Control of Olefin Geometry in Macrocyclic Ring-Closing Metathesis Using a Removable Silyl Group

Yikai Wang, Miguel Jimenez, Anders S. Hansen, Eun-Ang Raiber, Stuart L. Schreiber, and Damian W. Young*

Contents:

I.	Mate	rial and Methods	S2			
II.	Experimental procedures					
	A.	General procedure for hydrosilylation, ring-closing metathesis, and protodesilylation	S3			
	B.	Catalysts screening and reaction condition optimization	S4			
	C.	Catalyst decomposition studies	S8			
	D.	Study of the influence of silyl groups on the yield of RCM reactions	S9			
	E.	RCM of various vinylsiloxane substrates				
		and protodesilylation of the alkenyl siloxane products	S16			
	F.	Influence of the silyl group on the specificity and stereoselectivity of RCM reactions	S34			
III.	Refe	ences	S48			
IV.	¹ H, ¹³	C spectra.	S49			

Full reference 14b: Paone, D. V.; Shaw, A. W.; Nguyen, D. N.; Burgey, C. S.; Deng, J. Z.; Kane, S. A.; Koblan, K. S.; Salvatore, C. A.; Mosser, S. D.; Johnston, V. K.; Wong, B. K.; Miller-Stein, C. M.; Hershey, J. C.; Graham, S. L.; Vacca, J. P.; Williams, T. M. J. Med. Chem. 2007, 50, 5564-5567.

Full reference 22: Marcaurelle, L. A.; Comer, E.; Dandapani, S.; Duvall, J. R.; Gerard, B.; Kesavan, S.; Lee, M. D.; Liu, H.; Lowe, J. T.; Marie, J.-C.; Mulrooney, C. A.; Pandya, B. A.; Rowley, A.; Ryba, T. D.; Suh, B.-C.; Wei, J.; Young, D. W.; Akella, L. B.; Ross, N. T.; Zhang, Y.-L.; Fass, D. M.; Reis, S. A.; Zhao, W.-N.; Haggarty, S. J.; Palmer, M.; Foley, M. A. J. Am. Chem. Soc. **2010**, *132*, 16962-16976.

Material and Methods.

Except as otherwise noted, reactions were carried out under argon. All reaction solvents except acetone and pyridine were dispensed from a solvent purification system wherein solvents are passed through a packed activated alumina column. Acetone was Aldrich 99.5+% histological grade. Pyridine was Aldrich 99.8% histological grade. NMR spectra were recorded at 500 MHz using a Varian I-500 instrument. Chemical shifts for proton NMR spectra are reported in parts per million downfield from tetramethylsilane and were referenced to residual protonated solvent (CHCl3: d 7.26, C₆H₆: d 7.15). Chemical shifts for carbon NMR spectra are reported in parts per million downfield from tetramethylsilane and referenced to protonated solvent (CHCl₃: d 77.0, C_6H_6 : d 128.0). Data are represented as follows: chemical shift (multiplicity [bs = broad singlet, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet], coupling constants in Hertz, integration). High-resolution mass spectra were obtained through the Harvard University mass spectrometry facility. Infrared spectra were obtained with a Nicolet IR100 FTIR from Thermo Scientific. Optical rotations were obtained using digital polarimeter Autopol IV (Rudolph research Analytical) with a 1 mL cell and a 1 dm path length. All reactions were magnetically stirred and monitored by thin-layer chromatography (TLC) using E. Merck silica gel 60 F254 precoated plates (0.25 mm). Flash chromatography was performed either with the indicated solvent on E. Merck silica gel 60 (230-400 mesh) or using a CombiFlash companion system (Teledyne ISCO, Inc.) with pre-packed FLASH silica gel columns (Teledyne ISCO, Inc.). SFC/MS chromatography was performed with a Berger analytic SFC (Waters ZQ Mass Spectometer) using CO₂ and isopropanol as the mobile phase and using a Chiralpak[®] AD-H column purchased from Chiral Technology Inc. (column length: 4.6x250mm, particle size: 5um). HPLC purification was performed on a Waters massdirected autopurification system. The system consisted of 2767 injection/collection sample manager, a 2525 binary gradient high pressure LC pump, two 515 pumps to deliver makeup and dilution flow, a column fluidic organizer (CFO), a 2996 photodiode array detector, and a ZQ quadropole MS equipped with an electrospray interface. All of the instrumentation was controlled by MassLynx and FractionLynx software versions 4.1. All reagents were obtained from commercial sources and used without further purification.

Experimental Procedures.

A. General procedures for hydrosilylation, ring-closing metathesis, and protodesilylation.

Hydrosilylation: following the literature procedure,¹ to a solution of the alkyne substrate (1 equiv.) in DCM (0.5 M) was added the diethoxymethylsilane (1.1 equiv.). The flask was cooled to 0 °C and catalyst $[Cp*Ru(MeCN)_3]PF_6$ (5 mol%) was added. The ice bath was immediately removed and the solution was stirred for 30 min. The resulting mixture was concentrated under reduced pressure and the residue was purified by silica gel column chromatography using Hexanes/EtOAc as eluent.

Ring-closing metathesis (RCM) of vinyl siloxane substrates: substrate (1 equiv.) was dissolved in anhydrous toluene (or other solvent when indicated) at a concentration of 2 mM under argon. 20 mol% catalyst **A** was added to the solution. High vacuum was applied to the reaction flask for 5 min and charged with argon. This operation cycle was repeated for 5 times. The reaction was then heated up to 35 °C and left for 12 hours. The resulting mixture was concentrated under reduced pressure and the residue was analyzed by ¹H NMR or purified by silica gel column chromatography using Hexanes/EtOAc as eluent.

RCM of simple di-olefinic substrates: substrate (1 equiv.) was dissolved in anhydrous toluene (or other solvent when indicated) at a concentration of 2 mM under argon. 20 mol% catalyst **A** or 10 mol% Grubbs II, and 20 mol% 1,4-benzoquinone was added to the solution. High vacuum was applied to the reaction flask for 5 min and charged with argon. This operation cycle was repeated for 5 times. The reaction was then heated up to 35 °C and left for 12 hours. The resulting mixture was concentrated under reduced pressure and the residue was analyzed by ¹H NMR or purified by silica gel column chromatography using Hexanes/EtOAc as eluent.

Protodesilylation: adapted from the literature procedure,² the alkenyl siloxane product (1 equiv.) from the RCM reaction was dissolved in a anhydrous THF to a final concentration of 0.25 M. AgF (0.5 equiv.) was added to the solution immediately followed by acetic acid (1.5 equiv.) and TBAF (2.5 equiv., 1 M

solution in THF). The reaction was kept in dark and stirred for 2 hours. The resulting mixture was filtered with celite, concentrated under reduced pressure and the residue was purified by silica gel column chromatography using Hexanes/EtOAc as eluent.

B. Catalysts screening and reaction conditions optimization.

Scheme S1. RCM of model substrate for catalysts screening and reaction conditions optimization.

To a round-bottomed flask equipped with magnetic stir bar and armed with a condenser was added substrate **3a** (1.0 equiv.) in anhydrous dichloromethane (2 mM) under argon. The catalyst (0.2 equiv.) was then added and the reaction was refluxed for 18 hours. The mixture was cooled to room temperature, concentrated under reduced pressure. The conversion was analyzed by crude proton NMR study using CDCl₃ as solvent (**Table S1**). Representative NMR spectrum (olefinic proton area) of the RCM reaction of substrate **3a** with catalyst **A** was shown in **Figure S1**. The peak at 6.23 ppm (t) was the resonance of olefin proton within product **4a** (the overlap of product peak with one of the styrene olefin proton was corrected by subtracting integration of the other styrene olefin proton (6.42-6.39 ppm) from the integration of 6.26-6.20 ppm). Unreacted starting material, acyclic cross-dimmers, and the styrene derivative share the common moiety of vinylsiloxane which gives two terminal olefin proton peaks at 5.73 and 5.65 ppm. Integration for one of them and the corrected integration of desired product were then used for determination of the conversion of the reaction.

Entry	Catalyst	Conversion to product (%)	Entry	Catalyst	Conversion to product (%)
A	N N N ,ci ci' Ph	19	J		< 2
В		<2	K		< 2
С	P , ci Ru Ph Ph	<2	L		< 2
D		3	М		< 2
Е		<2	N		<2
F	N N CI Br CI Br Br	<2	0		< 2
G		<2	Р	Ru CI CI CI CI P	< 2
н		<2	Q	[/] Pr N N Ci Ci Ci Ci Ci Ci Ci Ci Ci Ci Ci Ci Ci	< 2
Ι		<2			

Table	S1.	Conversion	of the R	CM reaction	of substrate 3	a with	various	catalys	ts to o	desired	product.
	~	001110101011	01 010 10	citi reaction	or buoblinee e		1 41 10 40	e acar y o			produce.

Figure S1. Representative crude proton NMR spectrum (olefinic proton area) of RCM reaction for catalysts screening, reaction condition optimization, and catalyst decomposition studies. Reaction condition: substrate **3** with catalyst **A**, DCM, reflux, 18 hours.

Reaction conditions for RCM of substrate **3a** were then optimized (Table **S2**). After varying solvents, temperature, and concentrations we found that optimal results (63%) were obtained using benzene or toluene as a solvent, temperatures of 35 $^{\circ}$ C and 20-mol% of catalyst.

Entry	Catalyst	Solv.	Temp. (°C)	Conc. (mM)	¹ H NMR yield (%) ^[a]		
1	Grubbs I	CH ₂ Cl ₂	reflux	2	< 2		
2	Grubbs II	CH_2Cl_2	reflux	2	3		
3	Α	CH ₂ Cl ₂	reflux	2	19		
4	D	CH ₂ Cl ₂	reflux	2	3		
5	Α	$(CH_2Cl)_2$	50	2	15		
6	Α	C_6H_6	50	2	54		
7	Α	Ph-CH ₃	50	2	50		
8	Α	C_6H_6	23	2	42		
9	Α	C_6H_6	30	2	63		
10	Α	C_6H_6	40	2	63		
11	Α	C_6H_6	60	2	45		
12	Α	C_6H_6	35	1	52		
13	Α	C_6H_6	35	5	39		
14	Α	C_6H_6	35	10	20		
15	Α	C ₆ H ₆	35	20	12		
[a] Yield calculated based on ¹ H NMR analysis of reaction mixtures.							

Table S2. Optimization of reaction conditions.

5-(Triethoxysilyl)hex-5-en-1-yl 2-(pent-4-en-1-yloxy)benzoate (1a)

Yield 72% (colorless oil); IR (neat, cm⁻¹) 3077, 2974, 2927, 2890, 2736, 1729, 1705, 1641, 1601, 1583, 1492, 1469, 1452, 1390, 1301, 1251, 1165, 1080, 1016, 958; ¹H-NMR (500 MHz, CDCl₃) δ 7.78-7.76 (m, 1 H), 7.44-7.40 (m, 1 H), 6.97-6.93 (m, 2 H), 5.85 (ddt, *J* = 17.0, 10.5, 6.8 Hz, 1 H), 5.74-5.73 (m, 1 H), 5.65-5.65 (m, 1 H), 5.08-5.04 (m, 1 H), 4.99 (d, *J* = 10.0 Hz, 1 H), 4.30 (t, *J* = 6.8 Hz, 2 H), 4.04 (t, *J* = 6.5 Hz, 2 H), 3.82 (q, *J* = 6.8 Hz, 6 H), 2.28 (dt, *J* = 7.2, 7.2 Hz, 2 H), 2.21 (t, *J* = 7.8 Hz, 2 H), 1.93 (tt, *J* = 7.0, 7.0 Hz, 2 H), 1.76 (tt, *J* = 7.2, 7.2 Hz, 2 H), 1.65-1.59 (m, 2 H), 1.22 (t, *J* = 6.5 Hz, 9 H); ¹³C-NMR (125 MHz, CDCl₃) δ 166.6, 158.5, 143.3, 137.7, 133.1, 131.5, 129.4, 120.1, 120.0, 115.2, 113.1, 68.0, 64.8, 58.5, 35.6, 30.0, 28.5, 28.3, 25.1, 18.2; HRMS (ESI-TOF) calcd. for C₂₄H₃₈O₆Si [M+Na]⁺ 473.23299, found 473.23204.

(E)-6-(triethoxysilyl)-3,4,7,8,9,10-hexahydrobenzo[b][1,5]dioxacyclotetradecin-12(2H)-one (2a)

Yield 92% (pale yellow oil); IR (neat, cm⁻¹) 3076, 2972, 2927, 2735, 1705, 1602, 1582, 1491, 1453, 1387, 1302, 1252, 1166, 1128, 1080, 1025, 996, 958; ¹H-NMR (500 MHz, C₆D₆) δ 7.79-7.77 (m, 1 H), 7.44-7.41 (m, 1 H), 6.97 (dd, *J* = 7.5, 7.5 Hz, 1 H), 6.92 (d, *J* = 8.5 Hz, 1 H), 6.21 (t, *J* = 8.0 Hz, 1 H), 4.43 (t, *J* = 5.2 Hz, 2 H), 4.06 (t, *J* = 5.0 Hz, 2 H), 3.83 (q, *J* = 7.0 Hz, 6 H), 2.43-2.38 (m, 2 H), 2.23-2.19 (m, 2 H), 1.90-1.85 (m, 2 H), 1.83-1.78 (m, 2 H), 1.71-1.65 (m, 2 H), 1.24 (t, *J* = 6.8 Hz, 9 H); ¹³C-NMR (125 MHz, C₆D₆) δ 168.1, 158.1, 145.2, 134.1, 132.9, 132.8, 122.1, 120.1, 112.1, 67.0, 63.5, 58.6, 30.1, 28.6, 27.7, 26.0, 25.5, 18.6; HRMS (ESI-TOF) calcd. for C₂₂H₃₄O₆Si [M+Na]⁺ 445.20169, found 445.20168.

5-(Triethoxysilyl)hex-5-en-1-yl 2-(hex-5-en-1-yloxy)benzoate (3a)

Yield 72% (colorless oil); IR (neat, cm⁻¹) 3076, 2974, 2929, 2736, 1729, 1705, 1641, 1601, 1583, 1491, 1452, 1389, 1301, 1249, 1165, 1079, 995, 958; ¹H-NMR (500 MHz, CDCl₃) δ 7.76 (d, *J* = 8.0 Hz, 1H), 7.44-7.40 (m, 1 H), 6.96-6.93 (m, 2 H), 5.82 (ddt, *J* = 17.0, 10.5, 6.5 Hz, 1 H), 5.73-5.73 (m, 1 H), 5.65-5.65 (m, 1 H), 5.05-5.01 (m, 1 H), 4.97 (d, *J* = 10.5 Hz, 1 H), 4.30 (t, *J* = 6.8 Hz, 2 H), 4.03 (t, *J* = 6.2 Hz, 2 H), 3.82 (q, *J* = 6.8 Hz, 6 H), 2.21 (t, *J* = 7.5 Hz, 2 H), 2.13 (dt, *J* = 7.2, 7.2 Hz, 2 H), 1.84 (tt, *J* = 7.1, 7.1 Hz, 2 H), 1.76 (tt, *J* = 7.1, 7.1 Hz, 2 H), 1.64-1.57 (m, 4 H), 1.22 (t, *J* = 7.0 Hz, 9 H); ¹³C-NMR (125 MHz, CDCl₃) δ 166.6,

158.5, 143.3, 138.5, 133.1, 131.5, 129.4, 120.9, 119.9, 114.7, 113.0, 68.6, 64.8, 58.5, 35.5, 33.4, 28.6, 28.4, 25.2, 25.1, 18.2; HRMS (ESI-TOF) calcd. for $C_{25}H_{40}O_6Si$ [M+Na]⁺ 487.24864, found 487.24889.

(*E*)-7-(Triethoxysilyl)-4,5,8,9,10,11-hexahydro-2*H*-benzo[*b*][1,5]dioxacyclopentadecin-13(3*H*)-one (4a) Yield 60% (pale yellow oil); IR (neat, cm⁻¹) 2972, 2927, 1700, 1602, 1491, 1453, 1388, 1302, 1250, 1166, 1102, 1078, 1018, 958; ¹H-NMR (500 MHz, CDCl₃) δ 7.75-7.74 (m, 1 H), 7.42-7.39 (m, 1 H), 6.96 (dd, *J* = 7.5, 7.5 Hz, 1 H), 6.91 (d, *J* = 8.5 Hz, 1 H), 6.23 (t, *J* = 7.5 Hz, 1 H), 4.40 (t, *J* = 5.5 Hz, 2 H), 4.07 (t, *J* = 5.0 Hz, 2 H), 3.80 (q, *J* = 6.8 Hz, 6 H), 2.27-2.21 (m, 4 H), 1.87-1.77 (m, 4 H), 1.68-1.58 (m, 4 H), 1.22 (t, *J* = 6.8 Hz, 9 H); ¹³C-NMR (125 MHz, C₆D₆) δ 167.8, 158.2, 145.0, 134.9, 132.6, 132.2, 122.3, 120.1, 112.4, 68.1, 64.3, 58.6, 29.1, 28.9, 28.9, 28.7, 27.1, 26.9, 18.5; HRMS (ESI-TOF) calcd. for C₂₃H₃₆O₆Si [M+Na]⁺ 459.21734, found 459.21736.

C. Catalyst decomposition studies.

a) Reaction kinetics

To a round bottom flask equipped with magnetic stir bar and purged with argon, substrate **3a** (20.0 mg, 0.043 mmol) was added to 22 mL anhydrous benzene (2 mM). Next, catalyst **A** (6.8 mg, 0.009 mmol) was added to the resulting solution. The reaction was stirred at 23 °C and 50 °C respectively. Aliquots of 2 mL of the reaction mixture were taken at 0.5, 1, 1.5, 2, 3, 5, 7, 9, 12, and 24 hours, quenched with ethyl vinyl ether, concentrated and analyzed by proton NMR (**Table S3**). After 5 hours for the reaction at 50 °C, or 24 hours for the reaction at 23 °C, substrate **1a** was added to the reaction. No conversion of substrate **1a** was observed after another 18 hours for both cases.

Table S3. Conversion of the RCM reaction of substrate 3a with catalyst A at different temperatures over time.

Reaction time (h)	Conversion to product (%) at 23 °C	Conversion to product (%) at 50 °C		
0	0	0		
0.5	1	26		
1	3	35		
1.5	5	38		
2	7	40		
3	11	42		
5	18	42		
7	24	-		
9	29	-		
12	34	-		
24	36	-		

b) Catalyst stability study without any substrate present

To a round bottom flask equipped with magnetic stir bar and purged with argon was added catalyst **A** (3.4 mg, 0.004 mmol) and 11 mL benzene. The reaction was carried out at 23 °C and 50 °C respectively. After 24 hours for the reaction at 23 °C or 5 hours for the reaction at 50 °C, substrate **1a** (9.7 mg, 0.021 mmol) was added to both reactions. After another 18 hours, 16% conversion of substrate **1a** was observed for the reaction at 23 °C and 72% conversion of substrate **1a** was observed for the reaction at 23 °C.

c) Catalyst stability study with simple diolefinic substrate (without siloxyl group)

To a round bottom flask, equipped with magnetic stir bar and purged with argon, was added substrate **32** (6.5 mg, 0.021 mmol) and 11 mL benzene. Next, catalyst **A** (3.4 mg, 0.004 mmol) was added to the resulting solution. The reaction was carried out at 50 °C. After 5.5 hours, substrate **1a** (9.7 mg, 0.021 mmol) was added to the reaction. No conversion of substrate **1a** was observed after another 18 hours.

D. Study of influence of silyl groups

Different vinyl silane or vinyl siloxane substrates were synthesized following general procedure for hydrosilylation using the respective silanes. The RCM reaction was then performed following the general procedure for RCM.

5-(Diethoxy(methyl)silyl)hex-5-en-1-yl 2-(pent-4-en-1-yloxy)benzoate (1b, also as 19a)

Yield 85% (colorless oil); IR (neat, cm⁻¹) 3077, 2972, 2943, 2879, 2763, 2735, 1728, 1705, 1641, 1601, 1583, 1491, 1452, 1389, 1301, 1253, 1164, 1130, 1103, 1079, 1016, 951; ¹H-NMR (500 MHz, CDCl₃) δ 7.77 (d, *J* = 7.0 Hz, 1 H), 7.42 (dd, *J* = 7.2, 7.2 Hz, 1 H), 6.97-6.93 (m, 2 H), 5.85 (ddt, *J* = 17.2, 10.2, 7.0 Hz, 1 H), 5.69 (bs, 1 H), 5.57-5.56 (m, 1 H), 5.06 (d, *J* = 17.5 Hz, 1 H), 4.99 (d, *J* = 10.0 Hz, 1 H), 4.30 (t, *J* = 6.5 Hz, 2 H), 4.04 (t, *J* = 6.5 Hz, 2 H), 3.76 (q, *J* = 6.8 Hz, 4 H), 2.27 (dt, *J* = 7.0, 7.0 Hz, 2 H), 2.21 (t, *J* = 7.5 Hz, 2 H), 1.93 (tt, *J* = 6.9, 6.9 Hz, 2 H), 1.76 (tt, *J* = 7.2, 7.2 Hz, 2 H), 1.60 (tt, *J* = 7.6, 7.6 Hz, 2 H), 1.21 (t, *J* = 7.0 Hz, 6 H), 0.19 (s, 3 H); ¹³C-NMR (125 MHz, CDCl₃) δ 166.6, 158.4, 147.0, 137.7, 133.1, 131.5, 127.7, 120.8,

120.0, 115.2, 113.0, 67.9, 64.8, 58.2, 35.1, 30.0, 28.5, 28.3, 25.1, 18.3, -4.6; HRMS (ESI-TOF) calcd. for $C_{23}H_{36}O_5Si [M+H]^+ 421.24048$, found 421.24067.

(*E*)-6-(Diethoxy(methyl)silyl)-3,4,7,8,9,10-hexahydrobenzo[*b*][1,5]dioxacyclotetradecin-12(2*H*)-one (2b, also as 19)

Yield 95% (pale yellow oil); IR (neat, cm⁻¹) 3076, 2970, 2927, 2873, 1705, 1602, 1582, 1491, 1453, 1386, 1356, 1303, 1253, 1165, 1129, 1103, 1079, 1051, 1024, 995; ¹H-NMR (500 MHz, CDCl₃) δ 7.79-7.77 (m, 1 H), 7.44-7.41 (m, 1 H), 6.97 (dd, J = 7.2, 7.2 Hz, 1 H), 6.92 (d, J = 8.0 Hz, 1 H), 6.11 (t, J = 8.0 Hz, 1 H), 4.43 (t, J = 5.2 Hz, 2 H), 4.06 (t, J = 5.0 Hz, 2 H), 3.77 (q, J = 7.0 Hz, 4 H), 2.40 (dt, J = 6.0, 6.0 Hz, 2 H), 2.21-2.18 (m, 2 H), 1.90-1.84 (m, 2 H), 1.83-1.78 (m, 2H), 1.69-1.62 (m, 2 H), 1.23 (t, J = 7.2 Hz, 6 H), 0.19 (s, 3 H); ¹³C-NMR (125 MHz, CDCl₃) δ 168.5, 157.6, 143.5, 136.8, 133.1, 132.2, 121.1, 120.1, 112.0, 67.4, 63.8, 58.2, 29.9, 28.4, 26.9, 25.7, 25.3, 18.3, -4.9; HRMS (ESI-TOF) calcd. for C₂₁H₃₂O₅Si [M+H]⁺ 393.20918, found 393.20943.

Hydrosilylation reaction gave rise to a 14.4:1 mixture of two regioisomers with the desired regioisomer **1c** being the major one. Yield 84% (colorless oil).

(*E*)-6-(Ethoxydimethylsilyl)-3,4,7,8,9,10-hexahydrobenzo[*b*][1,5]dioxacyclotetradecin-12(2*H*)-one (2c) Yield 81% (pale yellow oil); IR (neat, cm⁻¹) 2959, 2926, 2865, 1704, 1602, 1491, 1453, 1386, 1303, 1250, 1164, 1131, 1102, 1080, 1049, 1023, 993; ¹H-NMR (500 MHz, CDCl₃) δ 7.79-7.77 (m, 1 H), 7.44-7.41 (m, 1 H), 6.97 (dd, *J* = 7.5, 7.5 Hz, 1 H), 6.92 (d, *J* = 8.5 Hz, 1 H), 5.97 (t, *J* = 8.0 Hz, 1 H), 4.43 (t, *J* = 5.2 Hz, 2 H), 4.06 (t, *J* = 5.0 Hz, 2 H), 3.65 (q, *J* = 7.0 Hz, 2 H), 2.42-2.36 (m, 2 H), 2.22-2.18 (m, 2 H), 1.89-1.84 (m, 2 H), 1.83-1.78 (m, 2 H), 1.67-1.61 (m, 2 H), 1.19 (t, *J* = 7.0 Hz, 3 H), 0.19 (s, 6 H); ¹³C-NMR (125 MHz, CDCl₃) δ 168.5, 157.7, 141.7, 139.8, 133.1, 132.3, 121.1, 120.1, 112.1, 67.5, 63.8, 58.4, 30.1, 28.5, 27.2, 25.8, 25.5, 18.5, -2.4; HRMS (ESI-TOF) calcd. for C₂₀H₃₀O₄Si [M+Na]⁺ 385.18056, found 385.19580.

5-(Diethoxy(phenyl)silyl)hex-5-en-1-yl 2-(pent-4-en-1-yloxy)benzoate (1d)

Yield 91% (colorless oil); IR (neat, cm⁻¹) 3071, 2973, 2940, 2881, 1728, 1704, 1641, 1601, 1583, 1491, 1469, 1452, 1430, 1389, 1301, 1251, 1164, 1119, 1101, 1079, 1016, 952; ¹H-NMR (500 MHz, CDCl₃) δ 7.76-7.74 (m, 1 H), 7.64-7.62 (m, 2 H), 7.44-7.33 (m, 4 H), 6.96-6.93 (m, 2 H), 5.88-5.79 (m, 2 H), 5.67-5.66 (m, 1 H), 5.06-5.03 (m, 1 H), 4.98 (d, *J* = 10.0 Hz, 1 H), 4.23 (t, *J* = 6.5 Hz, 2 H), 4.03 (t, *J* = 6.5 Hz, 2 H), 3.81 (q, *J* = 7.0 Hz, 4 H), 2.26 (dt, *J* = 7.2, 7.2 Hz, 2 H), 2.22 (t, *J* = 8.0 Hz, 2 H), 1.91 (tt, *J* = 6.9, 6.9 Hz, 2 H), 1.70 (tt, *J* = 7.2, 7.2 Hz, 2 H), 1.56 (tt, *J* = 7.6, 7.6 Hz, 2 H), 1.23 (t, *J* = 7.2 Hz, 6 H); ¹³C-NMR (125 MHz, CDCl₃) δ 166.6, 158.4, 145.5, 137.7, 134.6, 133.3, 133.1, 131.5, 130.0, 129.4, 127.7, 120.8, 120.0, 115.2, 113.1, 68.0, 64.8, 58.7, 35.2, 30.0, 28.4, 28.3, 25.1, 18.3; HRMS (ESI-TOF) calcd. for C₂₈H₃₈O₅Si [M+Na]⁺ 505.23807, found 505.24127.

RCM reaction of compound **1d** gave rise to an inseparable mixture of product **2d** and styrene derivative **2d'** as well as acyclic dimer and unreacted starting material. The NMR yield was calculated to be 69% based on analysis of crude ¹H NMR spectrum.

5-(Dimethyl(phenyl)silyl)hex-5-en-1-yl 2-(pent-4-en-1-yloxy)benzoate (1e)

Yield 93% (colorless oil); IR (neat, cm⁻¹) 3069, 2949, 1728, 1641, 1601, 1491, 1452, 1430, 1387, 1302, 1251, 1164, 1133, 1078, 1050, 1015; ¹H-NMR (500 MHz, CDCl₃) δ 7.75-7.73 (m, 1 H), 7.51-7.49 (m, 2 H), 7.44-7.40 (m,1 H), 7.34-7.32 (m, 3 H), 6.97-6.93 (m, 2 H), 5.84 (ddt, *J* = 17.0, 10.0, 6.8 Hz, 1 H), 5.70-5.69 (m, 1 H), 5.42-5.42 (m, 1 H), 5.06-5.03 (m, 1 H), 4.99 (d, *J* = 10.5 Hz, 1 H), 4.21 (t, *J* = 7.0 Hz, 2 H), 4.03 (t, *J* = 6.5 Hz, 2 H), 2.26 (dt, *J* = 7.2, 7.2 Hz, 2 H), 2.17 (t, *J* = 7.5 Hz, 2 H), 1.91 (tt, *J* = 6.9, 6.9 Hz, 2 H), 1.68 (tt, *J* = 7.1, 7.1 Hz, 2 H), 1.52-1.46 (m, 2 H), 0.36 (s, 6 H); ¹³C-NMR (125 MHz, CDCl₃) δ 166.6, 158.4, 149.8, 138.2, 137.7, 133.8, 133.1, 131.5, 128.9, 127.7, 126.0, 120.8, 120.0, 115.2, 113.0, 67.9, 64.7, 35.4, 30.0, 28.4, 28.3, 25.1, -3.0; HRMS (ESI-TOF) calcd. for C₂₆H₃₄O₃Si [M+H]⁺ 423.23500, found 423.23601.

(E)-6-(Dimethyl(phenyl)silyl)-3,4,7,8,9,10-hexahydrobenzo[b][1,5]dioxacyclotetradecin-12(2H)-one (2e) RCM reaction of the previous compound (1e) gave rise to an inseparable mixture of product and styrene derivative together with unreacted starting material. The NMR yield was calculated to be 71% based on analysis of crude ¹H NMR spectrum. After the first column chromatography to get rid of the unreacted starting materials, the mixture of product and styrene derivative was subjected to HPLC separation that gave rise to 25 mg pure product (54% yield) as pale yellow oil. HPLC conditions: compound was dissolved in a 1 ml volume of DMSO. The separation was executed on an XBridge 19x100 mm 5 µm columns at a flow rate of 44 ml/min. Aqueous mobile phase A consisted of 0.1% formic acid in water, and organic mobile phase B was 0.1% formic acid in acetonitrile. Purification fractions were immediately frozen at -50°C and lyophilized for 24hrs using the Genesis Virtis. After lyophilization the compound was transferred to a preweighed vial using dichloromethane. IR (neat, cm⁻¹) 3067, 2954, 2860, 1703, 1602, 1490, 1452, 1429, 1383, 1302, 1250, 1165, 1131, 1050, 1023, 992; ¹H-NMR (500 MHz, CDCl₃) δ 7.78-7.76 (m, 1 H), 7.53-7.51 (m, 2 H), 7.44-7.40 (m, 1 H), 7.36-7.33 (m, 3 H), 6.97 (dd, J = 7.5, 7.5 Hz, 1 H), 6.92 (d, J = 7.5 Hz, 1 H), 5.91 (t, J = 8.0 Hz, 1 H), 4.38 (t, J = 5.2 Hz, 2 H), 4.06 (t, J = 5.0 Hz, 2 H), 2.42-2.37 (m, 2 H), 2.18-2.15 (m, 2 H), 1.89-1.84 (m, 2 H), 1.73-1.68 (m, 2 H), 1.59-1.52 (m, 2 H), 0.35 (s, 6 H); ¹³C-NMR (125 MHz, CDCl₃) δ 168.5, 157.7, 141.7, 139.4, 138.8, 134.0, 133.1, 132.2, 128.8, 127.7, 121.1, 120.0, 112.1, 67.5, 63.8, 30.1, 28.4, 28.2, 25.9, 25.7, -3.1; HRMS (ESI-TOF) calcd. for C₂₄H₃₀O₃Si [M+Na]⁺ 417.18564, found 417.18593.

5-(Triethylsilyl)hex-5-en-1-yl 2-(pent-4-en-1-yloxy)benzoate (1f)

Yield 38% (colorless oil); IR (neat, cm⁻¹) 3077, 3048, 2951, 2911, 2875, 1729, 1704, 1641, 1601, 1582, 1491, 1453, 1416, 1385, 1301, 1250, 1164, 1133, 1078, 1050, 1013; ¹H-NMR (500 MHz, CDCl₃) δ 7.78-7.76 (m, 1 H), 7.44-7.41 (m, 1 H), 6.97-6.94 (m, 2 H), 5.85 (ddt, *J* = 17.0, 10.0, 6.8 Hz, 1 H), 5.65-5.64 (m, 1 H), 5.32-5.31 (m, 1 H), 5.08-5.04 (m, 1 H), 4.99 (d, *J* = 10.0 Hz, 1 H), 4.30 (t, *J* = 6.5 Hz, 2 H), 4.04 (t, *J* = 6.5 Hz, 2 H), 2.27 (dt, *J* = 7.2, 7.2 Hz, 2 H), 2.14 (t, *J* = 7.8 Hz, 2 H), 1.93 (tt, *J* = 7.0, 7.0 Hz, 2 H), 1.76 (tt, *J* = 7.1, 7.1 Hz, 2 H), 1.60-1.54 (m, 2 H), 0.92 (t, *J* = 8.0 Hz, 6 H), 0.60 (q, *J* = 8.0 Hz, 9 H); ¹³C-NMR (125 MHz, CDCl₃) δ 166.6, 158.4, 148.5, 137.7, 133.1, 131.5, 125.3, 120.8, 120.0, 115.2, 113.1, 68.0, 64.8, 35.7, 30.0, 28.6, 28.3, 25.1, 7.3, 2.9; HRMS (ESI-TOF) calcd. for C₂₄H₃₈O₃Si [M+H]⁺ 403.26630, found 403.26630.

RCM reaction of compound **1f** gave rise to an inseparable mixture of product **2f** and styrene derivative **2f'**. Unreacted starting material and acyclic dimer were also observed. The NMR yield was calculated to be 10% based on analysis of crude ¹H NMR spectrum.

5-(Diethoxy(methyl)silyl)hex-5-en-1-yl 2-(hex-5-en-1-yloxy)benzoate (3b, also as 20a)

Yield 79% (colorless oil); IR (neat, cm⁻¹) 3076, 2972, 2940, 1729, 1705, 1641, 1601, 1491, 1452, 1389, 1301, 1252, 1164, 1103, 1079, 996, 951; ¹H-NMR (500 MHz, CDCl₃) δ 7.78-7.76 (m, 1 H), 7.44-7.40 (m, 1 H), 6.96-6.93 (m, 2 H), 5.82 (ddt, *J* = 17.0, 10.5, 6.5 Hz, 1 H), 5.69-5.69 (m, 1 H), 5.57-5.56 (m, 1 H), 5.05-5.01 (m, 1 H), 4.97 (d, *J* = 10.5 Hz, 1 H), 4.30 (t, *J* = 6.8 Hz, 2 H), 4.03 (t, *J* = 6.5 Hz, 2 H), 3.76 (q, *J* = 7.0 Hz, 4 H), 2.21 (t, *J* = 7.5 Hz, 2 H), 2.13 (dt, *J* = 7.2, 7.2 Hz, 2 H), 1.84 (tt, *J* = 7.1, 7.1 Hz, 2 H), 1.76 (tt, *J* = 7.2, 7.2 Hz, 2 H), 1.63-1.57 (m, 4 H), 1.21 (t, *J* = 7.0 Hz, 6 H), 0.19 (s, 3 H); ¹³C-NMR (125 MHz, CDCl₃) δ 166.6, 158.5, 147.1, 138.5, 133.1, 131.5, 127.6, 120.8, 119.9, 114.7, 113.0, 68.6, 64.8, 58.2, 35.1, 33.4, 28.6, 28.5, 25.2, 25.1, 18.3, -4.6; HRMS (ESI-TOF) calcd. for C₂₄H₃₈O₅Si [M+Na]⁺ 457.23807, found 457.24010.

(*E*)-7-(Diethoxy(methyl)silyl)-4,5,8,9,10,11-hexahydro-2*H*-benzo[*b*][1,5]dioxacyclopentadecin-13(3*H*)one (4b, also as 20)

Yield 76% (pale yellow oil); IR (neat, cm⁻¹) 2969, 2928, 1700, 1602, 1491, 1452, 1387, 1302, 1251, 1165, 1130, 1103, 1078, 1016, 952; ¹H-NMR (500 MHz, CDCl₃) δ 7.76-7.74 (m, 1 H), 7.42-7.39 (m, 1 H), 6.96 (dd, *J* = 7.5, 7.5 Hz, 1 H), 6.92 (d, *J* = 7.5 Hz, 1 H), 6.13 (t, *J* = 7.5 Hz, 1 H), 4.40 (t, *J* = 5.5 Hz, 2 H), 4.08 (t, *J* = 5.0 Hz, 2 H), 3.74 (q, *J* = 6.8 Hz, 4 H), 2.25-2.21 (m, 4 H), 1.87-1.76 (m, 4 H), 1.68-1.56 (m, 4 H), 1.21 (t, *J* = 6.8 Hz, 6 H), 0.17 (s, 3 H); ¹³C-NMR (125 MHz, CDCl₃) δ 168.2, 157.7, 143.5, 137.5, 132.9, 131.7, 121.2, 120.0, 112.3, 68.3, 64.6, 58.1, 28.9, 28.8, 28.6, 28.0, 26.9, 26.7, 18.3, -4.6; HRMS (ESI-TOF) calcd. for C₂₂H₃₄O₅Si [M+Na]⁺ 429.20677, found 429.20692.

Hydrosilylation reaction gave rise to a 14.3:1 mixture of two regioisomers with the desired regio isomer **3c** being the major one. Yield 89% (colorless oil).

RCM reaction of the mixture 3c and 3c' gave rise to an inseparable mixture of product 4c and styrene derivative 4c' as well as acyclic dimer and unreacted starting material. The NMR yield was calculated to be 62% based on analysis of crude ¹H NMR spectrum.

5-(Diethoxy(phenyl)silyl)hex-5-en-1-yl 2-(hex-5-en-1-yloxy)benzoate (3d)

Yield 76% (colorless oil); IR (neat, cm⁻¹) 3071, 2973, 2938, 1729, 1704, 1640, 1601, 1583, 1491, 1470, 1453, 1430, 1389, 1301, 1250, 1164, 1119, 1102, 1079, 997, 952; ¹H-NMR (500 MHz, CDCl₃) δ 7.75-7.73 (m, 1 H), 7.64-7.62 (m, 2 H), 7.44-7.33 (m, 4 H), 6.96-6.93 (m, 2 H), 5.85-5.77 (m, 2 H), 5.67-5.66 (m, 1 H), 5.04-5.00 (m, 1 H), 4.96 (d, *J* = 10.0 Hz, 1 H), 4.22 (t, *J* = 7.0 Hz, 2 H), 4.02 (t, *J* = 6.2 Hz, 2 H), 3.81 (q, *J* = 7.0 Hz, 4 H), 2.22 (t, *J* = 7.8 Hz, 2 H), 2.11 (dt, *J* = 5.5, 5.5 Hz, 2 H), 1.83 (tt, *J* = 7.0, 7.0 Hz, 2 H), 1.70 (tt, *J* = 7.2, 7.2 Hz, 2 H), 1.62-1.52 (m, 4 H), 1.23 (t, *J* = 7.2 Hz, 6 H); ¹³C-NMR (125 MHz, CDCl₃) δ 166.6, 158.5, 145.5, 138.5, 134.6, 133.3, 133.1, 131.5, 130.0, 129.4, 127.7, 120.9, 119.9, 114.7, 113.0, 68.6, 64.8, 58.7, 35.2, 33.4, 28.6, 28.4, 25.2, 25.1, 18.3; HRMS (ESI-TOF) calcd. for C₂₉H₄₀O₅Si [M+Na]⁺ 519.25372, found 519.25541.

RCM reaction of compound **3d** gave rise to an inseparable mixture of product **4d** and styrene derivative **4d'** as well as acyclic dimers and unreacted starting material. The NMR yield was calculated to be 35% based on analysis of crude ¹H NMR spectrum.

5-(Dimethyl(phenyl)silyl)hex-5-en-1-yl 2-(hex-5-en-1-yloxy)benzoate (3e)

Yield 74% (colorless oil); IR (neat, cm⁻¹) 3069, 2945, 1728, 1703, 1641, 1601, 1491, 1452, 1430, 1388, 1301, 1250, 1164, 1133, 1077, 1049, 996; ¹H-NMR (500 MHz, CDCl₃) δ 7.75-7.73 (m, 1 H), 7.51-7.49 (m, 2 H), 7.44-7.40 (m, 1 H), 7.34-7.31 (m, 3 H), 6.96-6.93 (m, 2 H), 5.81 (ddt, *J* = 16.8, 10.2, 6.5 Hz, 1 H), 5.70-5.69 (m, 1 H), 5.43-5.42 (m, 1 H), 5.04-5.00 (m, 1 H), 4.96 (d, *J* = 9.5 Hz, 1 H), 4.21 (t, *J* = 6.5 Hz, 2 H), 4.02 (t, *J* = 6.2 Hz, 2 H), 2.17 (t, *J* = 7.8 Hz, 2 H), 2.11 (dt, *J* = 7.2, 7.2 Hz, 2 H), 1.83 (tt, *J* = 7.0, 7.0 Hz, 2 H), 1.67 (tt, *J* = 7.0, 7.0 Hz, 2 H), 1.58 (tt, *J* = 7.5, 7.5 Hz, 2 H), 1.52-1.46 (m, 2 H), 0.37 (s, 6 H); ¹³C-NMR (125 MHz, CDCl₃) δ 166.6, 158.5, 149.9, 138.5, 138.2, 133.8, 133.1, 131.5, 128.9, 127.7, 126.0, 120.8, 119.9, 114.7, 113.0, 68.6, 64.7, 35.4, 33.4, 28.6, 28.4, 25.2, 25.1, -3.0; HRMS (ESI-TOF) calcd. for C₂₇H₃₆O₃Si [M+H]⁺ 437.25065, found 437.25057.

(*E*)-7-(dimethyl(phenyl)silyl)-4,5,8,9,10,11-hexahydro-2*H*-benzo[*b*][1,5]dioxacyclopentadecin-13(3*H*)-one (4e)

Yield 32% (pale yellow oil); IR (neat, cm⁻¹) 3067, 2952, 2859, 1698, 1601, 1490, 1452, 1429, 1383, 1302, 1249, 1165, 1132, 1108, 1049, 1015, 963; ¹H-NMR (500 MHz, CDCl₃) δ 7.77-7.75 (m, 1 H), 7.51-7.49 (m, 2 H), 7.43-7.39 (m, 1 H), 7.34-7.33 (m, 3 H), 6.95 (dd, *J* = 7.8, 7.8 Hz, 1 H), 6.92 (d, *J* = 9.0 Hz, 1 H), 5.94 (t, *J* = 7.2 Hz, 1 H), 4.34 (t, *J* = 5.5 Hz, 2 H), 4.08 (t, *J* = 5.2 Hz, 2 H), 2.25-2.18 (m, 4 H), 1.87-1.82 (m, 2 H), 1.70-1.61 (m, 4 H), 1.46 (tt, *J* = 7.9 Hz, 2 H), 0.34 (s, 6 H); ¹³C-NMR (125 MHz, C₆D₆) δ 168.2, 157.7, 142.2, 139.8, 139.0, 134.0, 133.0, 131.8, 128.8, 127.6, 121.1, 120.0, 112.3, 68.3, 64.6, 29.0, 28.9, 28.9, 28.8, 27.0, 27.0, -2.6; HRMS (ESI-TOF) calcd. for C₂₅H₃₂O₃Si [M+Na]⁺ 431.20129, found 431.20247.

5-(Triethylsilyl)hex-5-en-1-yl 2-(hex-5-en-1-yloxy)benzoate (3f)

Yield 56% (colorless oil); IR (neat, cm⁻¹) 3076, 3047, 2951, 2911, 2874, 1730, 1704, 1641, 1601, 1583, 1491, 1453, 1416, 1385, 1301, 1249, 1164, 1132, 1077, 1049, 1017, 959; ¹H-NMR (500 MHz, CDCl₃) δ 7.78-7.76 (m, 1 H), 7.44-7.41 (m, 1 H), 6.97-6.94 (m, 2 H), 5.82 (ddt, *J* = 17.0, 10.0, 6.8 Hz, 1 H), 5.65-5.64 (m, 1 H), 5.32-5.31 (m, 1 H), 5.05-5.01 (m, 1 H), 4.98-4.96 (m, 1 H), 4.30 (t, *J* = 6.8 Hz, 2 H), 4.03 (t, *J* = 6.8 Hz, 2 H),

2.16-2.11 (m, 4 H), 1.85 (tt, J = 7.0, 7.0 Hz, 2 H), 1.76 (tt, J = 7.0, 7.0 Hz, 2 H), 1.63-1.54 (m, 4 H), 0.92 (t, J = 8.0 Hz, 6 H), 0.60 (q, J = 8.0 Hz, 9 H); ¹³C-NMR (125 MHz, CDCl₃) δ 166.7, 158.5, 148.6, 138.5, 133.1, 131.5, 125.3, 120.8, 120.0, 114.7, 113.1, 68.6, 64.8, 35.7, 33.4, 28.6, 28.6, 25.2, 25.1, 7.3, 2.9; HRMS (ESI-TOF) calcd. for C₂₅H₄₀O₃Si [M+Na]⁺ 439.26389, found 439.26459.

RCM reaction of compound **3f** gave rise to less than 2% product based on analysis of crude ¹H NMR spectrum. Styrene derivative **4f**', unreacted starting material and acyclic dimer were observed.

E. RCM of various vinylsiloxane substrates and protodesilylation of the alkenyl

siloxane products.

Note on compound numbering: ring-closed alkenyl siloxanes are designated as the parent compound and numerated with just a number (ie. 5), the acyclic precursors are designated with an 'a' following the parent compound number (ie. 5a) and the desilylated cyclic compounds are designated with a 'b' following the parent compound number (ie. 5b).

N-(3-(Diethoxy(methyl)silyl)but-3-enyl)-4-methyl-N-(pent-4-enyl)benzenesulfonamide (5a)

Yield 70% (colorless oil); IR (neat, cm⁻¹) 3051, 2974, 2926, 2878, 1641, 1599, 1494, 1444, 1390, 1342, 1306, 1258, 1159, 1103, 1079, 955; ¹H-NMR (500 MHz, CDCl₃) δ 7.70 (d, *J* = 7.8 Hz, 2 H), 7.28 (d, *J* = 7.8 Hz, 2 H), 5.77 (ddt, *J* = 17.2, 10.2, 6.5 Hz, 1 H), 5.70 (d, *J* = 1.2 Hz, 1 H), 5.58 (d, *J* = 1.2 Hz, 1 H), 5.01 (d, *J* = 17.2 Hz, 1 H), 4.97 (d, *J* = 10.2 Hz, 1 H), 3.74 (q, *J* = 7.0 Hz, 4 H), 3.22-3.19 (m, 2 H), 3.14 (t, *J* = 7.8 Hz, 2 H), 2.41 (s, 3 H), 2.35 (t, *J* = 8.0 Hz, 2 H), 2.06 (dt, *J* = 7.0, 7.0 Hz, 2 H), 1.69-1.63 (m, 2 H), 1.20 (t, *J* = 7.0 Hz, 6 H), 0.18 (s, 3 H); ¹³C-NMR (125 MHz, CDCl₃) δ 144.1, 142.9, 137.5, 137.2, 130.0, 129.5, 127.1, 115.2, 58.3, 48.0, 47.8, 35.1, 30.8, 27.7, 21.4, 18.3, -4.9; HRMS (ESI-TOF) calcd. for C₂₁H₃₅NO₄SSi [M+Na]⁺ 448.19483, found 448.19573.

(E)-6-(Diethoxy(methyl)silyl)-1-tosyl-1,2,3,4,7,8-hexahydroazocine (5)

Yield 75% (pale yellow oil); IR (neat, cm⁻¹) 2972, 2926, 1615, 1455, 1389, 1338, 1292, 1257, 1158, 1079, 1050, 1017, 995; ¹H-NMR (500 MHz, CDCl₃) δ 7.68 (d, *J* = 8.2 Hz, 2 H), 7.28 (d, *J* = 8.2 Hz, 2 H), 6.28 (t, *J* = 8.2 Hz, 1 H), 3.72 (q, *J* = 7.2 Hz, 4 H), 3.15 (bs, 2 H), 3.02 (t, *J* = 5.5 Hz, 2 H), 2.44 (t, *J* = 5.0 Hz, 2 H), 2.41 (s, 3 H), 2.32 (dt, *J* = 6.8, 6.8 Hz, 2 H), 1.79-1.74 (m, 2 H), 1.19 (t, *J* = 7.0 Hz, 6 H), 0.15 (s, 3 H); ¹³C-NMR (125 MHz, CDCl₃) δ 143.8, 142.8, 137.0, 137.0, 129.6, 126.8, 58.2, 50.8, 48.2, 29.2, 29.1, 24.8, 21.4, 18.3, -4.9; HRMS (ESI-TOF) calcd. for C₁₉H₃₁NO₄SSi [M+H]⁺ 398.18159, found 398.27160.

Ts^{-N}

(Z)-1-tosyl-1,2,3,4,7,8-hexahydroazocine (5b)

Yield 72% (colorless oil); IR (neat, cm⁻¹) 3018, 2933, 2858, 1598, 1494, 1456, 1369, 1333, 1304, 1289, 1157, 1112, 1091, 1060, 1038, 991; ¹H-NMR (500 MHz, CDCl₃) δ 7.67 (d, *J* = 8.5 Hz, 2 H), 7.27 (d, *J* = 8.5 Hz, 2 H), 5.74-5.66 (m, 2 H), 3.14 (t, *J* = 5.0 Hz, 2 H), 3.08 (t, *J* = 5.5 Hz, 2 H), 2.40 (s, 3 H), 2.31-2.28 (m, 2 H), 2.22 (dt, *J* = 6.9, 6.9 Hz, 2 H), 1.76-1.72 (m, 2 H); ¹³C-NMR (125 MHz, CDCl₃) δ 142.9, 136.9, 131.3, 129.5, 128.2, 126.8, 50.8, 48.2, 29.4, 28.1, 23.3, 21.4; HRMS (ESI-TOF) calcd. for C₁₄H₁₉NO₂S [M+H]⁺ 266.12093, found 266.12097.

Diethoxy(methyl)(3-((1*S*,2*S*)-2-(pent-4-enyloxy)cyclohexyloxy)prop-1-en-2-yl)silane and its enantiomer (6a)

Yield 62% (colorless oil); IR (neat, cm⁻¹) 3077, 2974, 2934, 2865, 1641, 1449, 1390, 1366, 1295, 1257, 1164, 1104, 1083, 992, 951; ¹H-NMR (500 MHz, CDCl₃) δ 6.00-5.98 (m, 1 H), 5.82 (dddd, *J* = 17.0, 10.0, 6.5, 6.5 Hz, 1 H), 5.64-5.63 (m, 1 H), 5.03-4.99 (m, 1 H), 4.96-4.93 (m, 1 H), 4.24-4.23 (m, 2 H), 3.77 (q, *J* = 7.0 Hz, 4 H), 3.59-3.50 (m, 2 H), 3.26-3.18 (m, 2 H), 2.14-2.10 (m, 2 H), 1.97-1.94 (m, 2 H), 1.68-1.62 (m, 4 H), 1.35-1.19 (m, 10 H), 0.22 (s, 3 H); ¹³C-NMR (125 MHz, CDCl₃) δ 144.8, 138.5, 126.9, 114.5, 81.1, 80.6, 72.4, 69.1, 58.3, 30.4, 29.8, 29.8, 29.5, 23.3, 23.3, 18.3, -4.3; HRMS (ESI-TOF) calcd. for C₁₉H₃₆O₄Si [M+Na]⁺ 379.22751, found 379.22440.

((8a*S*,12a*S*,*E*)-2,5,6,7,8a,9,10,11,12,12a-Decahydrobenzo[*b*][1,4]dioxecin-3-yl)diethoxy(methyl)silane and its enantiomer (6)

Yield 87% (pale yellow oil); IR (neat, cm⁻¹) 2972, 2932, 2862, 1615, 1451, 1390, 1364, 1256, 1165, 1113, 1082, 1009, 952; ¹H-NMR (500 MHz, CDCl₃) δ 6.22 (dd, *J* = 10.2, 6.8 Hz, 1 H), 4.33 (d, *J* = 10.5 Hz, 1 H), 4.26 (d, *J* = 10.5 Hz, 1 H), 3.81-3.76 (m, 4 H), 3.72-3.68 (m, 1 H), 3.62-3.57 (m, 1 H), 3.22-3.17 (m, 1 H), 3.02-2.97 (m, 1 H), 2.68-2.60 (m, 1 H), 2.18-2.12 (m, 1 H), 2.00-1.98 (m, 1 H), 1.94-1.92 (m, 1 H), 1.90-1.82 (m, 1 H), 1.66-1.65 (m, 2 H), 1.54-1.48 (m, 1 H), 1.26-1.12 (m, 10 H), 0.21 (s, 3 H); ¹³C-NMR (125 MHz, CDCl₃) δ 146.8, 136.6, 83.2, 83.1, 67.6, 66.7, 58.3, 31.8, 31.8, 28.6, 25.1, 24.7, 24.5, 18.3, -4.4; HRMS (ESI-TOF) calcd. for C₁₇H₃₂O₄Si [M+Na]⁺ 351.19621, found 351.19793.

(8a*S*,12a*S*,*Z*)-2,3,4,7,8a,9,10,11,12,12a-decahydrobenzo[*b*][1,4]dioxecine and its enantiomer (6b)

Yield 86% (colorless oil); IR (neat, cm⁻¹) 3012, 2930, 2858, 1451, 1360, 1315, 1239, 1206, 1117, 1086, 1051, 1026, 970; ¹H-NMR (500 MHz, CDCl₃) δ 5.79 (ddd, J = 10.0, 10.0, 5.0 Hz, 1 H), 5.55 (ddd, J = 10.7, 10.7, 6.5 Hz, 1 H), 4.31 (dd, J = 10.5, 10.5 Hz, 1 H), 4.19 (dd, J = 10.7, 5.2 Hz, 1 H), 3.70-3.67 (m, 1 H), 3.53-3.49 (m, 1 H), 3.20-3.15 (m, 1 H), 2.96-2.92 (m, 1 H), 2.65-2.59 (m, 1 H), 1.94-1.80 (m, 4 H), 1.64-1.63 (m, 2 H), 1.43-1.37 (m, 1 H), 1.22-1.10 (m, 4 H); ¹³C-NMR (125 MHz, CDCl₃) δ 131.7, 128.8, 84.7, 83.2, 67.3, 66.9, 32.2, 31.6, 28.1, 24.6, 24.5, 22.6; HRMS (ESI-TOF) calcd. for C₁₂H₂₀O₂ [M+H]⁺ 197.15361, found 197.15343.

Diethoxy(3-((1*S*,2*S*)-2-(hex-5-enyloxy)cyclohexyloxy)prop-1-en-2-yl)(methyl)silane and its enantiomer (7a)

Yield 64% (colorless oil); IR (neat, cm⁻¹) 3076, 2974, 2934, 2863, 1641, 1451, 1390, 1366, 1295, 1257, 1164, 1104, 1083, 993, 951; ¹H-NMR (500 MHz, CDCl₃) δ 5.99-5.98 (m, 1 H), 5.80 (dddd, *J* = 17.0, 10.5, 7.0, 7.0 Hz, 1 H), 5.64-5.62 (m, 1 H), 5.01-4.98 (m, 1 H), 4.94-4.92 (m, 1 H), 4.23-4.23 (m, 2 H), 3.77 (q, *J* = 7.0 Hz, 4 H), 3.58-3.49 (m, 2 H), 3.25-3.18 (m, 2 H), 2.08-2.04 (m, 2 H), 1.97-1.93 (m, 2 H), 1.65-1.62 (m, 2 H), 1.60-1.54 (m, 2 H), 1.48-1.42 (m, 2 H), 1.35-1.19 (m, 10 H), 0.22 (s, 3 H); ¹³C-NMR (125 MHz, CDCl₃) δ 144.8, 138.8, 126.9, 114.4, 81.1, 80.6, 72.4, 69.6, 58.3, 33.6, 29.8, 29.8, 25.6, 23.3, 23.3, 18.3, -4.3; HRMS (ESI-TOF) calcd. for C₂₀H₃₈O₄Si [M+Na]⁺ 393.24316, found 393.24372.

((9a*S*,13a*S*,*E*)-5,6,7,8,9a,10,11,12,13,13a-Decahydro-2*H*-benzo[*b*][1,4]dioxacycloundecin-3-

yl)diethoxy(methyl)silane and its enantiomer (7)

Yield 36% (pale yellow oil); IR (neat, cm⁻¹) 2971, 2929, 2860, 1618, 1450, 1389, 1371, 1255, 1191, 1165, 1104, 1079, 1044, 1003, 951; ¹H-NMR (500 MHz, CDCl₃) δ 6.23 (dd, *J* = 10.0, 6.0 Hz, 1 H), 4.24 (d, *J* = 10.2 Hz, 1 H), 4.14 (d, *J* = 10.2 Hz, 1 H), 3.85-3.82 (m, 1 H), 3.77 (q, *J* = 7.0 Hz, 4 H), 3.54-3.51 (m, 1 H), 3.14-3.09 (m, 1 H), 3.00-2.97 (m, 1 H), 2.66-2.58 (m, 1 H), 2.24-2.18 (m, 1 H), 2.10-2.08 (m, 1 H), 2.00-1.98 (m, 1 H), 1.75-1.66 (m, 4 H), 1.59-1.52 (m, 1 H), 1.44-1.39 (m, 1 H), 1.23-1.08 (m, 10 H), 0.19 (s, 3 H); ¹³C-NMR (125 MHz, CDCl₃) δ 149.7, 133.4, 84.1, 82.2, 71.9, 66.2, 58.2, 31.5, 31.1, 28.4, 27.2, 27.0, 24.5, 24.3, 18.3, -4.6; HRMS (ESI-TOF) calcd. for C₁₈H₃₄O₄Si [M+Na]⁺ 365.21186, found 365.21302.

(9a*S*,13a*S*,*Z*)-3,4,5,8,9a,10,11,12,13,13a-decahydro-2*H*-benzo[*b*][1,4]dioxacycloundecine and its enantiomer (7b)

Yield 90% (colorless oil); IR (neat, cm⁻¹) 3012, 2930, 2858, 1450, 1370, 1312, 1243, 1188, 1130, 1102, 999; ¹H-NMR (500 MHz, CDCl₃) δ 5.65 (ddd, J = 9.5, 9.5, 5.0 Hz, 1 H), 5.56 (ddd, J = 10.0, 10.0, 5.0 Hz, 1 H), 4.28 (dd, J = 10.0, 10.0 Hz, 1 H), 4.06 (dd, J = 10.0, 5.0 Hz, 1 H), 3.70 (dd, J = 10.0, 8.0 Hz, 1 H), 3.47 (dd, J= 11.5, 6.5 Hz, 1 H), 3.14 (ddd, J = 9.0, 9.0, 5.0 Hz, 1 H), 2.98 (ddd, J = 9.5, 9.5, 5.0 Hz, 1 H), 2.63-2.56 (m, 1 H), 2.04-2.00 (m, 3 H), 1.73-1.64 (m, 4 H), 1.51-1.45 (m, 1 H), 1.42-1.37 (m, 1 H), 1.19-1.07 (m, 4 H); ¹³C-NMR (125 MHz, CDCl₃) δ 135.0, 126.1, 84.3, 82.1, 71.0, 66.4, 31.9, 30.7, 28.2, 26.7, 26.1, 24.5, 24.2; HRMS (ESI-TOF) calcd. for C₁₃H₂₂O₂ [M+H]⁺ 211.16926, found 211.16944.

(15,25)-2-((2-(Diethoxy(methyl)silyl)allyl)oxy)cyclohexyl hex-5-enoate and its enantiomer (8a)

Yield 65% (colorless oil); IR (neat, cm⁻¹) 3077, 2973, 2938, 2866, 1736, 1641, 1452, 1389, 1365, 1254, 1168, 1103, 1080, 1009, 951; ¹H-NMR (500 MHz, CDCl₃) δ 5.93-5.93 (m, 1 H), 5.78 (dddd, *J* = 17.0, 10.5, 6.5, 6.5

Hz, 1 H), 5.62-5.62 (m, 1 H), 5.04-5.00 (m, 1 H), 4.98 (d, J = 10.0 Hz, 1 H), 4.81 (ddd, J = 8.5, 8.5, 4.5 Hz, 1 H), 4.20 (d, J = 13.0 Hz, 1 H), 4.10 (d, J = 13.0 Hz, 1 H), 3.76 (q, J = 7.0 Hz, 4 H), 3.32 (ddd, J = 8.5, 8.5, 4.0 Hz, 1 H), 2.31 (dd, J = 8.0, 8.0 Hz, 2 H), 2.09 (ddd, J = 7.0, 7.0, 7.0 Hz, 2 H), 2.03-1.97 (m, 2 H), 1.76-1.64 (m, 4 H), 1.44-1.33 (m, 3 H), 1.30-1.20 (m, 7 H), 0.20 (s, 3 H); ¹³C-NMR (125 MHz, CDCl₃) δ 172.9, 144.4, 137.8, 127.1, 115.2, 78.7, 74.7, 72.0, 58.3, 58.3, 33.9, 33.0, 29.6, 29.5, 24.1, 23.1, 23.0, 18.3, -4.3; HRMS (ESI-TOF) calcd. for C₂₀H₃₆O₅Si [M+Na]⁺ 407.22242, found 407.22435.

(9aS,13aS,E)-7-(Diethoxy(methyl)silyl)-3,4,5,8,9a,10,11,12,13,13a-decahydro-2H-

benzo[b][1,4]dioxacycloundecin-2-one and its enantiomer (8)

Yield 43% (pale yellow oil); IR (neat, cm⁻¹) 2971, 2932, 2865, 1736, 1614, 1450, 1389, 1365, 1256, 1225, 1196, 1152, 1084, 1055, 983, 952; ¹H-NMR (500 MHz, CDCl₃) δ 6.20-6.17 (m, 1 H), 4.75 (ddd, *J* = 10.0, 10.0, 5.0 Hz, 1 H), 4.22 (d, *J* = 12.8 Hz, 1 H), 3.99 (d, *J* = 12.8 Hz, 1 H), 3.81-3.73 (m, 4H), 3.21 (ddd, *J* = 10.0, 10.0, 4.5 Hz, 1 H), 2.85-2.76 (m, 1 H), 2.37-2.26 (m, 2 H), 2.16-2.12 (m, 2 H), 2.06-1.99 (m, 1 H), 1.95-1.93 (m, 1 H), 1.83-1.70 (m, 3 H), 1.34-1.16 (m, 10 H), 0.20 (s, 3 H); ¹³C-NMR (125 MHz, CDCl₃) δ 173.4, 150.2, 135.5, 79.4, 75.0, 63.3, 58.2, 58.2, 33.3, 30.6, 30.1, 27.1, 24.1, 23.6, 18.4, 18.3, -4.9; HRMS (ESI-TOF) calcd. for C₁₈H₃₂O₅Si [M+H]⁺ 357.20918, found 357.20950.

(9a*S*,13a*S*,*Z*)-3,4,5,8,9a,10,11,12,13,13a-decahydro-2*H*-benzo[*b*][1,4]dioxacycloundecin-2-one and its enantiomer (8b)

Yield 83% (colorless oil); IR (neat, cm⁻¹) 3011, 2936, 2862, 1735, 1451, 1364, 1322, 1217, 1153, 1087, 1032, 984; ¹H-NMR (500 MHz, CDCl₃) δ 6.63-6.59 (m, 1 H), 5.54 (ddd, *J* = 10.5, 8.0, 8.0 Hz, 1 H), 4.73-4.68 (m, 1 H), 4.20 (dd, *J* = 13.2, 4.8 Hz, 1 H), 3.94 (dd, *J* = 13.2, 7.2 Hz, 1 H), 3.24-3.19 (m, 1 H), 2.50-2.43 (m, 1 H), 2.36-2.26 (m, 2 H), 2.16-2.03 (m, 2 H), 1.97-1.85 (m, 2 H), 1.82-1.67 (m, 3 H), 1.33-1.13 (m, 4 H); ¹³C-NMR (125 MHz, CDCl₃) δ 173.2, 134.6, 127.3, 80.1, 75.8, 64.3, 33.9, 30.9, 30.5, 25.9, 24.0, 23.9, 23.8; HRMS (ESI-TOF) calcd. for C₁₃H₂₀O₃ [M+Na]⁺ 247.13047, found 247.13070.

(1R,2S)-2-((2-(Diethoxy(methyl)silyl)allyl)oxy)cyclohexyl hex-5-enoate and its enantiomer (9a)

Yield 69% (colorless oil); IR (neat, cm⁻¹) 3077, 2973, 2939, 2869, 1733, 1641, 1449, 1388, 1364, 1255, 1170, 1104, 1082, 951; ¹H-NMR (500 MHz, CDCl₃) δ 5.94-5.93 (m, 1 H), 5.78 (dddd, *J* = 16.8, 10.2, 6.8, 6.8 Hz, 1 H), 5.64-5.63 (m, 1 H), 5.08-5.07 (m, 1 H), 5.04-5.00 (m, 1 H), 4.98 (d, *J* = 10.0 Hz, 1 H), 4.14 (d, *J* = 13.0 Hz, 1 H), 4.10 (d, *J* = 13.0 Hz, 1 H), 3.79-3.75 (m, 4 H), 3.49-3.48 (m, 1 H), 2.34 (dd, *J* = 7.5, 7.5 Hz, 2 H), 2.09 (ddd, *J* = 7.0, 7.0, 7.0 Hz, 2 H), 1.93-1.88 (m, 1 H), 1.85-1.78 (m, 1 H), 1.76-1.65 (m, 3 H), 1.62-1.47 (m, 3 H), 1.43-1.29 (m, 2 H), 1.23-1.20 (m, 6 H), 0.22 (s, 3 H); ¹³C-NMR (125 MHz, CDCl₃) δ 173.1, 144.4, 137.8, 127.4, 115.2, 76.5, 71.6, 58.3, 33.9, 33.0, 27.8, 27.8, 24.2, 22.0, 21.8, 18.3, -4.3; HRMS (ESI-TOF) calcd. for C₂₀H₃₆O₅Si [M+Na]⁺ 407.22242, found 407.22426.

(9aS,13aR,E)-7-(Diethoxy(methyl)silyl)-3,4,5,8,9a,10,11,12,13,13a-decahydro-2H-

benzo[b][1,4]dioxacycloundecin-2-one and its enantiomer (9)

Yield 36% (pale yellow oil); IR (neat, cm⁻¹) 2970, 2931, 2870, 1730, 1614, 1450, 1390, 1360, 1246, 1225, 1162, 1110, 1080, 1049, 949; ¹H-NMR (500 MHz, CDCl₃) δ 6.24 (dd, *J* = 9.8, 6.2 Hz, 1 H), 4.67 (ddd, *J* = 11.0, 3.8, 3.8 Hz, 1 H), 4.29 (d, *J* = 11.5 Hz, 1 H), 3.89 (bs, 1 H), 3.86 (d, *J* = 11.5 Hz, 1 H), 3.80-3.75 (m, 4 H), 2.45 (ddd, *J* = 13.2, 8.2, 4.8 Hz, 1 H), 2.25-2.13 (m, 3 H), 1.94-1.88 (m, 2 H), 1.86-1.78 (m, 2 H), 1.72-1.70 (m, 1 H), 1.59-1.48 (m, 2 H), 1.42-1.17 (m, 9 H), 0.21 (s, 3 H); ¹³C-NMR (125 MHz, CDCl₃) δ 173.6, 147.9, 134.7, 75.6, 74.0, 65.8, 58.3, 34.7, 28.6, 27.6, 26.5, 24.9, 23.7, 19.9, 18.3, -4.6; HRMS (ESI-TOF) calcd. for C₁₈H₃₂O₅Si [M+H]⁺ 357.20918, found 357.21015.

(9aS,13aR,Z)-3,4,5,8,9a,10,11,12,13,13a-decahydro-2*H*-benzo[*b*][1,4]dioxacycloundecin-2-one and its enantiomer (9b)

Yield 92% (colorless oil), inseparable mixture with styrene derivative; IR (neat, cm⁻¹) 3010, 2937, 2862, 1729, 1448, 1359, 1243, 1212, 1155, 1083, 1051, 1014; ¹H-NMR (500 MHz, CDCl₃) δ 5.61-5.52 (m, 2 H), 4.66-4.62 (m, 1 H), 4.50 (dd, *J* = 12.2, 7.8 Hz, 1 H), 4.05 (bs, 1 H), 3.93 (dd, *J* = 12.2, 5.0 Hz, 1 H), 2.33-2.29 (m, 2 H), 2.24-2.10 (m, 2 H), 1.93-1.79 (m, 4 H), 1.74-1.72 (m, 1 H), 1.59-1.50 (m, 2 H), 1.47-1.27 (m 3 H); ¹³C-NMR (125 MHz, CDCl₃) δ 173.5, 133.7, 127.6, 75.5, 72.3, 64.8, 35.0, 30.1, 26.3, 26.1, 24.9, 24.1, 19.7; HRMS (ESI-TOF) calcd. for C₁₃H₂₀O₃ [M+Na]⁺ 247.13047, found 247.13029.

$(\pm) \textbf{-1-} (2-(((2-(Diethoxy(methyl)silyl)allyl)oxy)methyl) piperidin-1-yl) hept-6-en-1-one (10a)$

Yield 54% (pale yellow oil); IR (neat, cm⁻¹) 3075, 2973, 2930, 2865, 1644, 1425, 1390, 1365, 1257, 1166, 1103, 1081, 1029, 952; ¹H-NMR (500 MHz, CDCl₃) δ 5.89 and 5.87 (pair of bs due to rotamers, 1 H), 5.80 (dddd, J = 17.0, 10.0, 6.8, 6.8 Hz, 1 H), 5.64 (bs, 1 H), 5.01-4.98 (m, 1 H), 4.93 (d, J = 10.0 Hz, 1 H), 4.57 and 3.66 (pair of d due to rotamers, J = 13.0 Hz, 1 H), 4.14-4.04 (m, 3 H), 3.76 (q, J = 6.8 Hz, 4 H), 3.61-3.46 (m, 2 H), 3.11 and 2.57 (pair of dd due to rotamers, J = 13.0, 13.0 Hz, 1 H), 2.43-2.29 (m, 2 H), 2.07 (ddd, J = 7.2, 7.2, 7.2, 7.2, 7.2 Hz, 2 H), 1.86-1.80 (m, 1 H), 1.71-1.49 (m, 6 H), 1.46-1.33 (m, 3 H), 1.21 (t, J = 7.0 Hz, 6 H), 0.20 (s, 3H); ¹³C-NMR (125 MHz, CDCl₃) δ 172.4 and 171.8 (due to rotamers), 144.0 and 143.8 (due to rotamers), 138.7, 127.7, 114.4, 74.0 and 73.8 (due to rotamers), 68.7 and 68.4 (due to rotamers), 58.3, 52.4, 46.8, 42.2, 37.0, 33.6 and 33.2 (due to rotamers), 19.6 and 19.4 (due to rotamers), 18.3, -4.5; HRMS (ESI-TOF) calcd. for C₂₁H₃₉NO₄Si [M+H]⁺ 398.27211, found 398.27371.

(±)-(*E*)-4-(Diethoxy(methyl)silyl)-1,6,7,8,9,12,13,14,15,15a-decahydropyrido[2,1-

c][1,4]oxaazacyclododecin-10(3H)-one (10)

Yield 33% (colorless oil); IR (neat, cm⁻¹) 2970, 2928, 2865, 1634, 1444, 1389, 1366, 1256, 1165, 1106, 1079, 952; ¹H-NMR (500 MHz, CDCl₃) δ 6.15 (dd, *J* = 9.5, 5.5 Hz, 1 H), 4.65 (d, *J* = 13.0 Hz, 1 H), 4.40 (bs, 1 H), 4.29 (d, *J* = 11.2 Hz, 1 H), 3.95 (d, *J* = 11.2 Hz, 1 H), 3.79 (dd, *J* = 9.8, 9.8 Hz, 1 H), 3.73 (q, *J* = 6.9 Hz, 4 H), 3.33 (dd, *J* = 11.0, 4.5 Hz, 1 H), 2.85-2.82 (m, 1 H), 2.59-2.55 (m, 2 H), 1.96-1.92 (m, 2 H), 1.74-1.58 (m, 6 H), 1.48-1.35 (m, 4 H), 1.19 (dd, *J* = 6.8, 6.8 Hz, 6 H), 0.16 (s, 3 H); ¹³C-NMR (125 MHz, CDCl₃) δ 173.7, 148.0, 132.9, 67.6, 67.4, 58.3 52.0, 36.6, 29.3, 27.3, 27.0, 26.9, 25.3, 23.8, 19.7, 18.3, 18.3, -4.6; HRMS (ESI-TOF) calcd. for C₁₉H₃₅NO₄Si [M+Na]⁺ 392.22276, found 392.22352.

(±)-(*Z*)-1,6,7,8,9,12,13,14,15,15a-decahydropyrido[2,1-*c*][1,4]oxaazacyclododecin-10(3*H*)-one (10b) Yield 90% (colorless oil); IR (neat, cm⁻¹) 3010, 2934, 2861, 1631, 1444, 1419, 1367, 1327, 1266, 1125, 1078, 1029; ¹H-NMR (500 MHz, CDCl₃) δ 5.59-5.49 (m, 2 H), 4.61-4.59 (m, 1 H), 4.36 (bs, 1 H), 4.24-4.20 (m, 1 H), 3.84-3.82 (m, 1 H), 3.76 (dd, *J* = 9.8, 9.8 Hz, 1 H), 3.43-3.40 (m, 1 H), 2.74 (bs, 1 H), 2.53 (dd, *J* = 12.2, 12.2 Hz, 1 H), 2.38 (bs, 1 H), 1.93-1.92 (m, 2 H), 1.73-1.60 (m, 6 H), 1.44-1.30 (m, 4 H); ¹³C-NMR (125 MHz, CDCl₃) δ 173.3, 134.9, 125.4, 67.3, 65.5, 51.1, 36.8, 29.5, 26.8, 26.4, 25.2, 25.1, 23.6, 19.4; HRMS (ESI-TOF) calcd. for C₁₄H₂₃NO₂ [M+Na]⁺ 260.16210, found 260.16176.

Diethoxy(3-(((1S,2S)-2-(hept-6-en-1-yloxy)cyclohexyl)oxy)prop-1-en-2-yl)(methyl)silane and its enantiomer (11a)

Yield 59% (colorless oil); IR (neat, cm⁻¹) 3076, 2974, 2933, 2862, 1641, 1451, 1390, 1366, 1295, 1257, 1164, 1104, 1083, 994, 952; ¹H-NMR (500 MHz, CDCl₃) δ 5.99-5.98 (m, 1 H), 5.80 (dddd, *J* = 17.0, 10.5, 6.8, 6.8 Hz, 1 H), 5.64-5.63 (m, 1 H), 5.01-4.97 (m, 1 H), 4.94-4.92 (m, 1 H), 4.23-4.23 (m, 2 H), 3.77 (q, *J* = 7.0 Hz, 4 H), 3.57-3.48 (m, 2 H), 3.25-3.18 (m, 2 H), 2.04 (ddd, *J* = 7.0, 7.0, 7.0 Hz, 2 H), 1.96-1.94 (m, 2 H), 1.65-1.62 (m, 2 H), 1.59-1.53 (m, 2 H), 1.41-1.19 (m, 14 H), 0.22 (s, 3 H); ¹³C-NMR (125 MHz, CDCl₃) δ 144.8, 139.0, 126.9, 114.2, 81.1, 80.7, 72.4, 69.8, 58.3, 33.7, 30.2, 29.8, 29.8, 28.8, 25.7, 23.3, 23.3, 18.3, -4.3; HRMS (ESI-TOF) calcd. for C₂₁H₄₀O₄Si [M+Na]⁺ 407.25881, found 407.25995.

((10aS, 14aS, E) - 2, 5, 6, 7, 8, 9, 10a, 11, 12, 13, 14, 14a-Dodecahydrobenzo[b][1,4]dioxacyclododecin-3-yl)diethoxy(methyl)silane and its enantiomer (11)

Yield 59% (pale yellow oil); IR (neat, cm⁻¹) 2970, 2930, 2859, 1616, 1450, 1389, 1365, 1254, 1166, 1135, 1111, 1083, 1024, 950; ¹H-NMR (500 MHz, CDCl₃) δ 6.33 (dd, *J* = 8.8, 6.8 Hz, 1 H), 4.35 (d, *J* = 8.8 Hz, 1

H), 4.07 (d, J = 8.8 Hz, 1 H), 3.92-3.89 (m, 1 H), 3.79-3.74 (m, 4 H), 3.16-3.12 (m, 1 H), 3.09-3.05 (m, 2 H), 2.62-2.55 (m, 1 H), 2.08-2.03 (m, 2 H), 2.00-1.94 (m, 1 H), 1.68-1.59 (m, 4 H), 1.56-1.46 (m, 4 H), 1.22-1.08 (m, 10 H), 0.19 (s, 3 H); ¹³C-NMR (125 MHz, CDCl₃) δ 149.7, 133.7, 84.2, 81.4, 70.0, 66.5, 58.2, 58.2, 31.2, 30.7, 27.7, 27.4, 27.2, 25.8, 24.5, 24.2, 18.3, -4.5; HRMS (ESI-TOF) calcd. for C₁₉H₃₆O₄Si [M+Na]⁺ 379.22751, found 379.22910.

(10a*S*,14a*S*,*Z*)-2,3,4,5,6,9,10a,11,12,13,14,14a-dodecahydrobenzo[*b*][1,4]dioxacyclododecine and its enantiomer (11b)

Yield 88% (colorless oil), inseparable mixture with styrene derivative; IR (neat, cm⁻¹) 3014, 2930, 2858, 1451, 1361, 1334, 1313, 1244, 1190, 1130, 1107, 1047, 983, 962; ¹H-NMR (500 MHz, CDCl₃) δ 5.73-5.65 (m, 2 H), 4.47 (dd, *J* = 9.0, 9.0 Hz, 1 H), 3.96 (dd, *J* = 9.2, 4.2 Hz, 1 H), 3.93-3.90 (m, 1 H), 3.16-3.08 (m, 3 H), 2.45-2.38 (m, 1 H), 2.08-2.07 (m, 1 H), 2.00-1.98 (m, 1 H), 1.90-1.86 (m, 1 H), 1.70-1.60 (m, 3 H), 1.52-1.45 (m, 4 H), 1.28-1.13 (m, 5 H); ¹³C-NMR (125 MHz, CDCl₃) δ 135.4, 126.3, 84.8, 80.8, 69.6, 66.0, 31.5, 30.6, 28.1, 27.3, 24.9, 24.6, 24.1, 24.0; HRMS (ESI-TOF) calcd. for C₁₄H₂₄O₂ [M+Na]⁺ 247.16685, found 247.16800.

(15,25)-2-((2-(Diethoxy(methyl)silyl)allyl)oxy)cyclohexyl hept-6-enoate and its enantiomer (12a)

Yield 60% (colorless oil); IR (neat, cm⁻¹) 3075, 2973, 2937, 2865, 1736, 1641, 1452, 1389, 1257, 1166, 1103, 1080, 1008, 952; ¹H-NMR (500 MHz, CDCl₃) δ 5.93-5.93 (m, 1 H), 5.79 (dddd, *J* = 17.0, 10.5, 6.5, 6.5 Hz, 1 H), 5.62-5.62 (m, 1 H), 5.02-4.98 (m, 1 H), 4.95 (d, *J* = 10.0 Hz, 1 H), 4.81 (ddd, *J* = 8.2, 8.2, 4.5 Hz, 1 H), 4.21 (d, *J* = 13.2 Hz, 1 H), 4.10 (d, *J* = 13.2 Hz, 1 H), 3.76 (q, *J* = 7.0 Hz, 4 H), 3.32 (ddd, *J* = 8.5, 8.5, 4.0 Hz, 1 H), 2.30 (dd, *J* = 8.0, 8.0 Hz, 2 H), 2.08-1.96 (m, 4 H), 1.71-1.61 (m, 4 H), 1.45-1.39 (m, 3 H), 1.34 (dd, *J* = 9.5, 9.5 Hz, 2 H), 1.30-1.20 (m, 7 H), 0.21 (s, 3 H); ¹³C-NMR (125 MHz, CDCl₃) δ 173.0, 144.4, 138.4, 127.1, 114.6, 78.7, 74.6, 72.0, 58.3, 58.3, 34.5, 33.4, 29.6, 29.5, 28.3, 24.4, 23.1, 23.0, 18.3, -4.3; HRMS (ESI-TOF) calcd. for C₂₁H₃₈O₅Si [M+Na]⁺ 421.23807, found 421.23885.

(10aS,14aS,E)-8-(Diethoxy(methyl)silyl)-3,4,5,6,10a,11,12,13,14,14a-

decahydrobenzo[b][1,4]dioxacyclododecin-2(9H)-one and its enantiomer (12)

Yield 82% (pale yellow oil); IR (neat, cm⁻¹) 2971, 2936, 2866, 1734, 1617, 1451, 1389, 1360, 1338, 1256, 1225, 1189, 1150, 1104, 1082, 1036, 996, 950; ¹H-NMR (500 MHz, CDCl₃) δ 6.37 (dd, J = 10.2, 5.8 Hz, 1 H), 4.61 (ddd, J = 10.2, 10.2, 4.5 Hz, 1 H), 4.10 (d, J = 9.0 Hz, 1 H), 4.04 (d, J = 9.0 Hz, 1 H), 3.76-3.71 (m, 4 H), 3.22 (ddd, J = 10.0, 10.0, 4.5 Hz, 1 H), 2.66 (dddd, J = 11.3, 11.3, 11.3, 4.0 Hz, 1 H), 2.47 (ddd, J = 12.5, 12.5, 4.5 Hz, 1 H), 2.35 (ddd, J = 13.2, 4.8, 4.8 Hz, 1 H), 2.16-2.15 (m, 1 H), 2.07-2.06 (m, 1 H), 1.96-1.90 (m, 1 H), 1.85-1.78 (m, 1 H), 1.74-1.69 (m, 2 H), 1.65-1.56 (m, 2 H), 1.33-1.18 (m, 11 H), 0.17 (s, 3 H); ¹³C-NMR (125 MHz, CDCl₃) δ 173.8, 151.1, 132.6, 80.4, 76.5, 65.4, 58.3, 58.2, 33.3, 31.0, 30.2, 27.9, 27.7, 24.9, 24.1, 24.0, 18.3, -4.9; HRMS (ESI-TOF) calcd. for C₁₉H₃₄O₅Si [M+H]⁺ 371.22483, found 371.22556.

(10aS, 14aS, Z)-3,4,5,6,10a,11,12,13,14,14a-decahydrobenzo[b][1,4]dioxacyclododecin-2(9H)-one and its enantiomer (12b)

Yield 91% (colorless oil); IR (neat, cm⁻¹) 3019, 2937, 2862, 1732, 1451, 1354, 1278, 1222, 1150, 1107, 1085, 1034, 989; ¹H-NMR (500 MHz, CDCl₃) δ 5.84 (ddd, J = 10.0, 10.0, 5.5 Hz, 1 H), 5.65 (ddd, J = 10.0, 7.0, 7.0 Hz, 1 H), 4.62 (ddd, J = 10.0, 10.0, 5.0 Hz, 1 H), 4.06 (dd, J = 8.5, 8.5 Hz, 1 H), 3.98 (dd, J = 9.5, 6.5 Hz, 1 H), 3.22 (ddd, J = 10.0, 10.0, 4.0 Hz, 1 H), 2.55 (dddd, J = 11.5, 11.5, 11.5, 4.0 Hz, 1 H), 2.46 (ddd, J = 12.5, 12.5, 4.0 Hz, 1 H), 2.35 (ddd, J = 13.0, 5.0, 5.0 Hz, 1 H), 2.11-2.06 (m, 2 H), 1.94-1.87 (m, 1 H), 1.76-1.67 (m, 3 H), 1.65-1.55 (m, 2 H), 1.34-1.17 (m, 5 H); ¹³C-NMR (125 MHz, CDCl₃) δ 173.6, 138.1, 124.6, 80.6, 76.7, 65.2, 33.1, 30.9, 30.6, 28.2, 25.9, 24.6, 24.2, 23.9; HRMS (ESI-TOF) calcd. for C₁₄H₂₂O₃ [M+Na]⁺ 261.14612, found 261.14610.

(1R,2S)-2-((2-(Diethoxy(methyl)silyl)allyl)oxy)cyclohexyl hept-6-enoate and its enantiomer (13a)

Yield 66% (colorless oil); IR (neat, cm⁻¹) 3076, 2972, 2938, 2866, 1734, 1641, 1449, 1388, 1364, 1257, 1169, 1104, 1081, 992, 951; ¹H-NMR (500 MHz, CDCl₃) δ 5.94-5.93 (m, 1 H), 5.79 (dddd, J = 17.0, 10.5, 6.5, 6.5 Hz, 1 H), 5.64-5.63 (m, 1 H), 5.08-5.06 (m, 1 H), 5.02-4.98 (m, 1 H), 4.94 (d, J = 10.0 Hz, 1 H), 4.14 (d, J = 13.0 Hz, 1 H), 4.10 (d, J = 13.0 Hz, 1 H), 3.79-3.75 (m, 4 H), 3.49-3.48 (m, 1 H), 2.33 (dd, J = 7.2, 7.2 Hz, 2 H), 2.06 (ddd, J = 7.2, 7.2, 7.2 Hz, 2 H), 1.93-1.87 (m, 1 H), 1.85-1.78 (m, 1 H), 1.70-1.47 (m, 6 H), 1.46-1.29 (m, 4 H), 1.21 (dd, J = 7.0, 7.0 Hz, 6 H), 0.22 (s, 3 H); ¹³C-NMR (125 MHz, CDCl₃) δ 173.2, 144.4, 138.5, 127.4, 114.6, 76.5, 71.6, 58.3, 34.5, 33.4, 28.3, 27.8, 27.8, 24.5, 22.0, 21.9, 18.3, -4.3; HRMS (ESI-TOF) calcd. for C₂₁H₃₈O₅Si [M+Na]⁺ 421.23807, found 421.23931.

(10aS,14aR,E)-8-(Diethoxy(methyl)silyl)-3,4,5,6,10a,11,12,13,14,14a-

decahydrobenzo[b][1,4]dioxacyclododecin-2(9H)-one and its enantiomer (13)

Yield 46% (pale yellow oil); IR (neat, cm⁻¹) 2970, 2935, 2864, 1730, 1616, 1449, 1389, 1353, 1256, 1224, 1156, 1105, 1079, 984, 952; ¹H-NMR (500 MHz, CDCl₃) δ 6.26 (dd, *J* = 8.2, 6.8 Hz, 1 H), 5.02-5.00 (m, 1 H), 4.06-4.01 (m, 2 H), 3.78-3.73 (m, 4 H), 3.61-3.60 (m, 1 H), 2.40-2.28 (m, 2 H), 2.27-2.15 (m, 2 H), 1.96-1.90 (m, 1 H), 1.88-1.78 (m, 2 H), 1.75-1.68 (m, 1 H), 1.67-1.54 (m, 6 H), 1.40-1.29 (m, 2 H), 1.22-1.19 (m, 6 H), 0.18 (s, 3 H); ¹³C-NMR (125 MHz, CDCl₃) δ 174.3, 149.6, 133.3, 75.0, 71.9, 63.6, 58.3, 58.2, 34.9, 29.7, 28.6, 27.9, 27.7, 27.6, 24.4, 22.1, 21.7, 18.3, -4.8; HRMS (ESI-TOF) calcd. for C₁₉H₃₄O₅Si [M+Na]⁺ 393.20677, found 393.20690.

(10aS, 14aR, Z)-3,4,5,6,10a,11,12,13,14,14a-decahydrobenzo[b][1,4]dioxacyclododecin-2(9H)-one and its enantiomer (13b)

Yield 97% (colorless oil); IR (neat, cm⁻¹) 2935, 2859, 1729, 1449, 1352, 1219, 1147, 1081, 1047; ¹H-NMR (500 MHz, CDCl₃) δ 5.71 (ddd, J = 10.5, 8.0, 8.0 Hz, 1 H), 5.61 (ddd, J = 10.5, 6.5, 6.5 Hz, 1 H), 5.07-5.06 (m, 1 H), 4.09-4.00 (m, 2 H), 3.65-3.63 (m, 1 H), 2.43-2.38 (m, 1 H), 2.34-2.29 (m, 1 H), 2.26-2.18 (m, 1 H), 2.10-2.03 (m, 1 H), 1.99-1.94 (m, 1 H), 1.83-1.72 (m, 3 H), 1.71-1.50 (m, 6 H), 1.42-1.28 (m, 2 H); ¹³C-NMR (125 MHz, CDCl₃) δ 174.3, 136.3, 125.4, 74.3, 71.9, 62.8, 34.6, 28.7, 28.3, 27.5, 26.1, 23.9, 22.2, 21.6; HRMS (ESI-TOF) calcd. for C₁₄H₂₂O₃ [M+Na]⁺ 261.14612, found 261.14045.

(1*S*,2*S*)-2-(Allyloxy)cyclohexyl 6-(diethoxy(methyl)silyl)hept-6-enoate and its enantiomer (14a)

Yield 82% (colorless oil); IR (neat, cm⁻¹) 3075, 2973, 2937, 2865, 1736, 1641, 1452, 1389, 1364, 1257, 1166, 1102, 1080, 1008, 994, 952; ¹H-NMR (500 MHz, CDCl₃) δ 5.91-5.84 (m, 1 H), 5.67 (bs, 1 H), 5.55-5.55 (m, 1 H), 5.25 (d, *J* = 17.5 Hz, 1 H), 5.13 (d, *J* = 10.0 Hz, 1 H), 4.80-4.76 (m, 1 H), 4.09 (dd, *J* = 12.8, 5.2 Hz, 1 H), 4.01 (dd, *J* = 12.8, 5.2 Hz, 1 H), 3.76 (q, *J* = 7.0 Hz, 4 H), 3.32-3.28 (m, 1 H), 2.31 (dd, *J* = 7.8, 7.8 Hz, 2 H), 2.16 (dd, *J* = 7.8, 7.8 Hz, 2 H), 2.00-1.97 (m, 2 H), 1.71-1.62 (m, 4 H), 1.52-1.46 (m, 2 H), 1.41-1.20 (m, 10 H), 0.19 (s, 3 H); ¹³C-NMR (125 MHz, CDCl₃) δ 173.0, 147.1, 135.4, 127.5, 116.2, 78.4, 74.7, 70.4, 58.2, 35.1, 34.6, 29.9, 29.7, 28.2, 24.9, 23.2, 23.2, 18.3, -4.6; HRMS (ESI-TOF) calcd. for C₂₁H₃₈O₅Si [M+Na]⁺ 421.23807, found 421.24013.

(10aS,14aS,E)-7-(Diethoxy(methyl)silyl)-3,4,5,6,10a,11,12,13,14,14a-

decahydrobenzo[b][1,4]dioxacyclododecin-2(9H)-one and its enantiomer (14)

Yield 79% (pale yellow oil); IR (neat, cm⁻¹) 2971, 2937, 2866, 1733, 1450, 1390, 1353, 1339, 1256, 1227, 1146, 1103, 1081, 1036, 996, 951; ¹H-NMR (500 MHz, CDCl₃) δ 6.21 (dd, *J* = 7.0, 7.0 Hz, 1H), 4.65-4.60 (m, 1 H), 4.20 (dd, *J* = 8.5, 8.5 Hz, 1 H), 3.98 (dd, *J* = 9.0, 6.0 Hz, 1 H), 3.76-3.72 (m, 4 H), 3.23 (ddd, *J* = 10.0, 10.0, 4.0 Hz, 1 H), 2.58 (ddd, *J* = 12.5, 12.5, 3.5 Hz, 1 H), 2.54-2.48 (m, 1 H), 2.34 (ddd, *J* = 13.0, 5.0, 5.0 Hz, 1 H), 2.10 (bs, 2 H), 1.95-1.87 (m, 2 H), 1.76-1.69 (m, 3 H), 1.64-1.57 (m, 1 H), 1.33-1.18 (m, 11 H), 0.18 (s, 3 H); ¹³C-NMR (125 MHz, CDCl₃) δ 173.7, 146.5, 136.5, 80.7, 77.1, 65.8, 58.2, 58.2, 33.4, 31.0, 30.7, 29.0, 27.8, 25.5, 24.3, 23.9, 18.3, 18.3, -4.7; HRMS (ESI-TOF) calcd. for C₁₉H₃₄O₅Si [M+H]⁺ 371.22483, found 371.22591.

Protodesilylation of 14 generated 12b with 52% yield.

Yield 80% (colorless oil); IR (neat, cm⁻¹) 3051, 2971, 2938, 2866, 1733, 1449, 1388, 1365, 1257, 1238, 1168, 1104, 1081, 950; ¹H-NMR (500 MHz, CDCl₃) δ 5.92-5.84 (m, 1 H), 5.68-5.67 (m, 1 H), 5.55-5.54 (m, 1 H), 5.28-5.24 (m, 1 H), 5.15-5.12 (m, 1 H), 5.09-5.08 (m, 1H), 4.05 (dd, J = 13.0, 5.8 Hz, 1H), 3.98 (dd, J = 13.2, 5.8 Hz, 1 H), 3.76 (q, J = 7.0 Hz, 4 H), 3.49-3.47 (m, 1 H), 2.35 (dd, J = 7.5, 7.5 Hz, 2 H), 2.16 (dd, J = 7.5, 7.5 Hz, 2 H), 1.91-1.86 (m, 1 H), 1.83-1.76 (m, 1 H), 1.71-1.62 (m, 3 H), 1.60-1.46 (m, 5 H), 1.43-1.29 (m, 2 H), 1.21 (dd, J = 7.0, 7.0 Hz, 6 H), 0.18 (s, 3 H); ¹³C-NMR (125 MHz, CDCl₃) δ 173.3, 174.1, 135.3, 127.5, 116.5, 76.0, 71.0, 69.7, 58.2, 35.1, 34.6, 28.2, 27.9, 27.8, 24.9, 22.1, 21.7, 18.3, -4.6; HRMS (ESI-TOF) calcd. for C₂₁H₃₈O₅Si [M+Na]⁺ 421.23807, found 421.23908.

 $(10 a S, 14 a R, E) \hbox{-} 7 \hbox{-} (Diethoxy(methyl) silyl) \hbox{-} 3, 4, 5, 6, 10 a, 11, 12, 13, 14, 14 a \hbox{-} 14, 14$

decahydrobenzo[b][1,4]dioxacyclododecin-2(9H)-one and its enantiomer (15)

Yield 14% (colorless oil); IR (neat, cm⁻¹) 2970, 2935, 2865, 1731, 1449, 1390, 1354, 1256, 1226, 1149, 1103, 1079, 986, 952; ¹H-NMR (500 MHz, CDCl₃) δ 6.14 (dd, *J* = 6.5, 6.5 Hz, 1 H), 5.06-5.05 (m, 1H), 4.19 (dd, *J* = 10.8, 6.5 Hz, 1 H), 4.03 (dd, *J* = 10.8, 6.5 Hz, 1 H), 3.77-3.72 (m, 4 H), 3.60-3.59 (m, 1 H), 2.46-2.40 (m, 2 H), 2.34 (ddd, *J* = 13.0, 5.5, 5.5 Hz, 1 H), 2.08 (ddd, *J* = 12.2, 12.2, 5.0 Hz, 1 H), 1.98-1.92 (m, 1 H), 1.84-1.71 (m, 3 H), 1.68-1.54 (m, 5 H), 1.50-1.28 (m, 3 H), 1.20 (dd, *J* = 7.5, 7.5 Hz, 6 H), 0.18 (s, 3 H); ¹³C-NMR (125 MHz, CDCl₃) δ 174.0, 144.2, 137.3, 74.8, 72.3, 63.9, 58.2, 34.0, 29.7, 28.3, 28.1, 28.0, 27.4, 25.1, 22.3, 21.4, 18.3, -4.6; HRMS (ESI-TOF) calcd. for C₁₉H₃₄O₅Si [M+H]⁺ 371.22483, found 371.22603.

Protodesilylation of 15 generated 13b with 54% yield.

(15,2*S*)-2-(Hex-5-en-1-yloxy)cyclohexyl 5-(diethoxy(methyl)silyl)hex-5-enoate and its enantiomer (16a) Yield 73% (colorless oil); IR (neat, cm⁻¹) 3076, 2972, 2938, 2866, 1735, 1641, 1452, 1389, 1256, 1165, 1109, 1082, 953; ¹H-NMR (500 MHz, CDCl₃) δ 5.79 (dddd, *J* = 17.2, 10.2, 7.0, 7.0 Hz, 1 H), 5.69-5.69 (m, 1 H), 5.58-5.58 (m, 1 H), 5.01-4.97 (m, 1 H), 4.94 (d, *J* = 10.0 Hz, 1 H), 4.78-4.74 (m, 1 H), 3.76 (q, *J* = 7.0 Hz, 4 H), 3.56-3.52 (m, 1 H), 3.44-3.39 (m, 1 H), 3.24-3.19 (m, 1 H), 2.30 (dd, *J* = 7.5, 7.5 Hz, 2 H), 2.19 (dd, *J* = 7.5, 7.5 Hz, 2 H), 2.05 (ddd, *J* = 7.0, 7.0, 7.0 Hz, 2 H), 1.98-1.96 (m, 2 H), 1.82-1.76 (m, 2 H), 1.70-1.64 (m, 2 H), 1.56-1.50 (m, 2 H), 1.45-1.40 (m, 2 H), 1.36-1.31 (m, 3 H), 1.28-1.20 (m, 7 H), 0.20 (s, 3 H); ¹³C-NMR (125 MHz, CDCl₃) δ 172.9, 146.6, 138.8, 128.1, 114.4, 78.9, 74.6, 69.3, 58.2, 34.9, 34.2, 33.5, 29.8, 29.7, 29.6, 25.5, 24.1, 23.2, 18.3, -4.6; HRMS (ESI-TOF) calcd. for $C_{23}H_{42}O_5Si$ [M+Na]⁺ 449.26937, found 449.27061.

(12aS,16aS,E)-6-(Diethoxy(methyl)silyl)-4,5,8,9,10,11,12a,13,14,15,16,16a-

dodecahydrobenzo[b][1,4]dioxacyclotetradecin-2(3H)-one and its enantiomer (16)

Yield 76% (pale yellow oil); IR (neat, cm⁻¹) 2930, 2865, 2733, 1731, 1612, 1452, 1389, 1367, 1338, 1293, 1252, 1212, 1191, 1165, 1110, 1080, 1020, 989, 951; ¹H-NMR (500 MHz, CDCl₃) δ 6.08 (dd, *J* = 7.0, 7.0 Hz, 1H), 4.76 (ddd, *J* = 10.0, 10.0, 4.5 Hz, 1 H), 3.80-3.71 (m, 5 H), 3.28-3.22 (m, 2 H), 2.38-2.12 (m, 6 H), 2.07-1.99 (m, 2 H), 1.88-1.82 (m, 1 H), 1.74-1.52 (m, 6 H), 1.43-1.36 (m, 1 H), 1.32-1.18 (m, 10 H), 0.16 (s, 3 H); ¹³C-NMR (125 MHz, CDCl₃) δ 173.2, 145.5, 135.4, 79.8, 75.2, 67.7, 58.1, 33.4, 30.9, 29.6, 28.5, 28.3, 27.4, 27.1, 24.4, 24.1, 24.0, 18.3, -4.4; HRMS (ESI-TOF) calcd. for C₂₁H₃₈O₅Si [M+H]⁺ 399.25613, found 399.25752.

(12a*S*,16a*S*,*Z*)-4,5,8,9,10,11,12a,13,14,15,16,16a-dodecahydrobenzo[*b*][1,4]dioxacyclotetradecin-2(3*H*)one and its enantiomer (16b)

Yield 60% (colorless oil), inseparable mixture with styrene; IR (neat, cm⁻¹) 3002, 2936, 2861, 1731, 1452, 1368, 1246, 1207, 1162, 1111, 1022; ¹H-NMR (500 MHz, CDCl₃) δ 5.51 (ddd, *J* = 8.5, 8.5, 8.5 Hz, 1H), 5.24 (ddd, *J* = 10.0, 10.0, 6.5 Hz, 1H), 4.80 (ddd, *J* = 10.0, 10.0, 5.0 Hz, 1 H), 3.78-3.75 (m, 1 H), 3.25-3.20 (m, 2 H), 2.38-2.04 (m, 6 H), 1.99-1.83 (m, 3 H), 1.76-1.57 (m, 3 H), 1.55-1.37 (m, 4 H), 1.32-1.17 (m, 4 H); ¹³C-NMR (125 MHz, CDCl₃) δ 173.1, 131.6, 128.9, 79.8, 74.9, 66.9, 32.1, 30.9, 29.7, 28.3, 26.7, 26.6, 25.6, 24.1, 23.9, 23.7; HRMS (ESI-TOF) calcd. for C₁₆H₂₆O₃ [M+Na]⁺ 289.17742, found 289.17804.

(15,2S)-2-(Hept-6-en-1-yloxy)cyclohexyl 5-(diethoxy(methyl)silyl)hex-5-enoate and its enantiomer (17a)

Yield 79% (colorless oil); IR (neat, cm⁻¹) 3077, 2973, 2937, 2865, 1736, 1641, 1452, 1389, 1256, 1166, 1110, 1082, 995, 953; ¹H-NMR (500 MHz, CDCl₃) δ 5.80 (dddd, *J* = 17.0, 10.0, 6.8, 6.8 Hz, 1 H), 5.69-5.69 (m, 1 H), 5.58-5.58 (m, 1 H), 5.01-4.97 (m, 1 H), 4.93 (d, *J* = 10.0 Hz, 1 H), 4.76 (ddd, *J* = 8.5, 8.5, 4.5 Hz, 1 H), 3.76 (q, *J* = 7.0 Hz, 4 H), 3.53 (ddd, *J* = 9.0, 6.5, 6.5 Hz, 1 H), 3.41 (ddd, *J* = 9.5, 7.0, 7.0 Hz, 1 H), 3.21 (ddd, *J* = 8.5, 8.5, 4.0 Hz, 1 H), 2.30 (dd, *J* = 7.2, 7.2 Hz, 2 H), 2.19 (dd, *J* = 7.8, 7.8 Hz, 2 H), 2.04 (ddd, *J* = 7.2, 7.2, 7.2 Hz, 2 H), 1.98-1.96 (m, 2 H), 1.83-1.77 (m, 2 H), 1.70-1.64 (m, 2 H), 1.55-1.49 (m, 2 H), 1.42-1.20 (m, 14 H), 0.20 (s, 3 H); ¹³C-NMR (125 MHz, CDCl₃) δ 172.9, 146.6, 138.9, 128.1, 114.2, 78.9, 74.6, 69.5, 58.2, 34.9, 34.3, 33.7, 30.0, 29.8, 29.7, 28.7, 25.6, 24.1, 23.2, 18.3, -4.6; HRMS (ESI-TOF) calcd. for C₂₄H₄₄O₅Si [M+H]⁺ 441.30308, found 441.30151.

(13a*S*,17a*S*,*E*)-6-(Diethoxy(methyl)silyl)-3,4,5,8,9,10,11,12,13a,14,15,16,17,17a-tetradecahydro-2*H*-benzo[*b*][1,4]dioxacyclopentadecin-2-one and its enantiomer (17)

Yield 43% (pale yellow oil), *Z*:*E* = 8:92, *E* product was purified and characterized.; IR (neat, cm⁻¹) 2935, 2861, 1735, 1613, 1452, 1414, 1365, 1311, 1255, 1218, 1188, 1162, 1111, 1080, 1017, 988, 952; ¹H-NMR (500 MHz, CDCl₃) δ 6.08 (dd, *J* = 10.5, 5.0 Hz, 1 H), 4.72 (ddd, *J* = 10.0, 10.0, 4.3 Hz, 1 H), 3.74 (q, *J* = 7.0Hz, 4 H), 3.68-3.65 (m, 1 H), 3.40-3.36 (m, 1 H), 3.15 (ddd, 9.5, 9.5, 4.5 Hz, 1 H), 2.55-2.49 (m, 1 H), 2.38-2.20 (m, 3 H), 2.12-2.07 (m, 2 H), 2.02-1.89 (m, 3 H), 1.72-1.62 (m, 4 H), 1.40-1.14 (m, 15 H), 0.17 (s, 3 H); ¹³C-NMR (125 MHz, CDCl₃) δ 173.3, 145.5, 135.3, 80.1, 76.4, 68.9, 58.1, 58.1, 32.4, 31.1, 31.0, 29.2, 28.8, 27.8, 27.3, 25.5, 24.2, 24.0, 23.5, 18.3, -4.3; HRMS (ESI-TOF) calcd. for C₂₂H₄₀O₅Si [M+H]⁺ 413.27178, found 413.27159.

Protodesilylation of **17** (mixture of Z and E isomers with a ratio of 8:92) gave rise to **17b** as an inseparable mixture of Z and E isomers with a ratio of 90:10 which is determined by ¹H NMR analysis.

19a and 19 reported earlier as 1b and 2b.

(Z)-3,4,7,8,9,10-Hexahydrobenzo[b][1,5]dioxacyclotetradecin-12(2H)-one (19b)

Protodesilylation of 91 mg **19** (0.22 mmol) followed by column chromatography (gradient 0 - 20% ethyl acetate/hexane) gave rise to 35 mg of the title compound. Yield 64% (colorless oil); IR (neat, cm⁻¹) 3009,

2935, 2865, 1703, 1601, 1581, 1490, 1453, 1384, 1354, 1302, 1250, 1165, 1132, 1097, 1049, 1015, 975; ¹H-NMR (500 MHz, CDCl₃) δ 7.78-7.76 (m, 1 H), 7.44-7.40 (m, 1 H), 6.98-6.93 (m, 2 H), 5.68 (dt, *J* = 10.0, 8.2 Hz, 1 H), 5.48 (dt, *J* = 10.0, 8.2 Hz, 1 H), 4.43 (t, *J* = 6.0 Hz, 2 H), 4.09 (t, *J* = 5.2 Hz, 2 H), 2.29 (dt, *J* = 7.8, 7.8 Hz, 2 H), 2.13-2.08 (m, 2 H), 1.85-1.79 (m, 4 H), 1.69-1.63 (m, 2 H); ¹³C-NMR (125 MHz, CDCl₃) δ 168.5, 157.5, 133.1, 132.2, 130.1, 130.0, 121.3, 120.0, 112.2, 66.9, 63.8, 29.8, 27.6, 25.7, 25.4, 23.5; HRMS (ESI-TOF) calcd. for C₁₆H₂₀O₃ [M+H]⁺ 261.14852, found 261.14455.

20a and 20 reported earlier as 3b and 4b.

(Z)-4,5,8,9,10,11-Hexahydro-2H-benzo[b][1,5]dioxacyclopentadecin-13(3H)-one (20b)

Protodesilylation of **20** (60 mg, 0.14 mmol) followed by column chromatography (gradient 0 – 20% ethyl acetate/hexane) gave rise to 17 mg of the title compound. Yield 46% (colorless oil); IR (neat, cm⁻¹) 3007, 2936, 2862, 1698, 1601, 1491, 1452, 1384, 1300, 1249, 1164, 1131, 1097, 1050, 958; ¹H-NMR (500 MHz, CDCl₃) δ 7.71-7.69 (m, 1 H), 7.42-7.38 (m, 1 H), 6.97-6.94 (m, 1 H), 6.91 (d, *J* = 8.0 Hz, 1 H), 5.55 (dt, *J* = 10.8, 7.4 Hz, 1 H), 5.50 (dt, *J* = 10.8, 7.4 Hz, 1 H), 4.40 (t, *J* = 6.0 Hz, 2 H), 4.04 (t, *J* = 5.2 Hz, 2 H), 2.14-2.09 (m, 4 H), 1.85-1.77 (m, 4 H), 1.65-1.59 (m, 2 H), 1.58-1.52 (m, 2 H); ¹³C-NMR (125 MHz, CDCl₃) δ 168.3, 157.6, 132.7, 131.2, 130.3, 129.8, 121.5, 120.0, 112.3, 68.3, 64.5, 28.6, 27.9, 27.1, 26.9, 26.4, 26.0; HRMS (ESI-TOF) calcd. for C₁₇H₂₂O₃ [M+Na]⁺ 297.14612, found 297.14667.

Synthesis of compound 18 and 21

Following the reported procedure,³ the alkyne substrates were synthesized. Hydrosilylation of the alkynes gave rise to the corresponding alkenyl siloxane **18a** and **21a**, which were subjected to the RCM reaction.

Note: The ¹H and ¹³C NMR spectra of many of these compounds were extremely complicated owing to the various combinations of rotamers, and conformers. Efforts to completely coalesce the resonances through variable temperature NMR (up to 110 °C) were unsuccessful. Despite their complexity, all spectra are for single compounds that were larger than 95% pure by LC/MS.

tert-Butyl (2*R*,3*R*)-2-(2-(diethoxy(methyl)silyl)allyloxy)-4-(2-(hex-5-enyloxy)-*N*-((*S*)-1-(4methoxybenzyloxy)propan-2-yl)-5-nitrobenzamido)-3-methylbutyl(methyl)carbamate (18a) Yield 69% (pale yellow oil); IR (neat, cm⁻¹) 2973, 2932, 1693, 1640, 1612, 1588, 1516, 1458, 1391, 1365, 1341, 1272, 1251, 1160, 1078, 1036, 952; HRMS (ESI-TOF) calcd. for $C_{43}H_{67}N_3O_{11}Si [M+Na]^+$ 852.44371, found 852.44396; $[\alpha]_D^{21} = -25.5$ (c = 2.2, CHCl₃).

tert-Butyl ((10*R*,11*R*,*E*)-7-(diethoxy(methyl)silyl)-13-((*S*)-1-(4-methoxybenzyloxy)propan-2-yl)-11methyl-16-nitro-14-oxo-2,3,4,5,8,10,11,12,13,14-decahydrobenzo[*b*][1,9,5]dioxaazacyclohexadecin-10yl)methyl(methyl)carbamate (18)

Z/E ratio is less than 1:99. Yield 47% (pale yellow oil); IR (neat, cm⁻¹) 2972, 2934, 1692, 1633, 1614, 1588, 1516, 1468, 1392, 1365, 1341, 1302, 1271, 1251, 1159, 1105, 1080, 1036, 1010, 986, 953; HRMS (ESI-TOF) calcd. for $C_{41}H_{63}N_3O_{11}Si [M+Na]^+ 824.41241$, found 824.41263; $[\alpha]_D^{21} = -16.4$ (c = 7.6, CHCl₃).

tert-Butyl ((2*R*,3*R*)-2-(allyloxy)-4-(2-((5-(diethoxy(methyl)silyl)hex-5-en-1-yl)oxy)-*N*-((*S*)-1-((4methoxybenzyl)oxy)propan-2-yl)-5-nitrobenzamido)-3-methylbutyl)(methyl)carbamate (21a) Yield 69% (pale yellow oil); IR (neat, cm⁻¹) 2973, 2934, 1694, 1940, 1612, 1588, 1516, 1457, 1391, 1365, 1340, 1272, 1252, 1162, 1078, 1036, 952; HRMS (ESI-TOF) calcd. for $C_{43}H_{67}N_3O_{11}Si [M+Na]^+$ 852.44371, found 852.44378; $[\alpha]_D^{20} = -32.3$ (c = 2.4, CHCl₃).

tert-Butyl (((10R,11R,E)-6-(diethoxy(methyl)silyl)-13-((S)-1-((4-methoxybenzyl)oxy)propan-2-yl)-11-methyl-16-nitro-14-oxo-2,3,4,5,8,10,11,12,13,14-decahydrobenzo[b][1,9,5]dioxaazacyclohexadecin-10-yl)methyl)(methyl)carbamate (21)

Z/E ratio is 14:86. Yield 44% (pale yellow oil); IR (neat, cm⁻¹) 2972, 2934, 1689, 1636, 1612, 1588, 1515, 1463, 1391, 1365, 1340, 1273, 1252, 1164, 1104, 1078; HRMS (ESI-TOF) calcd. for $C_{41}H_{63}N_3O_{11}Si [M+H]^+$ 802.43046, found 802.42662; $[\alpha]_D^{22} = -29.8$ (c = 3.2, CHCl₃).

The simple diolefinic substrate was synthesized and subjected to RCM reaction using catalyst **A**. A mixture of both stereoisomers was obtained. The *Z/E* ratio was analyzed to be 36:64 using SFC/MS chromatography (**Figure S2**, first trace). SFC: Chiralpak[®] AD-H column; 25% ^{*i*}PrOH, 75% sfCO2, 10 minutes run length, $t_R^{(Z)} = 3.77$ min, area = 36%, $t_R^{(E)} = 5.12$ min, area = 64%.

In order to confirm the geometry of the double bond within alkenyl siloxane products **18** and **21**, protodesilylation reaction was performed to generate the simple olefins. The *Z/E* ratio of desilylated product **18b** from compound **18** was larger than 99:1 (**Figure S2**, third trace, $t_R^{(Z)} = 3.70$ min, area = 100%). Due to highly rotameric nature of compound **18b**, VT NMR was performed in C₆D₆ at 80 °C. The coupling constant was measured to be 10.5 Hz which is characteristic of *Z* olefin. Since the protodesilylation reaction is stereospecific, the configuration of compound **18** was *E*. The *Z/E* ratio of desilylated product from compound **21** was 86:14 (**Figure S2**, second trace, $t_R^{(Z)} = 3.83$ min, area = 86%, $t_R^{(E)} = 5.33$ min, area = 14%), which indicated that the *Z/E* ratio of compound **21** is 14:86. In both cases, the siloxyl group was able to overcome the intrinsic selectivity favoring the formation of the *E* olefin. However, the positions of the siloxyl group had different influences on the selectivity of the olefin geometry within the product.

Figure S2. SFC/MS chromatography of olefin product from a) RCM of simple diolefinic substrate (first trace), b) protodesilylation of compound **21** (second trace), and c) protodesilylation of compound **18** (third trace).

yl)methyl)(methyl)carbamate (18b)

Yield 86% (pale yellow oil); IR (neat, cm⁻¹) 2936, 2862, 1690, 1633, 1588, 1515, 1464, 1392, 1366, 1341, 1272, 1250, 1159, 1104, 1036, 979; HRMS (ESI-TOF) calcd. for $C_{36}H_{51}N_3O_9$ [M+Na]⁺ 692.35175, found 692.35064; $[\alpha]_D^{21} = -9.9$ (c = 4.6, CHCl₃).

Protodesilylation of 21 generated 18b with 60% yield

F. Influence of the silyl group on the specificity and stereoselectivity of RCM reactions.

Simple di-olefinic substrates were synthesized and subjected to two different reaction conditions: **I**, 20 mol% cat. **A**, 20 mol% 1,4-benzoquinone, toluene, 2 mM, 35 °C, 12 hours; **II**, 10 mol% Grubbs II, 20 mol% 1,4-benzoquinone, toluene, 2 mM, 35 °C, 12 hours. The reaction outcome was analyzed by proton NMR study of the crude mixture using CDCl₃ or C₆D₆ as solvent. Since the outcomes under both conditions are very similar, only expanded region of the proton NMR spectrum from condition **II** was shown here. The

resonance of the olefinic proton corresponding to the *cis* olefin was known from the protodesilylation of alkenyl siloxane intermediate. The resonance of the olefinic proton corresponding to the *trans* olefin was rigorously analyzed when the reaction is *trans* selective

N-(but-3-en-1-yl)-4-methyl-N-(pent-4-en-1-yl)benzenesulfonamide (22)

IR (neat, cm⁻¹) 3077, 2977, 2929, 2869, 1641, 1599, 1494, 1458, 1340, 1158, 1091, 993, 958; ¹H-NMR (500 MHz, CDCl₃) δ 7.68 (d, *J* = 8.0 Hz, 2 H), 7.28 (d, *J* = 8.0 Hz, 2 H), 5.80-5.66 (m, 2 H), 5.06-4.96 (m, 4 H), 3.16 (t, *J* = 7.5 Hz, 2 H), 3.11 (t, *J* = 7.5 Hz, 2 H), 2.41 (s, 3 H), 2.28 (dt, *J* = 7.3, 7.3 Hz, 2 H), 2.04 (dt, *J* = 7.1, 7.1 Hz, 2 H), 1.63 (tt, *J* = 7.5, 7.5 Hz, 2 H); ¹³C-NMR (125 MHz, CDCl₃) δ 143.0, 137.4, 136.9, 134.6, 129.6, 127.1, 117.0, 115.2, 47.9, 47.7, 33.3, 30.7, 27.8, 21.4; HRMS (ESI-TOF) calcd. for C₁₆H₂₃NO₂S [M+Na]⁺ 316.13417, found 316.13501.

Figure S3. ¹H NMR spectrum (expansion of 3.0 to 6.5ppm) of reaction mixture of 22 under condition II.

(15,25)-1-(allyloxy)-2-(pent-4-en-1-yloxy)cyclohexane and its enantiomer (23)

IR (neat, cm⁻¹) 3078, 2934, 2861, 1642, 1450, 1366, 1315, 1271, 1243, 1208, 1161, 1106, 993; ¹H-NMR (500 MHz, CDCl₃) δ 5.97-5.89 (m, 1 H), 5.86-5.78 (m, 1 H), 5.29-5.26 (m, 1 H), 5.14-5.12 (m, 1 H), 5.04-5.00 (m,

1 H), 4.96-4.94 (m, 1 H), 4.16-4.10 (m, 2 H), 3.60-3.52 (m, 2 H), 3.23-3.14 (m, 2 H), 2.15-2.11 (m, 2 H), 1.98-1.95 (m, 2 H), 1.68-1.62 (m, 4 H), 1.31-1.17 (m, 4 H); ¹³C-NMR (125 MHz, CDCl₃) δ 138.5, 135.8, 116.1, 114.5, 81.5, 80.8, 71.0, 69.2, 30.4, 30.2, 29.5, 23.6, 23.6; HRMS (ESI-TOF) calcd. for C₁₄H₂₄O₂ [M+Na]⁺ 247.16685, found 247.16675.

Figure S4. ¹H NMR spectrum (expansion of 3.0 to 6.5ppm) of reaction mixture of 23 under condition II.

(15,2S)-1-(allyloxy)-2-(hex-5-en-1-yloxy)cyclohexane and its enantiomer (24)

IR (neat, cm⁻¹) 3077, 2933, 1642, 1450, 1366, 1244, 1098; ¹H-NMR (500 MHz, CDCl₃) δ 5.97-5.89 (m, 1 H), 5.85-5.77 (m, 1 H), 5.29-5.26 (m, 1 H), 5.14-5.12 (m, 1 H), 5.01-4.98 (m, 1 H), 4.95-4.93 (m, 1 H), 4.16-4.08 (m, 2 H), 3.59-3.51 (m, 2 H), 3.22-3.14 (m, 2 H), 2.06 (ddd, *J* = 7.0, 7.0, 7.0 Hz, 2 H), 1.97-1.95 (m, 2 H), 1.64-1.55 (m, 4 H), 1.49-1.43 (m, 2 H), 1.31-1.17 (m, 4 H); ¹³C-NMR (125 MHz, CDCl₃) δ 138.9, 135.8, 116.1, 114.4, 81.5, 80.8, 71.1, 69.8, 33.4, 30.4, 30.2, 29.8, 25.5, 23.6, 23.6; HRMS (ESI-TOF) calcd. for C₁₅H₂₆O₂ [M+Na]⁺ 261.18250, found 261.18388.

Figure S5. ¹H NMR spectrum (expansion of 3.0 to 6.5ppm) of reaction mixture of 24 under condition II.

The monocyclized Z-alkene compound **7b** (corresponding to what would be the monocyclized product of the RCM of **24**) obtained from protodesilylation of compound **7** was subjected to reaction condition II using second generation Grubbs catalyst. It was almost completely consumed to generate dimers and oligomers (**Figure S6**).

Figure S6. ¹H NMR spectrum (expansion of 3.0 to 6.5ppm) of reaction mixture of 7b under condition II.

(15,25)-2-(allyloxy)cyclohexyl hex-5-enoate and its enantiomer (25)

IR (neat, cm⁻¹) 3078, 2938, 2863, 1734, 1642, 1453, 1367, 1246, 1175, 1101, 994; ¹H-NMR (500 MHz, CDCl₃) δ 5.90-5.74 (m, 2 H), 5.26-5.23 (m, 1 H), 5.13-5.11 (m, 1 H), 5.04-4.96 (m, 2 H), 4.80-4.75 (m, 1 H), 4.10-4.06 (m, 1 H), 4.02-3.98 (m, 1 H), 3.29 (ddd, J = 8.5, 8.5, 4.0 Hz, 1 H), 2.31 (dd, J = 7.2, 7.2 Hz, 2 H), 2.09 (ddd, J = 7.0, 7.0, 7.0 Hz, 2 H), 2.00-1.97 (m, 2 H), 1.76-1.63 (m, 4 H), 1.40-1.20 (m, 4 H); ¹³C-NMR (125 MHz, CDCl₃) δ 172.9, 137.8, 135.3, 116.2, 115.2, 78.4, 74.8, 70.4, 33.9, 33.0, 29.9, 29.8, 24.1, 23.2; HRMS (ESI-TOF) calcd. for C₁₅H₂₄O₃ [M+Na]⁺ 275.16177, found 275.16271.

Figure S7. ¹H NMR spectrum (expansion of 3.0 to 6.5ppm) of reaction mixture of 25 under condition II.

Figure S8. ¹H NMR spectrum of purified monocyclized product mixture from reaction of 25 for ratio determination.

(1R,2S)-2-(allyloxy)cyclohexyl hex-5-enoate and its enantiomer (26)

IR (neat, cm⁻¹) 3078, 2939, 2861, 1732, 1642, 1450, 1363, 1247, 1175, 1089, 994; ¹H-NMR (500 MHz, CDCl₃) δ 5.91-5.83 (m, 1 H), 5.80-5.73 (m, 1 H), 5.27-5.23 (m, 1 H), 5.14-5.11 (m, 1 H), 5.10-5.08 (m, 1 H), 5.03-4.96 (m, 2 H), 4.04 (dd, *J* = 13.0, 5.5 Hz, 1 H), 3.97 (dd, *J* = 13.0, 5.7 Hz, 1 H), 3.47-3.46 (m, 1 H), 2.34 (dd, *J* = 7.5, 7.5 Hz, 2 H), 2.11-2.07 (m, 2 H), 1.90-1.85 (m, 1 H), 1.81-1.64 (m, 4 H), 1.60-1.46 (m, 3 H), 1.42-1.27 (m, 2 H); ¹³C-NMR (125 MHz, CDCl₃) δ 173.1, 137.8, 135.2, 116.5, 115.2, 76.0, 70.9, 69.6, 33.9, 33.0, 27.9, 27.8, 24.2, 22.1, 21.6; HRMS (ESI-TOF) calcd. for C₁₅H₂₄O₃ [M+Na]⁺ 275.16177, found 275.16316.

Figure S9. ¹H NMR spectrum (expansion of 3.0 to 6.5ppm) of reaction mixture of **26** under condition II (the major product was purifiable and is reported as **26b**).

(9a*R*,13a*S*,*E*)-3,4,5,8,9a,10,11,12,13,13a-decahydro-2*H*-benzo[*b*][1,4]dioxacycloundecin-2-one and its enantiomer (26b)

Yield 73% (colorless oil); IR (neat, cm⁻¹) 2934, 2858, 1725, 1443, 1363, 1256, 1210, 1159, 1139, 1109, 1089, 1073, 1047, 980; ¹H-NMR (500 MHz, CDCl₃) δ 5.64 (ddd, *J* = 15.0, 10.5, 4.0 Hz, 1 H), 5.42 (ddd, *J* = 15.0, 10.2, 5.5 Hz, 1 H), 4.44-4.40 (m, 1 H), 4.23-4.20 (dd, *J* = 13.0, 4.2 Hz, 1 H), 3.77 (bs, 1 H), 3.40 (dd, *J* = 12.5, 11.0 Hz, 1 H), 2.38-2.29 (m, 2 H), 2.12-2.07 (m, 1 H), 1.99-1.70 (m, 6 H), 1.56-1.47 (m, 2 H), 1.41-1.23 (m, 3 H); ¹³C-NMR (125 MHz, CDCl₃) δ 174.9, 132.0, 132.0, 75.1, 74.9, 72.2, 34.4, 33.6, 30.6, 25.8, 24.5, 24.2, 19.4; HRMS (ESI-TOF) calcd. for C₁₃H₂₀O₃ [M+H]⁺ 225.14852, found 225.16079.

С (±)

(1S,2S)-1-(allyloxy)-2-(hept-6-en-1-yloxy)cyclohexane and its enantiomer (27)

IR (neat, cm⁻¹) 3077, 2932, 2859, 1642, 1451, 1365, 1314, 1270, 1244, 1208, 1161, 1107, 994; ¹H-NMR (500 MHz, CDCl₃) δ 5.97-5.89 (m, 1 H), 5.84-5.76 (m, 1 H), 5.29-5.25 (m, 1 H), 5.14-5.12 (m, 1 H), 5.01-4.97 (m, 1 H), 4.94-4.91 (m, 1H), 4.16-4.08 (m, 2 H), 3.59-3.50 (m, 2 H), 3.22-3.13 (m, 2 H), 2.07-2.03 (m, 2 H), 1.96-1.95 (m, 2 H), 1.65-1.54 (m, 4 H), 1.44-1.33 (m, 4 H), 1.30-1.15(m, 4 H); ¹³C-NMR (125 MHz, CDCl₃) δ 139.0, 135.8, 116.0, 114.2, 81.6, 80.8, 71.1, 69.9, 33.7, 30.4, 30.2, 30.2, 28.8, 25.7, 23.6, 23.6; HRMS (ESI-TOF) calcd. for C₁₆H₂₈O₂ [M+Na]⁺ 275.19815, found 275.19975.

Figure S10. ¹H NMR spectrum (expansion of 3.0 to 6.5ppm) of reaction mixture of 27 under condition II.

(15,25)-2-(allyloxy)cyclohexyl hept-6-enoate and its enantiomer (28)

IR (neat, cm⁻¹) 3078, 2937, 2863, 1735, 1641, 1453, 1353, 1174, 1101, 994; ¹H-NMR (500 MHz, CDCl₃) δ 5.90-5.74 (m, 2 H), 5.26-5.23 (m, 1 H), 5.13-5.11 (m, 1 H), 5.01-4.98 (m, 1 H), 4.95-4.93 (m, 1 H), 4.77 (ddd, J = 8.5, 8.5, 5.0 Hz, 1 H), 4.08 (dd, J = 7.8, 5.0 Hz, 1 H), 4.00 (dd, J = 7.8, 5.0 Hz, 1 H), 3.29 (ddd, J = 8.5, 8.5, 4.0 Hz, 1 H), 2.30 (dd, J = 7.2, 7.2 Hz, 2 H), 2.08-2.04 (m, 2 H), 1.99-1.97 (m, 2 H), 1.70-1.61 (m, 4 H), 1.46-1.20 (m, 6 H); ¹³C-NMR (125 MHz, CDCl₃) δ 173.0, 138.4, 135.3, 116.2, 114.6, 78.5, 74.8, 70.4, 34.5, 33.4, 29.9, 29.8, 28.3, 24.5, 23.2; HRMS (ESI-TOF) calcd. for C₁₆H₂₆O₃ [M+Na]⁺ 289.17742, found 289.17766.

Figure S11. ¹H NMR spectrum (expansion of 3.0 to 6.5ppm) of reaction mixture of 28 under condition II.

(1*R*,2*S*)-2-(allyloxy)cyclohexyl hept-6-enoate and its enantiomer (29)

IR (neat, cm⁻¹) 3078, 2938, 2860, 1732, 1642, 1450, 1362, 1236, 1174, 1089, 994; ¹H-NMR (500 MHz, CDCl₃) δ 5.91-5.75 (m, 2 H), 5.27-5.23 (m, 1 H), 5.14-5.08 (m, 2 H), 5.02-4.98 (m, 1 H), 4.95-4.93 (m, 1 H), 4.04 (dd, *J* = 8.0, 5.5 Hz, 1 H), 3.98 (dd, *J* = 8.0, 5.5 Hz, 1 H), 3.48-3.46 (m, 1 H), 2.34 (dd, *J* = 7.2, 7.2 Hz, 2 H), 2.08-2.04 (m, 2 H), 1.90-1.85 (m, 1 H), 1.81-1.75 (m, 1 H), 1.70-1.28 (m, 10 H); ¹³C-NMR (125 MHz, CDCl₃) δ 173.2, 138.5, 135.2, 116.5, 114.6, 76.0, 71.0, 69.6, 34.5, 33.4, 28.3, 27.9, 27.8, 24.5, 22.1, 21.7; HRMS (ESI-TOF) calcd. for C₁₆H₂₆O₃ [M+Na]⁺ 289.17742, found 289.17867.

Figure S12. ¹H NMR spectrum (expansion of 3.0 to 6.5ppm) of reaction mixture of 29 under condition II.

Figure S13. ¹H NMR spectrum of purified monocyclized product mixture from reaction of 29 for identification of trans isomer.

(±)-1-(2-((allyloxy)methyl)piperidin-1-yl)hept-6-en-1-one (30)

IR (neat, cm⁻¹) 3076, 2934, 2859, 1642, 1426, 1357, 1243, 1178, 1134, 1104, 1057, 1028, 992; The ¹H and ¹³C NMR spectra of many of this compound was complicated owing to the combination of rotamers. HRMS (ESI-TOF) calcd. for $C_{16}H_{27}NO_2$ [M+Na]⁺ 288.19340, found 288.19396.

Figure S14. ¹H NMR spectrum (expansion of 3.0 to 6.5ppm) of reaction mixture of 30 under condition II.

(15,2S)-2-(hex-5-en-1-yloxy)cyclohexyl hex-5-enoate and its enantiomer (31)

IR (neat, cm⁻¹) 3077, 2936, 2862, 1734, 1641, 1453, 1369, 1175, 1111; ¹H-NMR (500 MHz, CDCl₃) δ 5.83-5.74 (m, 2 H), 5.04-4.92 (m, 4 H), 4.75 (ddd, J = 9.0, 9.0, 4.5 Hz, 1 H), 3.54 (ddd, J = 9.0, 6.5, 6.5 Hz, 1 H), 3.40 (ddd, J = 9.0, 6.5, 6.5 Hz, 1 H), 3.21 (ddd, J = 8.5, 8.5, 4.0 Hz, 1 H), 3.32-2.29 (m, 2 H), 2.11-2.02 (m, 4 H), 2.00-1.95 (m, 2 H), 1.76-1.63 (m, 4 H), 1.56-1.50 (m, 2 H), 1.46-1.38 (m, 2 H), 1.37-1.19(m, 4 H); ¹³C-

NMR (125 MHz, CDCl₃) δ 172.9, 138.8, 137.8, 115.2, 114.4, 79.0, 74.7, 69.3, 33.9, 33.5, 33.0, 29.8, 29.6, 25.5, 24.2, 23.3; HRMS (ESI-TOF) calcd. for C₁₈H₃₀O₃ [M+Na]⁺ 317.20872, found 317.20928.

Figure S15. ¹H NMR spectrum (expansion of 3.0 to 6.5ppm) of reaction mixture of 31 under condition II.

Figure S16. ¹H NMR spectrum of purified monocyclized product mixture from reaction of 31 for ratio determination.

Hex-5-en-1-yl 2-(pent-4-en-1-yloxy)benzoate (32)

IR (neat, cm⁻¹) 3077, 2976, 2940, 2870, 1728, 1704, 1641, 1601, 1583, 1491, 1469, 1452, 1416, 1386, 1302, 1251, 1164, 1133, 1080, 1049, 1013, 995; ¹H-NMR (500 MHz, CDCl₃) δ 7.78-7.76 (m, 1 H), 7.44-7.41 (m, 1 H), 6.98-6.94 (m, 2 H), 5.89-5.77 (m, 2 H), 5.08-4.95 (m, 4 H), 4.30 (t, *J* = 7.0 Hz, 2 H), 4.04 (t, *J* = 6.5 Hz, 2 H), 2.30-2.25 (m, 2 H), 2.14-2.09 (m, 2 H), 1.96-1.90 (m, 2 H), 1.80-1.74 (m, 2 H), 1.58-1.52 (m, 2 H); ¹³C-NMR (125 MHz, CDCl₃) δ 166.7, 158.4, 138.4, 137.7, 133.1, 131.5, 120.9, 120.0, 115.2, 114.8, 113.1, 68.0, 64.7, 33.3, 30.0, 28.3, 28.2, 25.3; HRMS (ESI-TOF) calcd. for C₁₈H₂₄O₃ [M+Na]⁺ 311.16177, found 311.16440.

Figure S17. ¹H NMR spectrum (expansion of 3.0 to 6.5ppm) of reaction mixture of 32 under condition II.

(15,25)-2-(hept-6-en-1-yloxy)cyclohexyl hex-5-enoate and its enantiomer (33)

IR (neat, cm⁻¹) 3077, 2934, 2861, 1734, 1641, 1452, 1417, 1369, 1247, 1175, 1111, 1026, 994; ¹H-NMR (500 MHz, CDCl₃) δ 5.83-5.74 (m, 2 H), 5.04-4.91 (m, 4 H), 4.75 (ddd, *J* = 9.0, 9.0, 4.5 Hz, 1 H), 3.53 (ddd, *J* = 9.5, 6.5, 6.5 Hz, 1 H), 3.39 (ddd, *J* = 9.0, 7.0, 7.0 Hz, 1 H), 3.20 (ddd, *J* = 9.0, 9.0, 4.0 Hz, 1 H), 2.32-2.29 (m, 2 H), 2.11-2.07 (m, 2 H), 2.05-2.01 (m, 2 H), 1.99-1.95 (m, 2 H), 1.76-1.63 (m, 4 H), 1.54-1.49 (m, 2 H), 1.41-1.19 (m, 8 H); ¹³C-NMR (125 MHz, CDCl₃) δ 172.9, 138.9, 137.8, 115.2, 114.2, 79.0, 74.8, 69.5, 33.9, 33.7, 33.0, 30.0, 29.8, 28.7, 25.6, 24.2, 23.3; HRMS (ESI-TOF) calcd. for C₁₉H₃₂O₃ [M+H]⁺ 309.24242, found 309.24229.

Figure S18. ¹H NMR spectrum (expansion of 3.0 to 6.5ppm) of reaction mixture of 33 under condition II.

Hex-5-en-1-yl 2-(hex-5-en-1-yloxy)benzoate (34)

IR (neat, cm⁻¹) 3076, 2937, 2862, 1728, 1704, 1640, 1601, 1583, 1491, 1469, 1453, 1386, 1302, 1250, 1164, 1133, 1079, 1049, 995, 953; ¹H-NMR (500 MHz, CDCl₃) δ 7.78-7.76 (m, 1 H), 7.44-7.41 (m, 1 H), 6.97-6.94 (m, 2 H), 5.87-5.78 (m, 2 H), 5.05-5.01 (m, 2 H), 4.98-4.96 (m, 2 H), 4.30 (t, *J* = 6.8 Hz, 2 H), 4.03 (t, *J* = 6.5

Hz, 2 H), 2.15-2.10 (m, 4 H), 1.85 (tt, J = 7.1, 7.1 Hz, 2 H), 1.77 (tt, J = 7.2, 7.2 Hz, 2 H), 1.63-1.52 (m, 4 H); ¹³C-NMR (125 MHz, CDCl₃) δ 166.7, 158.4, 138.5, 138.4, 133.1, 131.5, 120.8, 120.0, 114.8, 114.7, 113.0, 68.6, 64.7, 33.4, 33.3, 28.6, 28.2, 25.3, 25.2; HRMS (ESI-TOF) calcd. for C₁₉H₂₆O₃ [M+Na]⁺ 325.17742, found 325.17910.

Figure S19. ¹H NMR spectrum (expansion of 3.0 to 6.5ppm) of reaction mixture of 34 under condition II.

References.

- (a) Trost, B. M.; Ball, Z. T. J. Am. Chem. Soc. 2005, 127, 17644-17655. (b) Trost, B. M.; Ball, Z. T. J. Am. Chem. Soc. 2001, 123, 12726-12727.
- (2) (a) Furstner, A.; Radkowski, K. Chem. Commun. 2002, 2182-2183. (b) Lacombe, F.; Radkowski, K.; Seidel, G.; Fürstner, A. Tetrahedron 2004, 60, 7315-7324.
- Marcaurelle, L. A.; Comer, E.; Dandapani, S.; Duvall, J. R.; Gerard, B.; Kesavan, S.; Lee, M. D.; Liu, H.; Lowe, J. T.; Marie, J.-C.; Mulrooney, C. A.; Pandya, B. A.; Rowley, A.; Ryba, T. D.; Suh, B.-C.; Wei, J.; Young, D. W.; Akella, L. B.; Ross, N. T.; Zhang, Y.-L.; Fass, D. M.; Reis, S. A.; Zhao, W.-N.; Haggarty, S. J.; Palmer, M.; Foley, M. A. J. Am. Chem. Soc. 2010, 132, 16962-16976.

WYKELN5006_13C

exp2 s2pu1

SAMPLE		DEC	. & VT
date (Oct 29 2009	dfrq	499.874
solvent	CDC13	dn	H1
file	exp	dpwr	49
ACQUI	ISITION	dof	0
sfrq	125.707	dm	УУУ
tn	C13	dmm	5
at	1.092	dmf	12000
np	65536	dseq	
SW	29996.3	dres	1.0
fb	not used	homo	n
bs	8	temp	25.0
tpwr	55		DEC2
pw	4.2	dfrg2	0
d1	0	dn2	
tof	2000.0	dpwr2	1
nt	9999	dof2	0
ct	1008	dm2	n
alock	n	dmm2	
gain	not used	dmf2	10000
FL	AGS	dsea2	
i1	n	dres2	1.0
in	n	homo2	1.0
dn		nomoz	DEC3
hs	nn	dfra3	0
DTS	PLAY	dn3	0
SD	-1087 8	dowr 3	1
wn	29995 3	dof3	ñ
VS	37	dm3	
SC	0	dmm 3	
wc	250	dmf3	10000
hzmm	119 98	dsea3	10000
is	500 00	droc3	1 0
rf1	10767 1	homo3	1.0
rfn	9678 3	PPOC	FESTING
th	3070.3	1h	1 00
inc	100 000	utfile.	1.00
nm cdc	nh	werrie	£+
rin cuc	pit	proc	not used
		Th	not used
		matth	Ť
		werr	
		wexp	
		wbs	

WYKELN5089_13C_benzene

WYKELN5121_13C

exp1 s2pu1

	SAMPLE	DEC.	& VT
date	Mar 28 2010	dfra	499.874
solver	nt CDC13	dn	H1
file	exp	dpwr	48
ACO	DUISITION	dof	0
sfrq	125.707	dm	VVV
tn	C13	dmm	Ŵ
at	1.092	dmf	10000
np	65536	dseq	
SW	29996.3	dres	1.0
fb	not used	homo	n
bs	16	temp	23.0
tpwr	55	D	EC2
pw	4.2	dfra2	0
d1	0	dn2	
tof	2000.0	dowr2	1
nt	9999	dof2	õ
ct	384	dm2	ň
alock	n	dmm2	č
gain	not used	dmf2	10000
3	FLAGS	dsen2	10000
11	n	dres2	1 0
in	n	homo2	1.0
dp	v	D	FC3
hs	nn	dfra3	0
D	ISPLAY	dn3	•
SD	-1090.6	dowr 3	1
WD	29995.3	dof3	ô
VS	38	dm3	ň
SC	0	dmm 3	2
WC	250	dmf3	10000
hzmm	119 98	dsen3	10000
is	500.00	dres3	1 0
rf1	10769 8	homo3	1.0
rfp	9678.3	PROC	ESSTNG
th	6	16	1 00
ins	100.000	wtfile	1.00
nm cd	c ph	proc	ft
	- P.O.	fn	not used
		math	f
		inte erif	- 19 A
		werr	
		wexp	
		wbs	
		wnt	

1b also as 19a

WYKELN10013_13C

exp2 s2pu1

SAMPLE		DEC	& VT
date Ma	ar 31 2010	dfrq	499.874
solvent	CDC13	dn	H1
file	exp	dpwr	48
ACQUIS	SITION	dof	0
sfrq	125.707	dm	УУУ
tn	C13	dmm	W
at	1.092	dmf	10000
np	65536	dseq	
SW	29996.3	dres	1.0
fb	not used	homo	n
bs	16	0	EC2
tpwr	55	dfrg2	0
pw	4.2	dn2	
d1	0	dpwr2	1
tof	2000.0	dof2	0
nt	9999	dm2	n
ct	560	dmm2	с
alock	n	dmf2	10000
gain	not used	dseg2	
FLA	AGS	dres2	1.0
i1	n	homo2	n
in	n	0	EC3
dp	V	dfra3	0
hs	nn	dn3	
DISF	PLAY	dowr3	1
Sp	-1090.6	dof3	õ
ND	29995.3	dm3	n
vs	27	dmm3	C
sc	0	dmf3	10000
WC	250	dsea3	
hzmm	119.98	dres3	1.0
is	500.00	homo3	n
rf1	10769.8	PROC	ESSING
rfp	9678.3	1b	1.00
th	3	wtfile	
ins	100.000	DLOC	ft
nm cdc	ph	fn	not used
	* C. S. K.	math	f
		werr	
		wexp	
		wbs	
		wnt	

WYKELN10021_1H

expl s2pul

	SAMDI F		E.C.		
date	Anr 21 2010	difra	EC.	ä	400 974
solve	nt CDC13	do			499.074
file	/evport /home /~	deter			
de2 /v	pmrsvs /data /i~	dof			30
500c/	schreiber AllAlla	dm			0
G/Pub	1 AVYKEL N10021~	dam			nnn
0/1 00	1H fid	dmf			200
AC	OUTSTITON	depa			200
sfro	499.875	dres			1 0
tn	H1	hono			1.0
at	2.184	temp			25 0
np	32768	P	ROCE	22	TNG
SW	7501.2	1b			1 10
fb	not used	wtfil	A		1.10
bs	4	ргос	·		ft
55	2	fn			32768
tpwr	62	math			f
pw	12.0				1.5
d1	0	Werr			
tof	800.0	wexp			
nt	32	wbs			
ct	32	wnt			wft
alock	n				
gain	not used				
24	FLAGS				
i1	n				
in	n				
dp	У				
hs	nn				
D	ISPLAY				
sp	-259.8				
чp	4998.6				
/S	148				
SC	0				
VC	250				
rzmm	19.99				
5	177.83				
TI	4089.8				
TP	3629.1				
	0.000				
115	2.000				

WYKELN10014_13C

exp2 s2pu1

SAM	PLE	DEC.	& VT
date Ap	г 2 2010	dfrq	499.874
solvent	CDC13	dn	H1
file	exp	dpwr	48
ACOUIS	ITION	dof	0
sfrq	125.707	dm	VVV
tn	C13	dmm	Ŵ
at	1.092	dmf	10000
np	65536	dseq	
sw	29996.3	dres	1.0
fb	not used	homo	n
bs	16	temp	25.0
tpwr	55	D	EC2
pw	4.2	dfrg2	0
d1	0	dn2	
tof	2000.0	dpwr2	1
nt	99999	dof2	0
ct	2128	dm2	n
alock	n	dmm2	C
gain	not used	dmf2	10000
FLA	GS	dsea2	
i1	n	dres2	1.0
in	n	homo2	n
dp	V	D	EC3
hs	nn	dfra3	0
DISP	LAY	dn3	
SD	-1088.7	dpwr3	1
WD	29995.3	dof3	ō
VS	25	dm3	n
SC	0	dmm3	c
WC	250	dmf3	10000
hzmm	119.98	dsea3	
is	500.00	dres3	1.0
rf1	10768.0	homo3	n
rfp	9678.3	PROCI	ESSING
th	2	1b	1.00
ins	100.000	wtfile	
nm cdc j	oh	proc	ft
		fn	not used
		math	f
		werr	
		wexp	
		wbs	
		wnt	

WYKELN5161_13C

exp1 s2pul

WYKELN10001_13C

Luniti

ppm

WYKELN5137_13C

exp2 s2pu1

SAMPLE		DEC.	& VT
date	Apr 1 2010	dfrq	499.874
solvent	CDC13	dn	H1
file	exp	dpwr	48
ACQU	ISITION	dof	0
sfrq	125.707	dm	УУУ
tn	C13	dmm	W
at	1.092	dmf	10000
np	65536	dseq	
SW	29996.3	dres	1.0
fb	not used	homo	n
bs	16	temp	25.0
tpwr	55	D	EC2
pw	4.2	dfrq2	0
d1	0	dn2	
tof	2000.0	dpwr2	1
nt	9999	dof2	0
ct	0	dm2	n
alock	n	dmm2	c
gain	not used	dmf2	10000
F	LAGS	dseg2	
11	n	dres2	1.0
in	n	homo2	n
dp	V	D	EC3
hs	nn	dfra3	0
DIS	SPLAY	dn3	
Sp	-1088.7	dpwr3	1
WD	29995.3	dof3	0
vs	27	dm3	n
SC	0	dmm3	c
wc	250	dmf3	10000
hzmm	119.98	dseg3	1.200.000
is	500.00	dres3	1.0
rf1	10768.0	homo3	n
rfp	9678.3	PROC	ESSING
th	2	1b	1.00
ins	100.000	wtfile	
nm cdc	ph	proc	ft
		fn	not used
		math	1
		werr	
		wexp	
		wbs	
		wnt	

3b also as 20a

WYKELN10016_1H DEC. & VT 499.874 H1 30 0 exp1 s2pul SAMPLE DI date Apr 5 2010 dfrq solvent CDC13 dn file /export/home/~ dpwr ds2/vnmrsys/data/i~ dof 500c/schreiber/WAN~ dm G/Publ/WYKELN10016~ dmm _____H.fid dmf ACQUISITION dseq sfrq 499.875 dres 0 nnn C 200 TION dseq 499.875 dres H1 homo 2.184 temp 1.0 tn at 25.0 np sw fb bs ss tpwr 32768 PR(7501.2 lb not used wtfile PROCESSING 1.10 4 proc 2 fp ft 32768 2 fn 62 math f 12.0 pw d1 Werr 0 0 werr 800.0 wexp 32 wbs 32 wnt wft n gain not used FLAGS n n y nn DISPLAY -250.2 83 0 250 19.99 hzmm 4089.8 3629.1 2.000

Si(OEt)₂Me 0 n

WYKELN10016_13C

exp4 s2pu1

SAMPLE		DEC.	& VT
date Ap	r 5 2010	dfrq	499.874
solvent	CDC13	dn	H1
file	exp	dpwr	48
ACQUISITION		dof	0
sfrq	125.707	dm	УУУ
tn	C13	dmm	w
at	1.092	dmf	10000
np	65536	dseq	
SW	29996.3	dres	1.0
fb	not used	homo	n
bs	4	temp	25.0
towr	55	D	EC2
DW	4.2	dfra2	
d1	0	dn2	
tof	2000 0	dowr2	1
nt	99999	dof2	â
ct	244	dm2	
alock	144	dmm 2	
anin	bost used	dmf2	10000
gain ELA	not used	dcom2	10000
il FLAG	35	dreed2	1 0
	n	uresz	1.0
10	n	nomoz	n
ap	У	16	EC3
ns	nn	atrq3	0
DISPL	.AY	dn3	
sp	-1087.8	dpwr3	1
wp	29995.3	dof3	0
vs	35	dm3	n
SC	0	dmm3	c
wc	250	dmf3	10000
hzmm	119.98	dseq3	
is	500.00	dres3	1.0
rfl	10767.1	homo3	n
rfp	9678.3	PROC	ESSING
th	2	1b	1.00
ins	100.000	wtfile	
nm cdc p	h	DLOC	ft
		fn	not used
		math	f
		werr	
		wexp	
		whs	
		400	

WYKELN5162_13C

exp2 s2pu1

SA	MPLE	DEC.	& VT
date A	Apr 7 2010	dfrq	499.874
solvent	CDC13	dn	H1
file	exp	dpwr	48
ACQUI	SITION	dof	0
sfrq	125.707	dm	УУУ
tn	C13	dmm	W
at	1.092	dmf	10000
np	65536	dseq	
SW	29996.3	dres	1.0
fb	not used	homo	n
bs	16	temp	25.0
towr	55	D	EC2
nw	4.2	dfra2	0
d1	0	dn2	
tof	2000.0	dpwr2	1
nt	99999	dof2	ô
ct	1200	dm2	n
alock	1200	dmm2	
aain	not used	dmf2	10000
FI	ACS	dsea2	10000
41		droc2	1 0
11		homo2	1.0
do		10002	FC2
up	y	deras	103
ns DTC	III AV	drigs	0
DIS	PLAT 1000 7	dias	
sp	-1088.7	dpwr 3	1
wp	29995.3	dof 3	0
vs	33	dm3	n
SC	0	amm3	10000
wc	250	amr 3	10000
hzmm	119.98	dseq3	
15	500.00	ares3	1.0
FT I	10/68.0	nomo3	n
rfp	9678.3	PROC	ESSING
th	3	16	1.00
ins	100.000	wtfile	
nm cdc	ph	proc	ft
		fn	not used
		math	f
		werr	
		wexp	
		a da a	
		WDS	

WYKELN5135_1H

exp1 s2pu1

WYKELN5135_13C

exp2 s2pu1

SAMPLE		DEC. & VT	
date	Apr 1 2010	dfrq	499.874
solvent	CDC13	dn	HI
file	exp	dpwr	48
ACQU	ISITION	dof	
sfrq	125.707	dm	УУУ
tn	C13	dmm	
at	1.092	dmf	10000
np	65536	dseq	
SW	29996.3	dres	1.0
fb	not used	homo	r
bs	4	temp	25.0
tpwr	55	D	EC2
pw	4.2	dfrq2	0
d1	0	dn2	
tof	2000.0	dpwr2	1
nt	9999	dof2	0
ct	0	dm2	r
alock	n	dmm2	c
gain	not used	dmf2	10000
F	LAGS	dseg2	
11	n	dres2	1.0
in	n	homo2	
dp	V	D	EC3
hs	nn	dfra3	0
DIS	SPLAY	dn3	
Sp	-1091.5	dpwr3	1
WD	29995.3	dof3	0
VS	27	dm3	r
SC	0	dmm3	c
NC	250	dmf3	10000
hzmm	119.98	dseq3	
is	500.00	dres3	1.0
rf1	10770.7	homo3	n
fp	9678.3	PROC	ESSING
th	2	16	1.00
ins	100.000	wtfile	
nm cdc	ph	DLOC	ft
		fn	not used
		math	f
		werr	
		wexp	
		wbs	

WYKELN10017_1H

exp1 s2pul

0000						
	SAMPLE		DEC.	å	VT	
date	Apr 5 2010	dfra			499.874	
solve	nt CDC13	dn			H1	
file	/export/home/~	dowr			30	
ds2/v	nmrsys/data/i~	dof			0	
500c/	schreiber/WAN~	dm			nnn	
G/Pub	1/WYKELN10017~	dmm			c	
	_1H.fid	dmf			200	
AC	QUISITION	dseq				
sfrq	499.875	dres			1.0	
tn	H1	homo			n	
at	2.184	temp			25.0	
np	32768	0000	PROCE	SS	ING	
SW	7501.2	1b			1.10	
fb	not used	wtfi	le			
bs	4	ргос			ft	
55	2	fn			32768	
towr	62	math			f	
DW	12.0					
d1	0	werr				
tof	800.0	Wexn				
nt	32	whs				
ct	32	wnt			wft	
alock	n					
gain	not used					
	FLAGS					
i1	n					
in	n					
dp	×					
hs	nn					
E	ISPLAY					
Sp	-250.2					
WD	4998.6					
vs	125					
SC	0					
WC	250					
hzmm	19,99					
is	276.07					
rf1	4089.8					
rfp	3629.1					
th	1					
ins	2.000					
mm	ph					
hzmm is rfl rfp th ins nm	19.99 276.07 4089.8 3629.1 2.000 ph					

WYKELN10017_13C

WYKELN5136_13C

S82

1111

ppm_

WYKELN4196_13C

exp2	s2pu1			
	SAMPLE		DEC	. & VT
date	May 21	2010	dfrq	499.874
solve	nt	CDC13	dn	H1
file		exp	dpwr	48
00	OUTSTITIC	N	dof	0
efra	12	5.707	dm	XXX XXX
to		C13	dmm	W
at		1.092	dmf	10000
ac		65536	dsea	
np su	21	996.3	dres	1.0
SW	001	used	homo	n
10	110	32	temn	24.0
tour		55	mp	DEC2
tpwr		1 2	dfra2	0
pw		4.2	dn2	
d1			dour 2	1
tor		2000.0	dof?	â
nt		399999	dor 2	
ct		704	dmz	
alock	(n	dmm2	10000
gain	no	t used	dm12	10000
	FLAGS		dseq2	
11		n	dres2	1.0
in		n	homo2	n n
dp		У	1000000020	DECS
hs		nn	dfrq3	0
	DISPLAY		dn3	
Sp	-	1089.7	dpwr3	1
WD	2	9995.3	dof3	0
VS		27	dm3	n
SC		0	dmm3	c
WC		250	dmf3	10000
hzmm		119.98	dseq3	
is		500.00	dres3	1.0
rf1	1	0768.9	homo3	n
rfn		9678.3	PR	DCESSING
th		3	1b	1.00
ins	1	00.000	wtfile	
nm	rdc nh		DLOC	ft
	out pi		fn	not used
			math	f
			werr	
			Wexn	
			whs	
			wat	
			WILL	

WYKELN10034_13C

exp1 s2pu1

220

200

1.1

180 160

dfrq 499.874 dn H1 dpwr 48 dof 0
dn H1 dpwr 48 dof 0
dpwr 48 dof 0
dof 0
dm yyy
dmm w
dmf 10000
dseq
dres 1.0
homo n
temp 24.0
DEC2
dfra2 0
dn2
dpwr2 1
dof2 0
dm2 n
dmm2 c
dmf2 10000
dsea2
dres2 1.0
homo?
DEC3
dfro3 0
dn3
dowr3 1
dof3 0
dors o
dmm3 C
dmf3 10000
dseo2
droc3 1.0
41033 1.0
PROCESSING
1 00
10 1.00
werrie ft
for not used
Th not used
math T
werr
Wexp
wbs
wnt

80

60

20

40

11117

ppm

140 120 100

WYKELN8080_13C exp2 s2pu1 SAMPLE DI date Apr 25 2010 dfrq solvent CDC13 dn file exp dpwr ACQUISITION dof sfrq 125.707 dm tn C13 dmm at 1.092 dmf np 65536 dseq sw 29996.3 dres fb not used homo bs 16 temp tpwr 55 DEC. & VT 499.874 H1 48 0 УУУ C. 1.09: 65536 29996.3 . not used hc. 16 tem, 55 2.0 dfrq2 0 dn2 .0 dpwr^a 9 dr^a 10000 1.0 n 25.0 tpwr pw d1 tof nt DEC2 0 0 dn2 2000.0 dpwr2 9939 dof2 848 dm2 not used dmf2 FLAGS dseq2 n dres2 n homo2 y nn dfrq3 DISPLAY dn3 0 ct n alock C 10000 gain il in dp hs 1.0 n DEC3 y nn dfrq3 dn3 -1088.7 dpwr3 25995.3 dof3 42 dm3 0 dmm3 250 dmf3 119.98 dseq3 500.00 dres3 10768.0 homo3 9678.3 PR0 3 lb 100.000 wtfile dc ph proc 0 Sp DISPLAY wp 2 vs sc wc hzmm hzmm ifl 1 rfp th 1 ins 1 nm cdc ph 1 0 п C 10000 1.0 n PROCESSING 1.00 proc fn ft not used math f werr wexp wbs wnt

WYKELN10023_13C

exp1 s2pu1

WYKELN8081_13C

ppm

WYKELN10024_13C

exp1 s2pul

SAMPLE		DEC. & VT		
date A	pr 26 2010	dfrq	499.874	
solvent	CDC13	dn	H1	
file	exp	dpwr	48	
ACOUIS	SITION	dof	0	
sfrq	125.707	dm	VVV	
tn	C13	dmm	w	
at	1.092	dmf	10000	
np	65536	dsea		
SW	29996.3	dres	1.0	
fb	not used	homo	n	
bs	32	temp	25.0	
tpwr	55	D	EC2	
pw	4.2	dfra2	0	
d 1	0	dn2		
tof	2000.0	dowr2	1	
nt	99999	dof2	ô	
ct	1792	dm2	n	
alock	n	dmm2	c	
nain	not used	dmf2	10000	
FLA	AGS .	dsea2	10000	
i1	n (100	dres2	1 0	
in		homo2	1.0	
dn	, in the second	nomor	FC3	
hs	nn	dfra3	0	
DISE	AY	dn3	0	
Sn	-1086 9	dowr 3	1	
wn	29995 3	dof3	ô	
VS	27	dm3		
sc	- 0	dmm3		
wc	250	dmf3	10000	
hzmm	119.98	dsea3	10000	
is	500.00	dres3	1 0	
rf1	10766 2	homo3	1.0	
rfn	9678 3	PROC	ESSING	
th	2	1h	1 00	
ins	100 000	wtfile	1.00	
nm cdc	nh	aroc	ft	
Thin Out	pii	fn	not used	
		math	filler used	
		and en		
		werr		
		wexp		
		wbs		
		wnt		

WYKELN8085_13C

exp3 s2pul

WYKELN10028_13C

exp3 s2pu1

SAMPLE		DEC. & VT	
date #	Apr 28 2010	dfrq	499.874
solvent	CDC13	dn	H1
file	exp	dpwr	48
ACQUI	SITION	dof	0
sfrq	125.707	dm	УУУ
tn	C13	dmm	W
at	1.092	dmf	10000
np	65536	dseq	
SW	29996.3	dres	1.0
fb	not used	homo	n
bs	32	temp	25.0
towr	55	D	EC2
pw	4.2	dfra2	0
d1	0	dn2	
tof	2000.0	dowr2	1
nt	99999	dof2	Ô
ct	1088	dm2	
alock	1000	dmm2	
cain	not used	dmf2	10000
FI	AGS	deen2	10000
41 10	100	drec 2	1.0
10		01652	1.0
do	n	nomo2	n n
up	У	15	EU3
ns ore	nn	atrq3	U
015	PLAT	ana	
sp	-1007.0	apwr 3	1
wp	29995.3	dof 3	0
VS	21	dm3	n
sc	0	dmm3	C
WC	250	dmf3	10000
nzmm	119.98	dseq3	2.2
15	500.00	dres3	1.0
rf1	10767.1	homo3	n
rfp	9678.3	PROC	ESSING
th	5	16	1.00
ins	100.000	wtfile	
nm cdc	ph	ргос	ft
		fn	not used
		math	f
		werr	
		wexp	
		wbs	
		wnt	
		0.0000000000	

WYKELN8086_13C

WYKELN10029_1H exp1 s2pul SAMPLE Di date Apr 28 2010 dfrq solvent CDC13 dn file /export/home/~ dpwr ds2/vnmrsys/data/1~ dof 500c/schreiber/wAN~ dm G/Pub1/WYKELN10028~ dmm _1N.fid dmf ACQUISITION dseg sfrg 498 875 dreg DEC. & VT q 499.874 H1 30 Ő nnn C dseq ITION dseq 499.875 dres H1 homo 2.184 temp 32768 PRO 7501.2 lb not used wtfile sfrq tn at np sw fb bs ss tpwr pw d1 tof nt ct alock gain PROCESSING 4 2 62 ft 32768 proc fn math f 12.0 0 werr 800.0 wext 32 wbs 32 wht wexp wft n not used FLAGS i 1 n n Y nn DISPLAY -250.2 4998.6 109

WYKELN9044_13C_2

WYKELN10035_13C

S120

.....

ppm

WYKELN8090_13C

exp2 s2pu1

	SAMPLE		C
date	Apr 29 2010	dfra	499 874
solve	nt CDC13	dn	433.074
file	exp	dowr	11
AC	OUISITION	dof	
sfrg	125.707	dm	VVV
tn	C13	dmm	333
at	1.092	dmf	10000
np	65536	dsea	10000
SW	29996.3	dres	1.0
fb	not used	homo	1.0
bs	32	temp	25 0
tpwr	55		DEC2
pw	4.2	dfra2	0
d1	0	dn2	0
tof	2000.0	dpwr2	1
nt	99999	dof2	1
ct	1280	dm2	0
alock	1200	dmm2	
qain	not used	dmf2	10000
	FLAGS	dsea2	10000
i1	n	dres2	1.0
in	n	homo2	1.0
dp	v	nomoz	DECS
hs	nn	dfra3	0200
D	ISPLAY	dn3	U
SD	-1087.8	dowra	1
Wp	29995.3	dof3	1
vs	27	dm3	0
SC	0	dmm3	
WC	250	dmf3	10000
hzmm	119,98	dsea3	10000
is	500.00	dres3	1 0
rf1	10767.1	homo3	1.0
rfp	9678.3	PRO	CESSING
th	3	16	1 00
ins	100.000	wtfile	1.00
nm cd	c ph	proc	f+
		fn	not used
		math	f
		werr	
		wexp	
		WDS	
		wnt	

WYKELN10033_13C

exp3 s2pu1

ss tpwr pw dl

tof nt ct alock

gain

il in dp hs

not used FLAGS

DISPLAY

0 werr 800.0 wexp 32 wbs 32 wnt

> n n y nn

wexp

WYKELN10031_13C

L.....

exp1 s2pul DEC. & VT 199.874 H1 30 0 nnn C 200 1.0 n 25.0 PROCESSING 1.10 ft 32768 f 0 werr 800.0 wexp 32 wbs 32 wnt n wft not used FLAGS n n Y nn DISPLAY -250.2 4998.6 100 0 250 19.99 598.03 4089.8 3629.1

WYKELN10032_13C

e>

exp3	s2pu1		
	SAMPLE	DF	C. & VT
date	Арг 30 2010	dfra	499.874
solve	nt CDC13	dn	H1
file	exp	dowr	48
AC	QUISITION	dof	0
sfrq	125.707	dm	VVV
tn	C13	dmm	335 W
at	1.092	dmf	10000
np	65536	dseg	
SW	29996.3	dres	1.0
fb	not used	homo	n
bs	32	temp	25.0
tpwr	55		DEC2
pw	4.2	dfra2	0
d1	0	dn2	•
tof	2000.0	dpwr2	1
nt	99999	dof2	Ô
ct	1216	dm2	n
alock	n	dmm2	c
gain	not used	dmf2	10000
	FLAGS	dseg2	10000
11	n	dres2	1.0
in	n	homo2	n
dp	V		DEC3
hs	nn	dfrg3	0
D	ISPLAY	dn3	100
sp	-1090.6	dpwr3	1
wp	29995.3	dof3	õ
VS	18	dm3	n
SC	0	dmm3	c
WC	250	dmf3	10000
hzmm	119.98	dseq3	
15	500.00	dres3	1.0
rf1	10769.8	homo3	n
гfр	9678.3	PRO	CESSING
th	4	16	1.00
ins	100.000	wtfile	
nm cd	c ph	ргос	ft
		fn	not used
		math	f
		werr	
		wexp	
		wbs	
		wnt	

WYKELN8087_13C

exp3 s2pu1

WYKELN10030_13C

WYKELN8083_13C

20

ppm

WYKELN10026_13C

exp2 s2pu1

S	AMPLE	DEC	& VT		
date	Apr 29 2010	dfra	499 874		
solvent	CDC13	dn	H1		
file	exp	dowr	48		
ACQUISITION		dof	0		
sfrq	125.707	dm	VVV		
tn	C13	dmm	333 W		
at	1.092	dmf	10000		
np	65536	dsea			
SW	29996.3	dres	1.0		
fb	not used	homo	n		
bs	32	temp	25 0		
tpwr	55		DEC2		
DW	4.2	dfra2	0		
d1	0	dn2			
tof	2000.0	dowr2	1		
nt	99999	dof2	â		
ct	256	dm2			
alock	200	dmm2			
gain	not used	dmf2	10000		
FLACS		dsea2	10000		
11	n	droc2	1.0		
in		homo2	1.0		
dn		101102	n		
hs	y	dfra2	203		
DTS	PLAY	drigs	0		
DISPLAT		deur 2			
Up.	20005.7	upwi 3	1		
UC	20000.0	dm2	0		
sc.	23	dmm2	n		
we	250	dmf 3	10000		
h 2mm	110 00	dana2	10000		
ic	500 00	dseq3			
rf1	10769 0	uress bores	1.0		
rfn	10700.3	nomo3	n		
th	SOTO PROCESSING		ESSING		
inc	100 000	10	1.00		
nm cdc	100.000	wtfile	C 1		
in cuc	hu	proc	ft		
		math	not used		
		math	f		
		werr			
		wexp			
		wbs			

16

-_1H SAMPLE DE. date Apr 25 2010 dfrq solvent CDC13 dn file /export/home/~ dpwr ds2/vnmrsys/data/i~ dof 500c/schreiber/wAN~ dm G/Publ/WYKELN8084_~ dmm ACQUISITION dseq frq 499.875 dres 1 H.fid dmf ACQUISITION dseq frq 499.875 dres 1 L.144 temp 2 32768 PROCESSING 7501.2 lb 1.1 not used wtfile 4 proc ft 2 fn 62 math 12.0 0 **,0**, DEC. & VT 499.874 H1 30 0 'n (±) 0 Ó Si(OEt)₂Me nnn C 200 17a 1.0 25.0 1.10 bs ss tpwr pw dl tof nt ct alock ft 32768 22.0 0 800.0 W 32 Wbs 32 Wht n wexp wbs wft not used FLAGS gain 11 n in dp hs n У nn DISPLAY sp wp vs sc wc hzmm -250.2 4998.6 0 250 19.99 569.82 4090.3 3629.1 0 is rfl rfp th ins 1.000 nm ph 11 9 8 7 6 5 4 3 2 1 0 ىبى بى بى 0.630.95 0.95 بب ب 0.67 0.680.87 لباب لباب لبالب الباب بالب 1.931.731.96 1.79 5.37 1.942.01 2.11 6.50 انهنا لينانينا لينا haped. 2.88 1.00 1.00 0.94

S151

ppm

2.23

WYKELN10027_13C

exp3 s2pu1

WYKELN11014_13C

WYKELN11028_1H_Benzene

S161

ppm

WYKELN10039_1H

exp1 s2pul

WYKELN10039_13C

exp4 s2pu1

SAMPLE		DEC	. & VT
date	Nov 17 2010	dfrq	499.874
solvent	CDC13	dn	HI
file exp		dpwr	48
ACQU	DISITION	dof	0
sfrq	125.707	dm	УУУ
tn	C13	dmm	
at	1.092	dmf	9180
np	65536	dseq	21 S
sw	29996.3	dres	1.0
fb	not used	homo	n
bs	16	temp	25.0
tpwr	55	200 - 200	DEC2
pw	4.8	dfrq2	0
d1	0	dn2	
tof	2000.0	dpwr2	1
nt	99999	dof2	0
ct	1104	dm2	n
alock	n	dmm2	c
gain	not used	dmf2	10000
F	LAGS	dseg2	
i 1	n	dres2	1.0
in	n	homo2	n
ip	V	1	DEC3
ns	nn	dfra3	0
DI	SPLAY	dn3	5
sp	-1086.9	dowr3	1
VD OV	29995.3	dof3	õ
VS	54	dm3	
SC	0	dmm3	0
JC	250	dmf3	10000
h7mm	5.10	dsea3	
is	500.00	dres3	1.0
rf1	10766.2	homo3	1.0
fp	9678.3		CESSING
th	3	lb	1 00
ins	100.000	wtfile	1.00
m cdc	nh	nroc	£+
	P.O.	fo	not used
		math	100 0000
		mach	,
		werr	
		wexp	
		wbs	
		wat	

WYKELN10002_1H Ο exp1 s2pul SAMPLE DEC. & VT date Nov 17 2010 dfrq 500. solvent CDC13 dn file /export/home/~ dpwr ds2/vnmrsys/data/i~ dof 500b/schreiber/wAN~ dm G/Pub1/WYKELN10002~ dmm ACQUISITION dseq sfrq 500.176 dres tn tn H1 homo at 2.048 temp 2/ np 32768 PROCESSING sw 8000.0 lb 0 fb 4000 wtfile DEC. & VT 9 500.176 H1 32 nnn C 20b 8770 1.0 24.0 np sw fb 0.10 4000 wtfile bs 4 proc 2 fn ft not used 55 tpwr pw d1 58 math f 5.0 0 werr tof 0 wexp nt ct alock gain 32 32 wbs wft wnt n not used FLAGS i1 n in n y dp hs nn sp wp vs sc wc hzmm is rfl DISPLAY -250.1 5001.5 59 250 20.01 173.80 5131.8 3631.3 rfp th 2.000 ins ph mn 9 8 7 5 4 3 2 6 1 4 ÷

0 ppm ب 0.45 0.63 0.78 4.011.97 2.09 나 1.87 ч 1.34 2.00 3.94 0.60

WYKELN10002_13C

exp3 s2pu1

WYKELN11015_13C

exp1 s2pul SAMPLE DEC. (asyntatic sector of the sector il in dp hs n n y nn DISPLAY -1090.6 29995.3 52 0 250 119.98 500.00 10769.8 9678.3 58 100.000 cdc ph sp wp vs sc wc hzmm is rf1 rfp th ins

nm cdc ph

WYKELN11018_13C

WYKEL	WYKELN8093_13C			
exp3	s2pu1			
	SAMPLE		DEC. & VT	
date	Apr 14 2011	dfra	499.8	
solve	nt CDC13	dn	100000	
file	exp	down		
AC	OUISITION	dof		
sfrq	125.707	dm	V	
tn	C13	dmm		
at	1.092	dmf	89	
np	65536	dsea	1.5.5	
SW	29996.3	dres	1	
fb	not used	homo		
bs	16	temp	25	
tpwr	55		DEC2	
pw	4.8	dfra2		
d1	0	dn2		
tof	2000.0	dowr2		
nt	9999	dof2		
ct	176	dm2		
alock	n	dmm2		
gain	not used	dmf2	100	
	FLAGS	dsea2		
i1	n	dres2	1	
in	n	homo2		
dp	×	ſ	EC3	
hs	nn	dfra3		
	DISPLAY	dn3		
SD	-1087.8	dowr3		
WD	29995 3	dof3		
VS	30	dm3		
SC	0	dmm3		
WC	250	dmf3	100	
hzmm	119.98	dsea3	100	
is	500.00	dres3	1	
rf1	10767.1	homo3	-	
rfp	9678.3	PROC	ESSING	
th	5	1b	1.1	
ins	100.000	wtfile		
nm Co	ic ph	proc		
		fn	not use	
		math		

DEC. & VT q 499.874 H1 r 48 0 yyy 8929 q

werr wexp wbs wnt

1.0 n 25.0 0 1 0 n c 10000 1.0 n 0 1 ō n C 10000 1.0 n

1.00 ft not used f

WYKELN5009_1H

WYKELN5009_13C

exp2 s2pu1

WYKELN5011_byProduct_1H

0.71

exp1 s2pul SAMPLE Di date Nov 5 2009 dfrq solvent CDC13 dn file /export/home/~ dpwr ds2/vnmrsys/data/1~ dof 500b/schreiber/WAN~ dm G/WYKEN5011_byPro~ dmm duct_IH.fid dmf ACQUISITION dseq sfrq 500.176 dres tn H1 homo at 2.048 temp np 32768 PF sw 8000.0 lb n DEC. & VT q 500.176 H1 32 0 nnn 8770 34 1.0 23.0 temp PROCESSING np sw fb 8000.0 1b 0.10 4000 wtfile proc ft bs 8 SS not used tpwr 58 math f pw d1 5.0 werr 0 tof nt ct alock gain 0 wexp 64 wbs 64 wnt wft n not used FLAGS n il in dp hs п n y nn DISPLAY -250.1 5001.5 sp wp vs sc wc hzmm is rf1 rfp th ins 5001.5 65 0 250 20.01 100.53 5131.3 3631.3 7 2.000 nm ph 9 3 2 0 ppm 8 7 6 5 4 1 ب بب بب 3.26 1.85 1.963.73 ب 0.57 1.19 1.16 4 ب 1.80 2.00 4 ÷ 4 ليها 1.53

S196

1.02

WYKELN5011_byProduct_13C

exp2 s2pu1

