 1.0, 1.5, 2.0), and (b) fluorescence spectra (0.2 mM, H₂O, r.t.) of **1** \supset (**4a**)₂ upon irradiation at $\lambda_{ex} = 378$, 446, and 480 nm, and (c) fluorescence spectra (0.2 mM, H₂O, r.t.) of **1** and **1** \supset (**4a**)₂ for the estimation of the FRET efficiency ($E_{FRET} = 1 - I/I_0$).

Figure S24. (a) UV-vis spectra (r.t.) and (b) fluorescence spectra ($\lambda_{ex} = 378 \text{ nm r.t.}$) of $1 \supseteq (4a)_2$ in H₂O (0.2 mM), 1 + 4a in CH₃OH (0.2 mM), and 4a in CH₃OH (0.4 mM).

Figure S25. Fluorescent lifetime ($\lambda_{ex} = 365 \text{ nm}$, 10 μ M, H₂O, r.t.) of (a) 1 ($\lambda_{em} = 440 \text{ nm}$) and (b) 1 \supset (4a)₂ ($\lambda_{em} = 600 \text{ nm}$).

Table S1. Fluorescent lifetime of **1** and $1 \supset (4a)_2$.

	$ au_1$ [ns]	$ au_2$ [ns]	$ au_3$ [ns]	A_1	A_2	A_3	<\(\tau>^a[ns])
1	0.443	33.9		618	329		12.1
1⊃(4a) ₂	0.288	2.61	32.4	267	82.7	357	16.7

^{a)} $< \tau > = (A_1\tau_1 + A_2\tau_2 + A_3\tau_3)/(A_1 + A_2 + A_3)$

Figure S26. Optimized structure of a $1 \supseteq (4a)_2$ complex.

Synthesis and properties of 1⊃(4b)₂ KH-347

Coumarin 334 (**4b**; 0.06 mg, 0.2 μ mol) was added to an H₂O solution (0.5 mL) of tube **1** (0.25 mg, 0.10 μ mol) in a glass test tube. The solution was stirred at r.t. for 1 h. After filtration, the quantitative formation of a **1** \supset (**4b**)₂ complex was confirmed by UV-vis, fluorescence, and ESI-TOF MS analyses.

ESI-TOF MS (H₂O): m/z 406.9 $[1 \supset (4b)_2 - 7Na^+]^{7-}$, 478.4 $[1 \supset (4b)_2 - 6Na^+]^{6-}$, 578.7 $[1 \supset (4b)_2 - 5Na^+]^{5-}$, 792.1 $[1 \supset (4b)_2 - 4Na^+]^{4-}$, 979.8 $[1 \supset (4b)_2 - 3Na^+]^{3-}$.

Figure S27. ESI-TOF MS spectrum (H₂O) of 1⊃(4b)₂.

Figure S28. (a) Titration UV-vis spectra (0.2 mM, H₂O, r.t.) and (b) the plot ($\lambda_{abs} = 455$ nm) of **1** by the addition of **4b** ([**4b**]/[**1**] = 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0).

Figure S29. (a) Titration fluorescence spectra ($\lambda_{ex} = 378 \text{ nm}$, 0.2 mM, H₂O, r.t.) of 1 by the addition of 4b ([4b]/[1] = 0.5, 1.0, 1.5, 2.0), and (b) fluorescence spectra (0.2 mM, H₂O, r.t.) of 1 and 1 \supset (4b)₂ for the estimation of the FRET efficiency ($E_{FRET} = 1 - I/I_0$).

Figure S30. Optimized structure of a $1 \supseteq (4b)_2$ complex.

Synthesis and properties of 1⊃4c KH-348

Coumarin 153 (4c; 0.06 mg, 0.2 μ mol) was added to an H₂O solution (0.5 mL) of tube 1 (0.25 mg, 0.10 μ mol) in a glass test tube. The solution was stirred at r.t. for 1 h. After filtration, the formation of a 1 \supset 4c complex (40%) was confirmed by UV-vis, fluorescence, and ESI-TOF MS analyses.

ESI-TOF MS (H₂O): m/z 320.9 $[1 \supset 4\mathbf{c} - 8Na^+]^{8-}$, 370.1 $[1 \supset 4\mathbf{c} - 7Na^+]^{7-}$, 435.6 $[1 \supset 4\mathbf{c} - 6Na^+]^{6-}$, 527.3 $[1 \supset 4\mathbf{c} - 5Na^+]^{5-}$, 664.6 $[1 \supset 4\mathbf{c} - 4Na^+]^{4-}$.

Figure S31. ESI-TOF MS spectrum (H₂O) of $1 \supset 4c$.

Figure S32. (a) Titration UV-vis spectra (0.2 mM, H₂O, r.t.) and (b) the plot ($\lambda_{abs} = 437$ nm) of **1** by the addition of **4c** ([**4c**]/[**1**] = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0).

Figure S33. Titration fluorescence spectra ($\lambda_{ex} = 378$ nm, 0.2 mM, H₂O, r.t.) of 1 by the addition of 4c ([4c]/[1] = 0.1, 0.2, 0.3, 0.4, 0.5).

Figure S34. Optimized structure of 1⊃4c complex.

Coumarin 334 (4d; 0.07 mg, 0.2 μ mol) was added to an H₂O solution (0.5 mL) of tube 1 (0.25 mg, 0.10 μ mol) in a glass test tube. The solution was stirred at r.t. for 1 h. After filtration, the formation of a 1⊃4d complex (30%) was confirmed by UV-vis, fluorescence, and ESI-TOF MS analyses.

ESI-TOF MS (H₂O): m/z 375.5 $[1 \supset 4d - 7Na^+]^{7-}$, 441.9 $[1 \supset 4d - 6Na^+]^{6-}$, 534.7 $[1 \supset 4d - 5Na^+]^{5-}$, 674.3 $[1 \supset 4d - 4Na^+]^{4-}$.

Figure S35. ESI-TOF MS spectrum (H₂O) of 1⊃4d.

Figure S36. (a) Titration UV-vis spectra (0.2 mM, H₂O, r.t.) and (b) the plot ($\lambda_{abs} = 430$ nm) of **1** by the addition of **4d** ([**4d**]/[**1**] = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0).

Figure S37. Titration fluorescence spectra ($\lambda_{ex} = 378$ nm, 0.2 mM, H₂O, r.t.) of 1 by the addition of 4d ([4d]/[1] = 0.1, 0.2, 0.3, 0.4, 0.5).

Figure S38. Optimized structure of a 1⊃4d complex.

Figure S39. CIE chromaticity diagram ($\lambda_{ex} = 378 \text{ nm}$, 0.2 mM, H₂O, r.t.) of 1, 4a-d, 1 \supset (4a)₂, 1 \supset (4b)₂, 1 \supset 4c, and 1 \supset 4d.

Coumarin dyes **4a** and **4b** (1.0 μ mol each) were added to an H₂O solution (0.5 mL) of tube **1b** (0.025 mg, 0.10 μ mol) in a glass test tube. The solution was stirred at r.t. for 3 h. After filtration, the formation of host-guest complexes was confirmed by UV-vis analysis. Similarly, competitive binding experiments of coumarin guests, **4a** vs. **4c**, **4a** vs. **4d**, **4b** vs. **4d** were examined.

Figure S40. Fluorescent spectra ($\lambda_{ex} = 378$ nm, 0.2 mM, H₂O, r.t.) of competitive binding experiments after mixing (a) 1+4a+4b, (b) 1+4a+4c, (c) 1+4a+4d, (d) 1+4b+4c, (e) 1+4b+4d, and (f) 1+4c+4d in H₂O for 3 h at r.t.