Appendix

A1) Mathematic formulation of the connected steady state system

For our derivation we start with event-based argumentation. The general expression is:

$$
F_n = \beta \left(C_B - C_n \right) \tag{1a}
$$

$$
C_{n+1} = C_n + k' F_n \tag{1b}
$$

where $β := 9 * L^{-1}; k' := \frac{1}{n}$ $\frac{1}{v}$; $C_B := C_{blood}$ and $n \in \mathbb{N}$. Substituting (1a) into (1b) yields:

$$
C_{n+1} = C_n + \Delta (C_B - C_n) = C_n (1 - \Delta) + \Delta C_B.
$$

where ∆ $:=$ $k^{'}$ $*$ β . Thus (C_n)_{n ∈ N} is an arithmetico-geometric sequence with the recursive relation:

$$
C_{n+1} = aC_n + b
$$

where $a := 1 - \Delta$; $b := \Delta * C_B$. Observe that $0 < a < 1$ and $C_0 = 0$ (see Section Formulation of the Connected Steady State Model) and put $r := \frac{b}{1}$ $\frac{b}{1-a} = C_B$. It is well known that $(C_n)_{n \in \mathbb{N}}$ admits the explicit formula:

$$
C_n = a^n(C_0 - r) + r = -ra^n + r.
$$

Now let k'_N : $=$ $\frac{k'}{N}$ $\frac{\kappa}{N}$ for fixed N \in N and let $(C_{N,n})_{n\in\mathbb{N}}$, $(F_{N,n})_{n\in\mathbb{N}}$ be the corresponding sequences for the concentration and diffusional flux at time $\frac{n}{N}$.

As seen above we have

$$
C_{N,n+1} = C_{N,n} + k'_N F_{N,n}
$$

such that

$$
C_{N,n+1} = a_N C_{N,n} + b_N
$$

where $a_N \vcentcolon= 1 - \frac{\Delta}{N}$ $\frac{\Delta}{N}$; $b_N := \frac{\Delta}{N}$ $\frac{\Delta}{N} * C_B$, thus

$$
C_{N,n} = (a_N)^n (C_0 - r_N) + r_N = -r_N (a_N)^n + r_N
$$

where $r_N := \frac{b_N}{1-a}$ $\frac{\nu_N}{1-a_N}=C_B.$ Therefore, a given time $t = ns = \frac{tN}{N}$ $\frac{N}{N}$ (n being a real number) corresponds to $n*N$ events of length $\frac{1}{N} s$ so that we get by approximation for the exact concentration C(t):

$$
C(t) = \lim_{N \to \infty} C_{N,n*N} = \lim_{N \to \infty} -C_B \left(1 - \frac{k'\beta}{N} \right)^{n*N} + C_B
$$

$$
= \lim_{N \to \infty} -C_B \left[\left(1 - \frac{k'\beta}{N} \right)^N \right]^n + C_B
$$

$$
= -C_B e^{-k'\beta n} + C_B
$$

$$
= -C_B e^{-k\beta t} + C_B
$$

with $k := \frac{k^{'}}{16}$ $\frac{\pi}{1s}$. This also implies the relation for the diffusional flux F(t) at time t

$$
F(t) = \beta(C_B - C(t)) = \beta C_B e^{-k\beta t}
$$

Seen on relative levels yields:

$$
\frac{C_{CSF}(t)}{C_{blood}} = \frac{-C_B e^{-k\beta t} + C_B}{C_B} = -e^{-\frac{3}{L}kt} + 1
$$

And analogously for the molecular flux:

$$
\frac{F_{CSF}(t)}{F_{initial}} = \frac{\beta C_B e^{-k\beta t}}{\beta C_B} = e^{-\frac{3}{L}kt}
$$

A2) The conformity of the molecular flux theory and the connected steady state model to the hyperbolic function and their valid range

A Molecular flux model - fit to the hyperbolic function

Fig. 5. Curve discussion. A: The function 0.5 erfc(z), $z = \frac{x}{2\sqrt{D}}$ $\frac{\lambda}{2\sqrt{D_{Alb}t}}$, derived from the molecular flux model (Equation 3, Section The Molecular Flux Theory) fitted to the hyperbolic functions for IgG/A/M (Equation 1, Table 1). Q_{Alb} is represented

by 0.5 erfc(z). The fitting procedure, see Equations A3/4, is the same as described for the connected steady state system (Section Validation of the Connected-Steady State Model, Equation 12/13).

A1: Like the connected steady state model (Figure 3B), the molecular flux model is also adjustable to the hyperbolic function in a certain physiological range.

A2: The fit shown over the whole range $0 \le Q_{A|b} \le 1$ shows several aspects: 1. Outside the overlapping range, the 0.5 erfc(z) function deviates considerably from the hyperbolic function. 2. At $Q_{\rm Ab}$ <0.5; $Q_{\rm iga}$ < $Q_{\rm iga}$ and at $Q_{\rm Ab}$ >0.5; $Q_{\rm iga}$,> $Q_{\rm iga}$, $Q_{\rm iga}$ This does not meet the required boundary conditions (see Section The Molecular Flux Theory and Section The Connected Steady State Model)

B: The empirically derived hyperbolic function is only valid in the range in which the function is fitted to the experimental data. 0.5 erfc(z) is used for Q_{Alb} values (every other function increasing from 0 to 1 could be used as well). At high Q_{Alb} values (\sim > 0.05) the function tends to a/b and not to 1; this can also be observed in **Figure5 A2** (also see Equation 1, **Table 1**). However, theoretically at $Q_{A|b}$ \to 1 Q_{IgX} must also tend to 1 and therefore $Q_{IgG}/Q_{A|b}$ = 1. At $Q_{A|b}$ \to 0 the hyperbolic function (Equation 1) tends to a-c, resulting in $Q_{IgG} > Q_{Alb}$ which is impossible since Q_{Alb} is the faster diffusing molecule. **C1/2**: Shows the accordance of the empirical hyperbolic function to the two theoretically derived functions.

C1: Shows that the function 0.5 erfc(z), representing the molecular flux theory, cannot be precisely fitted to the hyperbolic function.

C2: In the physiological range the connected steady state system fits precisely to the empirical function and therefore to the experimental data.

The approach to fit the equation derived from the ´molecular flux theory´ (Equation 3 in Section The Molecular Flux Theory) to the hyperbolic function (Equation 1) is the same as described for the connected steady state model (Section Validation of the Connected-Steady State Model, Equation 12/13). Equation A3 represents the theoretical function (Equation 3) and Equation A4 represents the empirical hyperbolic function (Equation 1).

$$
\overline{Q_{IgX}} = \frac{1}{2} erfc\left(\frac{x}{2\sqrt{D_{Alb}t}}\sqrt{\frac{D_{Alb}}{D_{IgX}}}\right) = \frac{1}{2} erfc\left(z * \sqrt{\frac{D_{Alb}}{D_{IgX}}}\right)
$$

$$
\overline{Q_{IgX}} = \frac{a}{b} \sqrt{\frac{1}{2} erfc(z) + b^2 - c}
$$

with $z=\frac{x}{2\sqrt{D}}$ $2\sqrt{D_{Alb}t}$