Appendix
A1) Mathematic formulation of the connected steady state system

For our derivation we start with event-based argumentation. The general expression is:

Fn = B (CB - Cn) (13)
Cny1 = Cp + k,Fn (1b)

where f :=J * L™4k := %; Cg = Cpiooq and n € N. Substituting (1a) into (1b) yields:
Chy1 = CL+A(Cg—C)=C,(1—-A)+ACp.
where A:= k' * B. Thus (C,)nen is an arithmetico-geometric sequence with the recursive relation:
Chy1 = aCp+b

wherea:=1—A; b:=Ax* (Cp Observethat 0 < a < 1and Cy = 0 (see Section Formulation of the
Connected Steady State Model) and putr := 1% = (Cp. It is well known that (C,)n e n admits the explicit

formula:
Ch=a"(Co—1r)+r=—-ra™+r.

Now let kpy: = %’for fixed N € N and let (CynJnen, (Fxn)nen be the corresponding sequences for the
concentration and diffusional flux at time %
As seen above we have
Cnn+1 = Cnn + knFyn
such that

Cnn+1 = anyCyp + by

Cnn = (an)™(Co —1y) + 1y = —ry(ap)™ + 1y

b
where 1y i= - ’(\1’ = Cg.
—UN
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Therefore, a given time t = ns = % (n being a real number) corresponds to n * N events of length =S

so that we get by approximation for the exact concentration C(t):
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with k := % This also implies the relation for the diffusional flux F(t) at time t

F(t) = B(Cs — C(1)) = BCp e F*

Seen on relative levels yields:

Cesr(t) —Cge™ Pt + Cy

)
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And analogously for the molecular flux:
Fese(t)  BCs e kPt _ e—%kt
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A2) The conformity of the molecular flux theory and the connected steady state model to the
hyperbolic function and their valid range

A Molecular flux model - fit to the hyperbolic function

Al Physiological range A2 Full range
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Fig. 5. Curve discussion. A: The function 0.5 erfc(z), Z=\/——, derived from the molecular flux model (Equation 3,

2./Dgpt
Section The Molecular Flux Theory) fitted to the hyperbolic functions for IgG/A/M (Equation 1, Table 1). Q,, is represented
by 0.5 erfc(z). The fitting procedure, see Equations A3/4, is the same as described for the connected steady state system
(Section Validation of the Connected-Steady State Model, Equation 12/13).
Al: Like the connected steady state model (Figure 3B), the molecular flux model is also adjustable to the hyperbolic
function in a certain physiological range.
A2: The fit shown over the whole range 0<Qu, <1 shows several aspects: 1. Outside the overlapping range, the 0.5 erfc(z)
function deviates considerably from the hyperbolic function. 2. At Qu,<0.5; Qigm<Qga<Qye but at Qap>0.5; Qigm>Qiga>Quge-
This does not meet the required boundary conditions (see Section The Molecular Flux Theory and Section The Connected
Steady State Model)
B: The empirically derived hyperbolic function is only valid in the range in which the function is fitted to the experimental
data. 0.5 erfc(z) is used for Quy, values (every other function increasing from 0 to 1 could be used as well). At high Qyu

values (~ > 0.05) the function tends to a/b and not to 1; this can also be observed in Figure5 A2 (also see Equation 1,



Table 1). However, theoretically at Qa1 Qigx must also tend to 1 and therefore Qi6/Qap=1. At Q> 0 the hyperbolic

function (Equation 1) tends to a-c, resulting in Qs > Qap Which is impossible since Qu, is the faster diffusing molecule.
C1/2: Shows the accordance of the empirical hyperbolic function to the two theoretically derived functions.

C1: Shows that the function 0.5 erfc(z), representing the molecular flux theory, cannot be precisely fitted to the hyperbolic
function.

C2: In the physiological range the connected steady state system fits precisely to the empirical function and therefore to
the experimental data.

The approach to fit the equation derived from the ‘molecular flux theory” (Equation 3 in Section The
Molecular Flux Theory) to the hyperbolic function (Equation 1) is the same as described for the
connected steady state model (Section Validation of the Connected-Steady State Model,
Equation 12/13). Equation A3 represents the theoretical function (Equation 3) and Equation A4
represents the empirical hyperbolic function (Equation 1).
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