
Appendix 

A1) Mathematic formulation of the connected steady state system 

For our derivation we start with event-based argumentation. The general expression is:  

 

𝐹𝑛 = 𝛽 (𝐶𝐵 − 𝐶𝑛)  (1a) 

𝐶𝑛+1  =  𝐶𝑛 + 𝑘′𝐹𝑛  (1b) 

 

where 𝛽 ∶= Ͽ ∗ 𝐿−1; 𝑘′ ∶=
1

𝑣
;  𝐶𝐵 ∶= 𝐶𝑏𝑙𝑜𝑜𝑑   and n ∈ ℕ. Substituting (1a) into (1b) yields: 

 

𝐶𝑛+1  =  𝐶𝑛 + ∆ (𝐶𝐵 − 𝐶𝑛) = 𝐶𝑛 (1 − ∆ ) + ∆ 𝐶𝐵. 

 

where ∆∶= 𝑘′ ∗ 𝛽. Thus (Cn)n ∈ ℕ is an arithmetico-geometric sequence with the recursive relation: 

 

𝐶𝑛+1  =  𝑎𝐶𝑛 + 𝑏  

 

where 𝑎 ∶= 1 − ∆;  𝑏 ∶= ∆ ∗ 𝐶𝐵.  Observe that  0 < 𝑎 < 1 and 𝐶0 = 0 (see Section Formulation of the 

Connected Steady State Model) and put r ∶=
𝑏

1−𝑎
= 𝐶𝐵. It is well known that (Cn)n ∈ ℕ admits the explicit 

formula:  

 

                                                                              𝐶𝑛 = 𝑎𝑛(𝐶0 − 𝑟) + 𝑟 = −𝑟𝑎𝑛 + 𝑟.  

 

Now let 𝑘𝑁
′ : =

𝑘′

𝑁
 for fixed N ∈ ℕ and let (CN,n)n ∈ ℕ, (FN,n)n ∈ ℕ be the corresponding sequences for the 

concentration and diffusional flux at time 
𝑛

𝑁
. 

As seen above we have 

𝐶𝑁,𝑛+1 = 𝐶𝑁,𝑛 + 𝑘𝑁
′ 𝐹𝑁,𝑛  

such that 

𝐶𝑁,𝑛+1 = 𝑎𝑁𝐶𝑁,𝑛 + 𝑏𝑁 

 

where 𝑎𝑁 ∶=  1 −
∆

𝑁
 ; 𝑏𝑁 ∶=

∆

𝑁
∗ 𝐶𝐵, thus 

 

𝐶𝑁,𝑛 = (𝑎𝑁)𝑛(𝐶0 − 𝑟𝑁) + 𝑟𝑁 =  −𝑟𝑁(𝑎𝑁)𝑛 + 𝑟𝑁   

 

where 𝑟𝑁 ∶=
𝑏𝑁

1−𝑎𝑁
= 𝐶𝐵. 

Therefore, a given time 𝑡 = 𝑛𝑠 =
𝑡𝑁

𝑁
 (n being a real number) corresponds to 𝑛 ∗ 𝑁 events of length 

1

𝑁
𝑠 

so that we get by approximation for the exact concentration C(t): 



𝐶(𝑡) =   𝑙𝑖𝑚
𝑁→∞ 

𝐶𝑁,𝑛∗𝑁 = 𝑙𝑖𝑚
𝑁→∞ 

 −𝐶𝐵 (1 −
𝑘′𝛽

𝑁
)

𝑛∗𝑁

+ 𝐶𝐵 

= 𝑙𝑖𝑚
𝑁→∞ 

 −𝐶𝐵 [(1 −
𝑘′𝛽

𝑁
)

𝑁

]

𝑛

+ 𝐶𝐵 

= −𝐶𝐵𝑒−𝑘′𝛽𝑛 + 𝐶𝐵 

 

= −𝐶𝐵𝑒−𝑘𝛽𝑡 + 𝐶𝐵 

with 𝑘 ∶=
𝑘′

1𝑠
. This also implies the relation for the diffusional flux F(t) at time t 

 

                                                          𝐹(𝑡) = 𝛽(𝐶𝐵 − 𝐶(𝑡)) = 𝛽𝐶𝐵 𝑒−𝑘𝛽𝑡 

 

Seen on relative levels yields: 

 

𝐶𝐶𝑆𝐹(𝑡)

𝐶𝑏𝑙𝑜𝑜𝑑
=

−𝐶𝐵𝑒−𝑘𝛽𝑡 + 𝐶𝐵

𝐶𝐵
= −𝑒

−
Ͽ
𝐿

𝑘𝑡
+ 1 

 

A1 

 

And analogously for the molecular flux: 

 

𝐹𝐶𝑆𝐹(𝑡)

𝐹𝑖𝑛𝑖𝑡𝑖𝑎𝑙

=
𝛽𝐶𝐵 𝑒−𝑘𝛽𝑡

𝛽 𝐶𝐵
= 𝑒

−
Ͽ
𝐿

𝑘𝑡 A2 

 

 

  



A2) The conformity of the molecular flux theory and the connected steady state model to the 

hyperbolic function and their valid range 

 

A Molecular flux model - fit to the hyperbolic function 

 
  

   

Fig. 5. Curve discussion. A: The function 0.5 erfc(z), z = 
𝑥

2√𝐷𝐴𝑙𝑏𝑡
, derived from the molecular flux model (Equation 3, 

Section The Molecular Flux Theory) fitted to the hyperbolic functions for IgG/A/M (Equation 1, Table 1). QAlb is represented 

by 0.5 erfc(z). The fitting procedure, see Equations A3/4, is the same as described for the connected steady state system 

(Section Validation of the Connected-Steady State Model, Equation 12/13).  

A1: Like the connected steady state model (Figure 3B), the molecular flux model is also adjustable to the hyperbolic 

function in a certain physiological range. 

A2: The fit shown over the whole range 0 ≤ QAlb ≤ 1 shows several aspects: 1. Outside the overlapping range, the 0.5 erfc(z) 

function deviates considerably from the hyperbolic function. 2. At QAlb<0.5; QIgM<QIgA<QIgG but at QAlb>0.5; QIgM>QIgA>QIgG. 

This does not meet the required boundary conditions (see Section The Molecular Flux Theory and Section The Connected 

Steady State Model) 

B: The empirically derived hyperbolic function is only valid in the range in which the function is fitted to the experimental 

data. 0.5 erfc(z) is used for QAlb values (every other function increasing from 0 to 1 could be used as well). At high QAlb 

values (~ > 0.05) the function tends to a/b and not to 1; this can also be observed in Figure5 A2 (also see Equation 1, 
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Table 1). However, theoretically at QAlb1 QIgX must also tend to 1 and therefore QIgG/QAlb = 1. At QAlb 0 the hyperbolic 

function (Equation 1) tends to a-c, resulting in QIgG > QAlb which is impossible since QAlb is the faster diffusing molecule. 

C1/2: Shows the accordance of the empirical hyperbolic function to the two theoretically derived functions. 

C1: Shows that the function 0.5 erfc(z), representing the molecular flux theory, cannot be precisely fitted to the hyperbolic 

function.  

C2: In the physiological range the connected steady state system fits precisely to the empirical function and therefore to 

the experimental data. 

 

The approach to fit the equation derived from the ´molecular flux theory´ (Equation 3 in Section The 

Molecular Flux Theory) to the hyperbolic function (Equation 1) is the same as described for the 

connected steady state model (Section Validation of the Connected-Steady State Model, 

Equation 12/13). Equation A3 represents the theoretical function (Equation 3) and Equation A4 

represents the empirical hyperbolic function (Equation 1). 

𝑄𝐼𝑔𝑋
̅̅ ̅̅ ̅̅ =

1

2
𝑒𝑟𝑓𝑐 (

𝑥

2√𝐷𝐴𝑙𝑏𝑡
√

𝐷𝐴𝑙𝑏

𝐷𝐼𝑔𝑋
) =

1

2
𝑒𝑟𝑓𝑐 (𝑧 ∗ √

𝐷𝐴𝑙𝑏

𝐷𝐼𝑔𝑋
) A3 

 

𝑄𝐼𝑔𝑋
̅̅ ̅̅ ̅̅ =

𝑎

𝑏
√

1

2
𝑒𝑟𝑓𝑐(𝑧) + 𝑏2 − 𝑐 A4 

with z = 
𝑥

2√𝐷𝐴𝑙𝑏𝑡
 

 


