Supplementary Figures:

Structural characterization of interactions between transactivation domain 1 of the p65 subunit of NF-κB and transcription regulatory factors.

Lauriane Lecoq¹, Luca Raiola¹, Philippe R. Chabot¹, Normand Cyr¹, Geneviève Arseneault¹, Pascale Legault¹ and James G. Omichinski¹

¹ Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, H3C 3J7, Canada

А											
	Q04206	Human		PGLPN	JGLLSO	GDEDFSS	IADMD	FSA	LLSQ	ISS-	551
	Q04207	Mouse		SGLPN	NGLSO	GDEDFSS	IADMD	FSA	LLSQ	ISS-	549
	P98152	Gallu	S	PLHPI	GAPPQP	TEDSLPS	LGDLD	FSA	FLSQI	FPSS	558
	A1XG22	Bovin		PGLTN	NGLLSO	GDEDFSS	IADVD	FSA	LLSQ	ISS-	551
	G2HHW9	Chimpa	anzee	PGLPN	NGLLSO	GDEDFSS	IADMD	FSA	LLSQ	ISS-	551
	B0LXP3	Pig		SGLTN	NGLLSO	GDEDFSS	IADMD	FSA	LLSQ	ISS-	553
					*	::.: *	:.*:*	***	***	*	
В											
								ΦXX	ΦΦ		
	Q9H3D4	p53	Human	TAD2		DDLM	LSPDD	IEQ	WFTE	(41-	-56)
	P06492	VP16	Human	TADC		GALD	MADFE	FEQ <mark>I</mark>	MF <mark>TD</mark>	(466	5-481)
	P04637	EBNA2	Human	TAD		IDPA	DLDES	WDY.	IF <mark>ET</mark>	(449	9-464)
	Q04206	p65	Human	TA1		DFSS	IADMD	FSA	LLSQ	(533	3-548)

Supplementary Figure 1. Conservation of the $\Phi XX\Phi\Phi$ motif among species and transactivation domains. (A) Alignment of p65_{TA1} sequences from six different species. Grey color together with the stars indicates full sequence conservation, while the dots indicate moderate sequence conservation. UniProt numbers are indicated on the left. (B) Sequence alignment of the acidic transactivation domains of p53, VP16, EBNA2 and p65_{TA1}. The alignment is based on the $\Phi XX\Phi\Phi$ motif indicated at the top. Φ hydrophobic residues are highlighted in orange.

Supplementary Figure 2. ¹H-¹⁵N chemical shift perturbations (CSP) induced by the binding of p65_{TA1} to Tfb1_{PH} (A) and CBP_{KIX} (B). In both cases, 3 equivalents of p65_{TA1} were added to 700 µM of Tfb1_{PH}/CBP_{KIX} in 20 mM NaPO₄ buffer at pH 6.5 in 10% D₂O / 90% H₂O. ¹H and ¹⁵N chemical shift changed were monitored in 2D ¹H-¹⁵N HSQC spectra at 25 °C. ¹H-¹⁵N CSPs were calculated as: $\Delta \delta = \sqrt{(\Delta \delta_H)^2 + (0.17 \Delta \delta_N)^2}$ where $\Delta \delta_H$ and $\Delta \delta_N$ represent the respective variation of ¹H and ¹⁵N chemical shifts after the addition of p65_{TA1}. Missing data correspond to proline residues which don't provide signal in the ¹H-¹⁵N HSQC spectrum, as well as H3 and A53 in Tfb1_{PH} and G586, V587 and K667 in CBP_{KIX}. CSPs are considered as significant when their value is above the dotted lines, *i.e.* 0.05 ppm for Tfb1_{PH}-p65_{TA1} complex and 0.1 ppm for CBP_{KIX}-p65_{TA1} complex.

Supplementary Figure 3. Electrostatic interactions in Tfb1_{PH}-p65_{TA1} and CBP_{KIX}-p65_{TA1} complexes. (A) Close-up view of potential electrostatic interactions between D539 of p65_{TA1} and either R61 or R86 of Tfb1_{PH}, as well as between D541 of p65_{TA1} and K57 of Tfb1_{PH}. (B) Electrostatic surface potential of Tfb1_{PH} in the Tfb1_{PH}-p65_{TA1} complex, where p65_{TA1} is represented as cartoon for clarity. This electrostatic surface potential shows that the cleft where F542 of p65_{TA1} anchors is highly positive on Tfb1_{PH}. The color scale is set from -10 kT/e (red) to 10 kT/e (blue), and electrostatic potentials were calculated with the default parameters on <u>http://www.charmm-gui.org/</u>, using the Poisson-Boltzmann equation. (C) Electrostatic surface potential of p65_{TA1} in the Tfb1_{PH}, is represented as a neutral surface for clarity. (D) Electrostatic surface potential of CBP_{KIX} in the CBP_{KIX}-p65_{TA1} complex, where p65_{TA1} is represented as cartoon, showing that p65_{TA1} is surrounded by both negatively and positively charged regions. (E) Electrostatic surface

Supplementary Figure 4. Overlay of the 2D ${}^{1}\text{H}{-}^{15}\text{N}{-}\text{HSQC}$ NMR spectra of ${}^{13}\text{C}{-}^{15}\text{N}{-}$ p65_{TA1} either in the absence (black) or in the presence (red) of 2 equivalents of (**A**) Tfb1_{PH} and (**B**) CBP_{KIX}. Residues with significant chemical shift perturbation upon binding are labeled and the shift is indicated by arrow.