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1. Methods

We simulate models using MatLab’s (MathWorks, Natick MA) built-in ODE library
(ODE45). We use dynamical systems bifurcation techniques and the package Matcont [1] to
map the parameter space of each model and create bifurcation diagrams. In each case, we
chose a basic set of parameters to achieve bistability in the absence of oscillatory feedback.
Feedback was then introduced and parameters were varied to determine whether a given
model variant is consistent with experimental manipulations described by [2].

2. Model equations

2.1. Model 1, ECM signaling equation analysis. Consider the ECM signaling equations
from the maintext with AE(R1,2), LE(ρ1,2) taken to be parameters. The equations for the
ECM are then

dEk
dt

= ε [(BE + AEEk)− Ek (LEEk + lcEj)] , j 6= k.

This is the Lotka-Volterra species-competition model, briefly analyzed here. This system
admits four possible solutions s1 = (0, 0), s2 = (0, E∗

2), s3 = (E∗
1 , 0), and s4 = (E∗∗

1 , E
∗∗
2 )

where

(2.1) E∗
1,2 =

AE(R1,2)

LE(ρ1,2)
, and E∗∗

1,2 =
AE(R1,2)LE(ρ2,1)− AE(ρ2,1)lc

LE(ρ1,2)LE(ρ2,1)− l2c
.
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Then s2,3 are associated with two polarized states while s4 is an apolar co-existence state. In
region I, the only stable solution is s4. In regions II and III, solutions s2 and s3 respectively
are stable. In Regime IV, only s1 is stable.

2.2. Model 1a. Using RI = ρI = 1 as before, and taking n = 1, BE = 0 and a linear
assumption for bρ, we arrive at the model equations

dRk

dt
=

bR
1 + ρk

RI − δRk,(2.2a)

dρk
dt

=
(kE + γ̄EEk)

1 +Rk

ρI − ρk,(2.2b)

dEk
dt

= ε
[
(kR + γ̄RRk)Ek − ((kρ + γ̄ρρk)E

2
k + lcEjEk)

]
,(2.2c)

for k = 1, 2 representing quantities in the two lamellipods and j 6= k representing quantities
in the other.

2.3. Model 1b. The equations for Model 1b are the same as those of Model 1a, but with
conservation of total GTPases, RI = RT −R1 −R2 and ρI = ρT − ρ1 − ρ2.

Technically, the transition from polarized to oscillatory behavior shown in Figure 3 results
from a bifurcation to heteroclinic cycles rather than a canonical Hopf bifurcation. (But
the conclusions are similar.) In the oscillatory regime of this model, there are two unstable
polarized states. The oscillation is a heteroclinic cycle connecting these two states. As
the bifurcation is approached from the oscillatory side, the period of oscillation becomes
infinitely long, and at the bifurcation the system spends infinite time at one or the other
polarized states, representing the transition to stability.

2.3.1. Model 1b parameter set: kR = 1, lc = 1, kρ = 0.1, kE = 0, γ̄E = 5, ε = 10, bR = 0.5, δ =
1, γ̄R = 0.75, γ̄ρ = 1, n = 1, RT = ρT = 1.

2.4. Model 1c. This model augments Model 1b to consider the influence of Rac and Rho
effector molecules in the protrusion and contraction process. Here wk represents effectors
of Rac and ck effectors of Rho in lamellipod k. We assume that these directly influence
protrusion and contraction terms (BE and LE) and that their dynamics are described by
linear ODE’s. We retain the same Rac and Rho equations as in Model 1b and include the
following to describe dynamics of Ek, wk, ck.

dEk
dt

= ε
[
(kR + wk)Ek − ((kρ + ck)E

2
k + βEjEk)

]
, j 6= k,(2.3a)

dwk
dt

= ε2(γRRk − wk),(2.3b)

dck
dt

= ε2(γρρk − ck).(2.3c)

Here, 1/ε2 is a timescale variable associated with the speed of these reactions. Small ε2
indicates wk and ck are slow variables.

This reformulation leads to three explicit timescales representing GTPase dynamics O(1),
dynamics of GTPase effectors O(ε2), and dynamics of the ECM O(ε). Model 1c (Eqs. (2.3))
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Figure A. Schematic diagram for Model 1c. Similar to Figure 2a except
with the explicit inclusion of intermediate effectors such as Rock and Wasp /
Wave. (a) Full model describing the proposed interactions between the ECM
and GTPase signalling. (b,c) Diagram of the two negative feedback loops
embedded in this model that are capable of producing oscillations. ε1, ε2, ε3
are rate constants for GTPase dynamics, Rock / Wasp dynamics, and ECM
dynamics respectively, see (2.3).

asymptotically reduces to Model 1b provided the GTPase effector dynamics (e.g. ROCK /
WASP) are fast (ε2 � ε). In this case a quasi steady state approximation reduces Model 1c to
Model 1b and bifurcation analysis of the full Model 1c equations (not shown) closely matches
that of Figure 3. In that case, Model 1c has the same problem that GTPase dynamics are
required to be slow to generate oscillations. When ε2 � ε, the effectors determine the
timescale of feedbacks, and consequently, GTPases need not be slower than ECM dynamics
(e.g. it can be the case that ε < 1).

3. Model 2

We set RI = ρI = 1, and Hill coefficients n = 3, and use the assumed bρ(Ek) expression.
Setting AE = 0, and using assumed forms of BE and LE, we get (for k = 1, 2 and j 6= k):

dRk

dt
=

bR
1 + ρ3k

RI − δRk,(3.1a)

dρk
dt

=

(
kE + γE

E3
k

E3
0 + E3

k

)
1

1 +R3
k

ρI − ρk,(3.1b)

dEk
dt

= ε

[(
kR + γR

R3
k

R3
0 +R3

k

)
− E2

k

(
kρ + γρ

ρ3k
ρ30 + ρ3k

)
− lcEjEk

]
.(3.1c)

3.0.1. Model 2 parameter set. bR = 2, n = 3, δ = 1, kE = kR = kρ = 0, γE = 5, R0 =
0.85, ρ0 = 0.85, E0 = 1, lc = 1, ε = 0.1, RI = ρI = 1.
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4. Model 3

We use the conservation of GTPases combined with the bistable GTPase model (2) to
obtain the equations:

dRk

dt
=

bR
1 + ρ3k

(RT −R1 −R2)− δRk,(4.1a)

dρk
dt

=

(
kE + γE

E3
k

E3
0 + E3

k

)
1

1 +R3
k

(ρT − ρ1 − ρ2)− ρk.(4.1b)

(4.1c)
dEk
dt

= ε

[(
kR + γR

R3
k

R3
0 +R3

k

)
− E2

k

(
kρ + γρ

ρ3k
ρ30 + ρ3k

)
− lcEjEk

]
.

4.0.1. Model 3 parameter set. The base parameters used for this model are RT = ρT = 2, δ =
1, bR = 5, R0 = ρ0 = 0.85, E0 = 1, n = 3, kE = 3, γE = 2, ε = 0.1, kρ = 0.2, kR = 0.2, γR =
0.3, lc = 0.

4.1. Model 3b. In Figure 5d, we demonstrate the influence of ECM feedback on Rac acti-
vation. To do so, we consider a modification of Model 3 given by:

dRk

dt
=

(
bR + γER

E3
k

E3
0 + E3

k

)
1

1 + ρ3k
(RT −R1 −R2)− δRk,(4.2a)

dρk
dt

=

(
kE + γE

E3
k

E3
0 + E3

k

)
1

1 +R3
k

(ρT − ρ1 − ρ2)− ρk.(4.2b)

(4.2c)
dEk
dt

= ε

[(
kR + γR

R3
k

R3
0 +R3

k

)
− E2

k

(
kρ + γρ

ρ3k
ρ30 + ρ3k

)
− lcEjEk

]
.

Here, the parameter γER represents the magnitude of ECM feedback on the rate of Rac
activation. Setting γER = 0, reduces this variant to the original Model 3.

4.1.1. Model 3b parameter set. All parameters are the same as in Model 3 with γER = 0.5.
This parameter set was used to generate the dashed borders in Figure 5d. Note that the
strength of ECM feedback to Rho activation is γE = 2. This parameter set represents
a scenario where ECM influences both Rac and Rho, but where the influence on Rho is
dominant.

5. Parameter Selection

In our models, a slow negative feedback interacts with a bistable system to generate
a relaxation oscillator. This suggests a strategy to find appropriate parameter regimes:
first pick parameters for the bistable submodel that provide a reasonable range of behavior
(spanning the low monostable, bistable, and high monostable states); then parametrize the
negative feedback subsystem so that the full system swings across those three regimes.

For example, in Model 3, bistability stems from the conserved GTPase dynamics. Our
experience with such models stems from both dimension-carrying versions [3, 4], and from
a theoretical analysis of the Rac-Rho system [5]. To first decouple the ECM dynamics,
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we considered bρ as a fixed parameter. We reduce the dimensionality of parameter space
by scaling the variables. Here we scaled time by the typical GTPase inactivation time 1/δ
(equivalent to setting δ = 1 in the full model) and GTPase concentration by the “IC50” level
(at which GTPase rate of activation is inhibited down to 50% of its maximal level. (This
is equivalent to setting the Hill function IC50 parameters to 1.) Past experience suggests
that the system exhibits bistability when the total amount of GTPases is roughly double
the value of the IC50 parameter. Thus we chose the dimensionless total concentration of
GTPase to be RT = ρT = 2. Finally, we selected bR and the range of bρ to span the bistable
domain (as noted above) using bifurcation analysis of the Rac / Rho system (Figure 5a).
This fully parameterized the GTPase submodel.

We next parameterized the negative feedback subsystem so that the resulting range of
values of Ei (max and min) suffice to force the parameter bρ(Ei), now considered a function
of Ei, to traverse the bistable region in Figure 5a. To do so, kE and γE were chosen to
determine the maximum and minimum values of bρ. We scaled the ECM variables by the Hill
function parameter E0 (level of ECM that leads to half-maximal ECM-feedback-induced Rho
activation rate). Then the ECM feedback in Eqn. (4.1c) switches on and off in the proximity
of Ej ≈ 1, determining the required range of interest for the variables Ej to ensure bρ(Ei)
spans the range [kE, kE + γE]. The maximum and minimum values of Ei are related to the
quantities (kR + γR)/kρ and kR/(kρ + γρ). These are set to ensure that Ej’s operate in a
reasonable range about the “switching value” of 1. The Hill parameters R0 and ρ0 (half-max
levels of Rac and Rho for their respective effects on ECM in Eqn. (4.1b)) were adjusted with
the same goal in mind, to ensure that (Ej) is able to nearly achieve their required maximum
and minimum values. Here we also used the behavior of the decoupled bistable subsystem,
namely the maximum and minimum values for Rac and Rho in the two steady states. The
midpoint, (max-min)/2, was a reasonable guess for appropriate values of R0 and ρ0. Finally,
some small adjustments were made to this basic parameter set to obtain the final results.
With this basic simple strategy it was easy to find large parameter swaths that produced
the three regimes of behavior and the models were robust to parameter variations.
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