
Supplementary Figure 1: Overview of all recorded ESR spectra. Microwave powers were chosen
sufficiently small to prevent any saturation of the signal (typically 0.006–0.06 mW) and the modulation
amplitude was chosen smaller than the line width to prevent distortions of the spectrum.
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Supplementary Figure 2: Microwave field distribution in cavity. (a) Microwave magnetic field
distribution f(y) inside the Bruker ER 4122SHQE cavity. The shaded area is representative of a 25 mm
long sample. (b) Exact power saturation curve from Eq. 6 taking in to account the variation in signal
intensity for different positions in the cavity and power saturation behavior of a sample that only sees
a uniform average microwave field B1(y). Shown curves are for L = 25 mm since any visible difference
disappears for smaller L.
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Supplementary Figure 3: NMR spectrum composition for BSBS. 1H-NMR spectrum of BSBS
dissolved in BSBS in deuterated dichloromethane (CD2Cl2) at a concentration of 0.02 mg mL−1 with
small impurity peaks in the aliphatic region labeled ip1 and ip2. The spectrum was recorded on a
Bruker AV-400 spectrometer at 298 K in deuterated dichloromethane and is reported in ppm relative to
tetramethylsilane (TMS).
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Element ce avg. ce std. dev.

C 1.31 · 10−05 9.08 · 10−06

S 9.10 · 10−03 6.72 · 10−05

Se 3.47 · 10−02 1.32 · 10−04

Supplementary Table 2: Average and standard deviations of the dimensionless proportionality constants
ce fitted for the ∆gOZ/SOC terms of the set of molecules presented in Supplementary Table 1.
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Supplementary Note 1: Theoretical DFT calculations

This section provides additional detail on the theoretical calculations performed. As stated in the
main text, the theoretical work is intended to support the key message that g-shifts in the studied
class of molecules may be understood in terms of the effective spin-orbit coupling, or equivalently,
the degree of overlap between the orbital- and spin angular momentum distributions.

We argue that, given simple geometries and / or weaker SOC, we may predict the dominant
∆gOZ/SOC term of the g-tensor shifts from a linear model of atomically localized SOC interactions.
The latter amounts to a linear fit of atomically localized spin populations to the ∆gOZ/SOC terms, on
the form of Eq. 3. In other words, if a linear model with the distribution of atomic spin population
as only independent variable is predictive, we consider our hypothesis confirmed. We validate the
model by studying the correlation between the fitted ∆gOZ/SOC values, and those calculated from
first-principles.

The theoretical methodology follows three steps, i) DFT calculations of molecular geometries,
cation spin densities, and g-tensors, ii) calculations of atomic spin populations using an atom-in-
molecule (AIM) decomposition method, and iii) a multivariate linear regression of the calculated
dominant ∆gOZ/SOC g-shift term versus atomic spin populations. These three steps are described
in reproducible detail in the following paragraphs.

DFT Calculations
We use DFT to predict g-tensor shifts from first-principles theory. These shifts depend on spin-orbit
coupling (SOC), ranging from weak and nearly insignificant in the pure hydrocarbons studied, to
significant in the Se-substituted molecules. We therefore require an accurate and transferable level
of theory, able to describe a wide range of SOC strengths on a consistent footing.

Consequentially, we opted for an all-electron DFT method, with nuclear relativistic effects
described by the zeroth-order regular approximation (ZORA1) using the standard point-charge
approximation for the atomic nuclei. g-tensors were calculated using the method2 developed by
Neese et al. and related techniques3 as implemented in the ORCA software package4, version 3.0.3.
Tests showed hybrid exchange-correlation functionals in general, and the PBE05 parameterization
in particular, to perform very well for the prediction of the experimentally measured g-tensor shifts,
in agreement with previous findings2. Exhaustive tests of the SARC basis set family6 revealed
that no qualitative features improved past the triple-zeta level (a.k.a. the ‘ma-zora-def2-tzvp’ basis
set). The benchmark level quadruple-zeta ‘ma-zora-def2-qzvp’ basis set gives slightly larger (on the
order of hundreds of [ppm]) g-shifts. Therefore, while the ‘ma-zora-def2-tzvp’ basis set, with linear
dependencies eliminated by removing the diffuse (a.k.a. ‘minimal augmentation’) functions on the
carbon atoms represents the optimal balance between accuracy of predictions and computational
cost, the accuracy of predicted g-shifts is partially due to error cancellation between the basis set
and other, over-estimating factors.

All molecules were fully geometry optimized in a charge neutral state and the above described
level of theory including all-electron spin-orbit coupling, using the NWChem quantum chemistry
software package7, version 6.5. Compared to a non-relativistic, spin-orbit free level of theory, the in-
fluence of the ZORA on the geometry is significant, but SOC effects negligible. Geometry differences
between molecules optimized in a neutral and charged state were small, allowing for greater com-
parability by obtaining all geometries in the neutral state. The optimized pentacene and rubrene
geometries have D2H point-group symmetry. All other optimized molecules belong to the C2H

point-group. While experimental measurements were performed on molecules of varying alkyl chain
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lengths, e. g. C10, C12 etc., all molecules in the theoretical calculations were given 8-membered
alkyl chains. Tests showed the alkyl chain influence to be well converged at this length, meaning
that the theoretical results presented here are comparable to experimental measurements at chains
equal to or longer than 8 methylene units.

For each optimized geometry, a single-point calculation with a total charge of +1 and multiplicity
2 was performed, with a subsequent calculation of the g-tensor and dumping of the DFT spin density
onto a dense regular grid. The resulting calculated g-tensor shifts are shown in Supplementary Table
1 in parts per million (ppm). Evidently, the total g-tensor shift ∆g is strongly dominated by the
orbital Zeeman / SOC-dependent term ∆gOZ/SOC in the studied class of molecules. That is, as
mentioned in the main text, the gauge correction and relativistic mass correction terms add up to
a very small, mostly positive term (67 ppm on average in Supplementary Table 1).

Atomic Spin Calculations
In the main text we show, that g-tensor shifts in the studied class of molecules can be understood in
terms of a linear relationship between the dominant ∆gOZ/SOC term, and the spin density distribution
among the nuclei in the molecule. More specifically, ∆gOZ/SOC is approximated as a sum over fitted
proportionality constants representing the effective orbital angular momentum coupling for a given
element, multiplied with sums of atomic spin populations at that element. This requires calculating
atomic spin populations from the molecular spin density, in other words, finding an appropriate
solution to the atoms-in-molecules (AIM) problem.

The AIM problem is commonly solved using methods partitioning either a) wave-functions based
on projections of basis functions, or b) charge- or spin-densities based on their spatial distribution.
The first option, exemplified by the Mulliken and Löwdin8 population analysis methods, are con-
ceptually simpler and readily implemented, but suffer from significant basis set effects9,10. Tests
using the arguably more rigorous Löwdin method confirmed significant variations in calculated
atomic spin populations with basis set type and size. The basis set dependence also manifested
in a sensitive dependence on relative nuclear coordinates, appearing as an unexplained scatter in
correlation plots of data fitted according to the procedure below. The second option, exemplified by
the Bader method11, does not depend on the basis set used in the calculation of the molecular spin
density. However, for the current set of molecules, the Bader method did not prove significantly more
stable with respect to small variations in molecular structure than the above mentioned Löwdin
method, nor did using the alternative weighting method proposed by Yu and Trinkle12 alleviate the
problem.

The Voronoi Deformation Density (VDD) method10 proved significantly more stable and con-
sistent, however, and is the method used in all fits of ∆gOZ/SOC presented in this manuscript. All
density-based partitioning methods were applied using the ‘bader’ program developed by Henkelman
et al.13, version 0.95a.

Fit of ∆gOZ/SOC vs Atomic Spins
For completeness, the fitted ce are presented in Supplementary Table 2. Since each molecule is
excluded from the fitting set when fitted for, the ce are in principle unique for each molecule.
Consequentially, Supplementary Table 2 shows the average ce for each element in the complete set
of 32 molecules studied, and the corresponding standard deviation.

As expected of a parameter representing the net effect of orbital angular momentum, ce increases
dramatically going from carbon via sulphur to selenium. The reasons for the precise magnitude
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of the ce are convoluted, and we will here refrain from a detailed interpretation. It is however
noteworthy that the fit is relatively consistent for the heavier elements, with standard deviations
below a percent of the average value. Because of it’s very small contributions to the ∆gOZ/SOC

combined with the limited precision of input data, the carbon fits are considerably less numerically
consistent, resulting in a relative standard deviation of approximately 70 percent.
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Supplementary Note 2: Deviation of g-shifts for BSBS

All g-factor factors show an excellent agreement between experiment and theory apart from the
values determined for BSBS. A systematic error in the DFT calculations is unlikely since only BSBS
shows a large discrepancy. We consequently tried to eliminate all error sources for the ESR measure-
ments. To rule out aggregation of the molecules in solution, we reduced the concentration of BSBS
close to the detection limit of the instrument (0.05× 10−3 mol L−1 or 4× 1014 spins in the sample
tube) and heated up the solution to 38 ◦C (boiling point of DCM: 39.6 ◦C) during the measurement.
Neither resulted in any changes of the g-factor. In a control experiment, we investigated the solu-
tions at different concentrations using diffusion-ordered nuclear magnetic resonance spectroscopy
(DOSY NMR). These spectra show that the diffusion constant of BSBS increases marginally from
1.8× 10−9 m2 s−1 to 2.1× 10−9 m2 s−1 when reducing its concentration from 28× 10−3 mol L−1 to
0.28× 10−3 mol L−1. This indicates the absence of aggregation which should otherwise result in a
strong decrease of diffusion constants with increasing concentrations.

Consistent with the difference in g-factors, we also observe different HFI coupling constants in
theory and experiment: BSBS shows a root mean square (rms) deviation of ∼ 3 between theoretical
and experimental HFI couplings compared to rms deviations < 0.8 for all other molecules. Aggre-
gation seems unlikely as the cause for this difference, especially since the spread of the spin density
over more than one molecule would increase the number of protons participating in the HFI. At
present, we are not able to pinpoint the source of the discrepancy, apart from possible defects in the
molecular structure. The hydrogen NMR spectrum (Supplementary Fig. 3) reveals small impurity
peaks in the aliphatic region though it remains unclear at present if they could cause such a strong
shift in spin density.
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Supplementary Note 3: ESR power saturation measurements

When the decay of spin polarization is an exponential process, it is possible to define spin lifetimes
T1 and T2 and describe the time evolution of the spins by Bloch equations. The absorption rate of
microwaves then follows a Lorentzian profile14

P (ω) =
n0

2

~ωγ2
eB

2
1T2

1 + T 2
2 (ω0 − ω)2 + γ2

eT1T2B2
1

(1)

where n0 is the population difference between Zeeman split levels, 2π~ is the Planck constant, γe
the gyromagnetic ratio of an electron, ω the microwave frequency, B1 the microwave magnetic field
and ω0 = γeB0 the Larmor frequency in an external magnetic field B0. P (ω) scales with B2

1 in
the absence of power saturation. The ESR signal is detected by a Schottky diode crystal and the
detector current varies with the square root of the microwave power, i.e., linearly with B1:

ESR Intensity (B0) ∝ χ0
ωB1T2

1 + T 2
2 (γeB0 − ω)2 + γ2

eT1T2B2
1

(2)

Here, χ0 is the paramagnetic susceptibility of the sample. All measurements are recorded by a
lock-in amplifier with a modulated external field B0 and are thus recorded as a derivative of Eq. 2
with respect to B0.

It is possible to determine the product T1T2 of the two lifetimes by saturating the ESR signal
with increasing microwave powers. The integral of Eq. 2 over all fields B0, or the double integral
over the recorded derivative spectrum, scales with the microwave magnetic field B1 as15,16

DI(B1) ∝ χ0
B1√

1 + γ2
eT1T2B2

1

. (3)

The measured power saturation curves together with the fits to Eq. 3 are shown Fig. 3b.
Before the onset of power saturation and line width broadening, the coherence time is given by

T2 = (γe∆B1/2)−1 where ∆B1/2 is the half width at half maximum of the Lorentzian resonance15. In
practice, we use the line widths of the individual Lorentzian resonances that make up the spectrum,
determined by the least-squares fitting of the hyperfine structure. Dividing the product of spin
lifetimes by T2 then gives the spin lattice relaxation time T1.

Microwave magnetic field in the cavity:
Determining the product T1T2 relies on the knowledge of B1 over the sample volume while only
the applied power Pmw is recorded during an experiment. The scaling of B1 with

√
Pmw depends

on the resonator architecture and losses inside the cavity.
In the absence of power saturation, the integrated absorption signal of a paramagnetic sample

scales only with its magnetic susceptibility and the field amplitude B1 at the sample position. This
allows us to determine Bm from the integrated absorption signal of a reference sample with a known
susceptibility. For the center of the cavity, we find as a function of the cavity Q-value and the
incident microwave power Pm:

Bcenter
1 = c

√
QPmw , c = 2.4069× 10−6 T W−1/2 . (4)

The vertical microwave magnetic field distribution f(y) is given by Bruker as a 9th order polynomial
and stored with each data acquisition file (Supplementary Fig. 2a). We additionally confirmed the
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values by monitoring the ESR signal intensity for a point like marker sample for different positions
in the cavity (Fig. 3a). Since our samples are confined in a capillary tube with a radius of 0.5 mm
around the cavity center, we only correct for the vertical field distribution by calculating the average
microwave field across the sample length L and neglected any radial variations:

B1(y) =
1

L

∫ L/2

−L/2
f(y)Bcenter

1 dy (5)

A small error is introduced when using the average over the sample volume to fit the power saturation
curves with Eq. 3 because we do not take into account that parts of the sample at positions with a
lower field will contribute less to the total power saturation curve. In fact, the precise expression
for the observed power saturation behavior would be

A(Pmw) =
1

V

∫ L/2

−L/2
DI
(
f(y)Bcenter

1

)
· f(y) dy with V =

∫ L/2

−L/2
f(y) dy . (6)

as opposed to our approximation:

A(Pmw) ≈ DI(B1(y)) = DI(f(y)c
√
QPmw) . (7)

However, the resulting error for our sample length of L = 20 mm remains well below 1% because
the volume fraction at positions y 6= 0 is double that of the volume fraction at y = 0. A comparison
of estimated and exact power saturation curves for a 25 mm long sample is shown in Supplementary
Fig. 2b, any visible differences disappear completely for sample lengths ∼ 20 mm.

We also neglect the (small) distortion of the microwave field due to the sample’s dielectric
properties and therefore calculate with an error of ±8% in T1T2 from the uncertainty in B1 in
addition to the standard error of from fitting.
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Supplementary Note 4: DOSY NMR: diffusion constants and correlation times

DOSY NMR spectra were recorded on a Bruker AV-500 spectrometer at 298 K in deuterated
dichloromethane. The diffusion experiments were performed using the Bruker ledbpgp2s pulse
sequence. The number of data points per experiment was 32000 (td2) and the number of scans was
192. 24 experiments (td1) were collected using a diffusion delay (∆) of 28 ms (d20) and δ/2 pulse
of 1.3 ms (p30).

The translational diffusion constants Dtr from DOSY NMR allow us to calculate the hydrody-
namic volume and Stokes radius rS of the respective molecule by the Stokes-Einstein equation

Dtr =
kBT

6πηrS
(8)

with the Boltzmann constant kB, the sample temperature T = 295 K and the viscosity of DCM
η = 4.13× 10−4 kg m−1 s−1 at room temperature. Knowledge of the hydrodynamic volume then
allows us to estimate the rotational diffusion constant

Drot =
kBT

8πηr3
S

(9)

and the corresponding rotational correlation time, i.e., the time scale for which the rotational motion
of the molecule is completely randomized, which is given by14,15:

τdiff
C =

1

6Drot
=

2

9

(
kBT

πη

)2 1

D3
tr

(10)
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