Supplementary Table S1. oligos used in this work

oligos	sequence		
target-DNMT1-3-F	aatgtttcctgatggtccatgtctgttactcgcctgtcaagtggcgtgac		
target-DNMT1-3-R	gtcacgccacttgacaggcgagtaacagacatggaccatcaggaaacatt		
target-DNMT1-3-F-FAM	FAM-aatgtttcctgatggtccatgtctgttactcgcctgtcaagtggcgtgac		
target-DNMT1-3-F-FAM-3'	aatgtttcctgatggtccatgtctgttactcgcctgtcaagtggcgtgac-FAM		
target-DNMT1-3-R-FAM	gtcacgccacttgacaggcgagtaacagacatggaccatcaggaaacatt-FAM		
target-DNMT1-3-R-FAM-5'	FAM-gtcacgccacttgacaggcgagtaacagacatggaccatcaggaaacatt		
DNMT1-795-F	aatgcccaggttgtcctccatctgag		
DNMT1-795-R	catgttggggattcctggtgccagaa		
pSB1A2-DNMT1-795-F	caccaggaatccccaacatgggatccactagtctctagctcgag		
pSB1A2-DNMT1-795-R	tggaggacaacctgggcattggatcctttctcctctttctag		
T7-crRNA-F	GAAATTAATACGACTCACTATAGGG		
T7-T1-14-R	gaaagttgcgataaATCTACAACAGTAGAAATTCCCTATAGTGAGTCGTATT		
	AATTTC		
T7-T1-15-R	agaaagttgcgataaATCTACAACAGTAGAAATTCCCTATAGTGAGTCGTAT		
	TAATTTC		

T7-T1-16-R	tagaaagttgcgataaATCTACAACAGTAGAAATTCCCTATAGTGAGTCGTAT
	ТААТТТС
T7-T1-17-R	gtagaaagttgcgataaATCTACAACAGTAGAAATTCCCTATAGTGAGTCGTA
	TTAATTTC
T7-T1-18-R	agtagaaagttgcgataaATCTACAACAGTAGAAATTCCCTATAGTGAGTCGT
	ATTAATTTC
T7-T1-19-R	cagtagaaagttgcgataaATCTACAACAGTAGAAATTCCCTATAGTGAGTCG
	ΤΑΤΤΑΑΤΤΤΟ
T7-T1-20-R	tcagtagaaagttgcgataaATCTACAACAGTAGAAATTCCCTATAGTGAGTCG
	TATTAATTTC
T7-T1-21-R	ttcagtagaaagttgcgataaATCTACAACAGTAGAAATTCCCTATAGTGAGTC
	GTATTAATTTC
T7-T1-22-R	attcagtagaaagttgcgataaATCTACAACAGTAGAAATTCCCTATAGTGAGTC
	GTATTAATTTC
T7-T1-23-R	aattcagtagaaagttgcgataaATCTACAACAGTAGAAATTCCCTATAGTGAGT
	CGTATTAATTTC
T7-T1-24-R	gaattcagtagaaagttgcgataaATCTACAACAGTAGAAATTCCCTATAGTGAG
	TCGTATTAATTTC
T7-T1-30-R	aagcttgaattcagtagaaagttgcgataaATCTACAACAGTAGAAATTCCCTATAG

TGAGTCGTATTAATTTC

T7-DNMT1-3-R	GAGTAACAGACATGGACCATCAGATCTACAACAGTAGAAATTCCCTA		
	TAGTGAGTCGTATTAATTTC		
T7-DNMT1-3-crRNA-R-18	acagacatggaccatcagATCTACAACAGTAGAAATTCCCTATAGTGAGTCG		
	TATTAATTTC		
act-crRNA1	cagctcgctgcactgatatctacaacagtagaaattccctatagtgagtcgtattaatttc		
act-crRNA2	acacgtcccaataagttatctacaacagtagaaattccctatagtgagtcgtattaatttc		
Ermp-F1	cagtgcagctcgctgcactgattaaagcccgacccgagcacgcgc		
Ermp-R1	catggacacgtcccaataagttgaatctcaccgctggatcctaccaaccggc		
actll-orf4ck-F	ttccgaggacccagccgtatc		
actII-orf4ck-R	accaattcccggtcgtcgctc		
orf4-RTF	aaggcgacccagctcctggtg		
orf4-RTR	tggtccgcccacaactcctcg		
actl-RTF	cagttcgccgtggcctgtgc		
actl-RTR	atactcgcgctccaggctgg		
actIII-RTF	tgcaccacaccctgctttccg		
actIII-RTR	acgaactctggctcgatgtcg		

The overhang sequences in target DNA primers were underlined.

Strains/Plasmids	Description	Reference /source
Strains		
E. coli DH10B	F^- endA1 deoR ⁺ recA1 galE15 galK16 nupG rpsL $\Delta(lac)X74 \phi 80 lacZ$	Invitrogen
	$\Delta M15 araD139 \Delta(ara, leu) 7697 mcrA \Delta(mrr-hsdRMS-mcrBC) Str^R \lambda^-$	
E. coli BL21(DE3)	F– ompT gal dcm lon hsdSB(rB- mB-) λ (DE3 [lacI lacUV5-T7 gene 1	Invitrogen
	ind1 sam7 nin5])	
<i>E. coli</i> ET12567	dam, dcm, hsdM, hsdS, hsdR, cat, tet, for intergeneric conjugation	Our lab
Streptomyces sp. 4F	A thermo-streptomyces found in soil	(1)
Plasmids		
pSB1A2	pMB1 replication origin (copy number of 100-300 per cell) and	iGEM ^a
	ampicillin resistance	
pET28a-TEV	pET28a carrying the TEV protease cleavage site	(2)
pSB1A2-DNMT1-3	pSB1A2 carrying the target of DNMT1-3	This study
pET28a-TEV-FnCpf1	pET28a-TEV carrying the FnCpf1 encoding gene	(3)
pET28a-TEV-AsCpf1	pET28a-TEV carrying the AsCpf1 encoding gene	(3)
pET28a-TEV-LbCpf1	pET28a-TEV carrying the LbCpf1 encoding gene	This study
pHIW	A vector carrying the act cluster for actinorhodin expression in	(1)
	Streptomyces sp. 4F	
pHIW-ermP	pHIW with the actII-orf4 promoter in act replaced with ermP	This study
	promoter	
pEASY-blunt-zero	A commercial vector for cloning of genes in a TOPO-cloning way	Transgen
pEASY-ermP	pEASY-blunt-zero carrying the ermP promoter	This study

Supplementary Table S2. Strains and plasmids used in this work

Supplementary Figure S1. Identification of the cleavage sites of AsCpf1 and LbCpf1 by Sanger DNA sequencing. The cleavage sites were around the 18th base on the non-target strand and the 23rd base on the target strand, which were indicated by red triangles based on the Sanger sequencing results. The accuracy of the cleavage varied among the targets and the origins of Cpf1.

Supplementary Figure S2. Identification of the Cpf1 cleavage sites by urea PAGE. (a) Target of DNMT1-3 was labelled with FAM on either the 5'-end or 3'-end on the target or non-target strand. Both AsCpf1 and LbCpf1 showed cleavage activities around 14th base on the non-target strand. (b) Digestion of another six targets by FnCpf1. Target DNA was labelled on the 5'-end of the non-target strand. For all reactions (*i.e.* with different crRNAs), FnCpf1 showed obviously cleavage activities around the 14th base on the non-target strand.

Supplementary Figure S3. Identification of the FnCpf1 cleavage sites with different length of spacers by Sanger sequencing. (a) Agarose gel electrophoresis analysis of the products of plasmid pCB1A2 digested by FnCpf1 with different length of spacers in crRNAs. Longer than 17-nt spacer crRNA enabled FnCpf1 with full double-stranded break activity. (b) FnCpf1 with shorter spacer crRNAs (less than 20 nt) had different cleavage sites from those with full-length crRNA (*e.g.* T1-crRNA-24nt). And FnCpf1 cleavage with spacers longer than 20 nt showed similar cleavage profiles in the cleavage sites.

PAM Recognize-site Cleavage-site

Supplementary Figure S4. Optimal reaction conditions for the CCTL method using Taq DNA ligase. (a) Positive rates of CCTL with different reaction temperatures and time courses, which was analyzed by PCR using primers of actII-orf4CKF and actII-orf4CKR. In each reaction condition, PCR bands with larger sizes showed the correct size and indicated positive clones. (b) Verification of the ligation accuracy of the positive clones by Sanger sequencing. The red line represented the cleavage sites, which produced sticky ends for DNA ligation. Spacer sequences were indicated by yellow lines (the Recognize-site), while the PAM sites were shown by green lines. The upper panel showed the sequencing results for the ligation 5'-end of the promoter, while the lower panel showed the 3'-end ligation results. (c) The Stul digestion results of plasmids pHIW and pHIW-*erm*P (left panel), which had the same theoretical restriction profiles as predicted (right panel).

REFERENCES

1. Chen, W.H., Qin, Z.J., Wang, J. and Zhao, G.P. (2013) The MASTER (methylation-assisted tailorable ends rational) ligation method for seamless DNA assembly. *Nucleic Acids Res.*, **41**, e93.

- Carneiro, F.R., Silva, T.C., Alves, A.C., Haline-Vaz, T., Gozzo, F.C. and Zanchin, N.I. (2006) Spectroscopic characterization of the tumor antigen NY-REN-21 and identification of heterodimer formation with SCAND1. *Biochem. Biophys. Res. Commun.*, 343, 260-268.
- 3. Li, S.Y., Zhao, G.P. and Wang, J. (2016) C-Brick: A New Standard for Assembly of Biological Parts Using Cpf1. *ACS Synth. Biol*.