Modifiers of prion protein biogenesis and recycling identified by a highly-parallel endocytosis kinetics assay

Boris A. Ballmer¹, Rita Moos¹, Prisca Liberali^{2,3}, Lucas Pelkmans³, Simone Hornemann¹, Adriano Aguzzi¹

Institute of Neuropathology, University of Zurich, Zurich, Switzerland¹, Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland², Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland³

Supporting Information

Table of Contents

- S-0 Overview
- S-1 Figure S1 Cell line selection for the FRET assays by sandwich ELISA
- S-2 Figure S2A Selection of best POM antibody pair for the detection of cell surface PrP^c by FRET in A549 cells
 - Figure S2B Titration of POM2-Eu and POM2-APC in HeLa cells
- S-3 Figure S3A Optimization of the alamarBlue cell viability assay
 - Figure S3B Measurement of cell death induced by Staurosporine treatment
 - Figure S3C Effect of PI-PLC treatment on cell viability of A549 cells
- S-4 Figure S4 Viability of siRNA-treated A549 cells
- S-5 Figure S5 Functionality test of used siRNAs by qPCR in A549 cells
- S-6 Figure S6A PrP^C endocytosis assay in HeLa cells
 - Figure S6B Antibody test in endocytosis assay

Figure S1. Cell line selection for the FRET assays by sandwich ELISA.

PrP^c levels from crude cell lysates were detected by POM2/POM2bio ELISA. Plates were coated with POM2 antibody and detected with biotinylated (bio) POM2.

Figure S2. Selection of best POM antibody pair for the detection of cell surface PrP^{C} by FRET. (A) Different FRET antibody combinations were tested for the detection of PrP^{C} on the surface of living A549 cells. APC-coupled POM2 antibody (POM2-APC) was used as FRET acceptor for all experiments. Various antibodies (POM1, 2, 3, 5, 6, 7, 11, 15, 3F4) were coupled to Eu and tested. (B) Titration of the POM2-Eu and POM2-APC FRET antibody pair in HeLa cells (K = 8000). Shown are results from hexaplicates \pm SD.

Ballmer et al., Figure S3

Figure S3. Optimization of the alamarBlue cell viability assay.

(A) Viability of HeLa cells was monitored over three days in a titration experiment, day one (red) and day three (blue). AU: Arbitrary Units. (B) Measurement of cell death induced by Staurosporine treatment for one or six hours. AU: Arbitrary Units. (C) Effect of PI-PLC treatment on cell viability of A549 cells. AU: Arbitrary Units.

Figure S4. Viability of siRNA-treated A549 cells.

A549 cells were treated for three days with 50 nM siRNA. Cell viability was assessed by the alamarBlue assay. Chlorpromazine (CPZ) was used as a positive control for cell death. Shown are biological triplicates of siRNA treated cells.

The gene-silencing activity in A549 cells treated for three days with different siRNAs was quantified by real-time PCR. mRNA levels were normalized by using GAPDH mRNA. Shown are technical triplicates \pm standard deviation.

Ballmer et al., Figure S6

Figure S6. Optimization of PrP^C endocytosis assay

(A) PrP^c endocytosis assay in HeLa cells. Endocytosis rate was measured at 15, 30, and after 60 minutes. In controls, endocytosis assay was performed at 4°C. (B) PrP^c endocytosis assay in A549 cells. Endocytosis rate was measured at different time points. Cells were either labeled first with POM2-Eu and then with 3F4-APC or first with 3F4-APC and then with POM2-Eu.