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Supplementary Figures 

 

 

 

 

 

 

 

 

 

 

 
 

Supplementary Figure 1. The schematic of the perceptron. Here ‘m’ is the index of a pixel 

of an input pattern and can be defined from 1 to 320, ‘j’ represents the number of the 

output neuron and ranges from 1 to 3, matching the three categories. 
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Supplementary Figure 2. Fabrication process for the RRAM stack. 
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Supplementary Figure 3. The highly automatic test platform. 
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Supplementary Figure 4. (a) The SET process for 32 cells under identical pulse train with 

three different voltage amplitudes that Vbl = 1.7 V, 2.0 V, 2.3 V (Vwl = 2.5 V, pulse width 

= 10 ns). 
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Supplementary Figure 4. (b) The RESET process for 32 cells under identical pulse train 

with four different voltage amplitudes that Vsl = 1.7 V, 2.0 V, 2.3 V and 2.5 V (Vwl = 8 V, 

pulse width = 10 ns). 
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Supplementary Figure 5. (a) Three repeated SET cycles for 32 cells when Vwl = 2.5 V, Vbl 

= 2.3 V, Vsl = 0 V, pulse width = 10 ns. 
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Supplementary Figure 5. (b) Three repeated RESET cycles for 32 cells when Vwl = 8 V, 

Vbl = 0 V, Vsl = 2.3 V, pulse width = 10 ns. 
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Supplementary Figure 6. (a) The comparison between 50 ns and 10 ns pulse widths on 16 

1T1R cells during SET process when Vwl = 2.5 V, Vbl = 2.3 V, Vsl = 0 V. 
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Supplementary Figure 6. (b) The comparison between 50 ns and 10 ns pulse widths on 16 

1T1R cells during RESET process when Vwl = 8 V, Vbl = 0 V, Vsl = 2.3 V. 
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Supplementary Figure 7. An example of the typical bidirectional analog switching 

behavior of RRAM without HfOx/AlOy laminate structure. (a) Continuous conductance 

tuning performance under an identical pulse train condition during SET process. Vwl = 3.5 

V, Vbl = 1.6 V / 50 ns, Vsl = 0 V. (b) Continuous conductance tuning performance during 

RESET operation. Vwl = 5 V, Vbl = 0 V, Vsl = 1.6 V / 50 ns. 
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Supplementary Figure 8. The continuous conductance transferring under successive SET 

and RESET pulse cycles. It shows that the conductance can be modulated by applying 

identical voltage pulses.  
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Supplementary Figure 9. The flow-chart of how write-verify works. N is set as the pulse 

number limitation, Rt is the target resistance state and Ro is the sensed resistance after 

each programming pulse. 
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Supplementary Figure 10. An example of the RESET programming waveform applied on 

the first row to adjust the weight. (a) Waveforms for programming with write-verify. (b) 

Waveforms for programming without write-verify.  
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Supplementary Figure 11. The conductance modulation range measurement during 

RESET process with write-verify scheme under different pulse amplitudes. Y label 

represents the number of cells which are capable of reaching the target conductance 

within the limited 500 programming pulses. 
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Supplementary Figure 12. Device performance during write-verify SET process.  (a) The 

precision measurement result during SET process using verified pulse train with different 

amplitudes. (b) Y-axis represents the number of pulses needed to reach the target 

conductance from the same initial state 4 μS. These curves show the relationship of 

tuning speed with respected to different programming pulse amplitudes. (c) The 

conductance modulation range measurement during write-verify SET process under 

different pulse amplitudes. 
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Supplementary Figure 13. Conductance evolution of 20 randomly selected RRAM 

devices during learning process under the write-verify scheme. The figures with red lines 

indicates the cells which experience SET processes. And the figures with blue lines 

indicate the cells which merely experience RESET processes. 
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Supplementary Figure 14. Conductance evolution of 20 randomly selected RRAM 

devices during learning process under the without write-verify scheme. The figures with 

red lines indicates the cells which experience SET processes. And the figures with blue 

lines indicates the cells which merely experience RESET processes. 
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Supplementary Figure 15. The training process of the experimental demonstration 

referring to the 2nd class. (a) The activation function output value of the first class versus 

the iteration number using the write-verify scheme. The inset figure zooms in the several 

last steps. (b) The training process for programming without write-verify. (c) The initial 

and final conductance distribution comparison of the 2nd row when updating with write-

verify. Inset shows the final conductance map. (d) The conductance distribution of the 2nd 

row and the conductance map for the case without write-verify. There are more cells 

locating in lower conductance range for the write-verify programming method and the 

energy consumption benefits from such a result. 
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Supplementary Figure 16. The training process of the experimental demonstration 

referring to the 3rd class. (a) The activation function output value of the first class versus 

the iteration number using the write-verify scheme. The inset figure zooms in the several 

last steps. (b) The training process for programming without write-verify. (c) The initial 

and final conductance distribution comparison of the 3rd row when updating with write-

verify. Inset shows the final conductance map. (d) The conductance distribution of the 3rd 

row and the conductance map for the case without write-verify. There are more cells 

locating in lower conductance range for the write-verify programming method and the 

energy consumption benefits from such a result. 
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Supplementary Figure 17. The comparisons of initial and final conductance distribution 

under the proposed two updating schemes starting from the OFF state. The three figures 

above show the comparative distribution of 1st class, 2nd class and 3rd class under write-

verify scheme, respectively. The three figures below show the comparative distribution of 

1st class, 2nd class and 3rd class under without write-verify scheme, respectively. 
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Supplementary Figure 18. The comparisons of initial and final conductance distribution 

under the proposed two updating schemes starting from a wide-distribution state. The 

three figures above show the comparative distribution of 1st class, 2nd class and 3rd class 

under write-verify scheme, respectively. The three figures below show the comparative 

distribution of 1st class, 2nd class and 3rd class under without write-verify scheme, 

respectively. 
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Supplementary Figure 19. The total 24 unseen test images from the Yale Face Database. 
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Supplementary Figure 20. Misrecognition rate after each epoch during training process. 

(a) The real-time changes of the misrecognition rate under scheme with write-verify. (b) 

The real-time changes of the misrecognition rate under scheme without write-verify. 
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Supplementary Notes 

 

 

Supplementary Note 1 

 

Bi-directional continuous conductance tuning performance at array level 

After the optimization of the RRAM stacks, a 1024-cell-1T1R array with 128 rows 

and 8 columns is deposited as shown in Fig. 1b of the main text. This 1T1R array has 

some remarkable characteristics, such as high operation speed around 10 ns and high bit 

yield (99.99%), robust endurance performance and a stable switching window ranging 

from 25 kΩ to 250 kΩ under appropriate bidirectional operating pulse voltage (2 V / 50 

ns), leading to a relatively low programming energy consumption. Further, the bi-

directional analog conductance tuning behavior is generally captured in this integrated 

array and the performance of 32 randomly chosen cells are shown below. The 

conductance is sensed after each programming pulse. 

Each figure stands for an individual cell and each curve represents the conductance 

continuous tuning performance under a certain identical pulse train. The pulse width is 

set at 10 ns. Considering cycle-to-cycle fluctuation, the raw data is analyzed at each 

certain pulse condition by statistically averaging over 3 repeated procedures. 

Supplementary Fig. 4a (SET) and Supplementary Fig. 4b (RESET) show the inherent 

device-to-device variance and how the pulse amplitude affects the bi-directional analog 

behavior. The curve trend implies that the larger pulse amplitude is, the wider tuning 

range it achieves. A larger pulse amplitude also results in higher changing step for both 

SET and RESET process. The bi-directional analog switching performance is generally 

realized while the device-to-device variation exists. Whatever the pulse amplitude is, the 

initial state is 6.67 μS (150 kΩ) for SET process and 40 μS (25 kΩ) for RESET process 

for every 1T1R cell. 

To evaluate the influence of cycle-to-cycle variance, three repeated procedures are 

conducted on 32 randomly chosen cells, just as Supplementary Fig. 5a (SET) and 

Supplementary Fig. 5b (RESET) illustrate. The start state is set to the same with 

Supplementary Fig. 4. The pulse condition is specified in the plot. The fluctuation is 

inevitable. 

Besides some tests are carried out to see the impact of the different pulse widths on 

16 randomly chosen cells. 50 ns pulse width and 10 ns pulse width are employed. The 

voltage is the same with that of Supplementary Fig. 5. Just as Supplementary Fig. 6a 

(SET) and Supplementary Fig. 6b (RESET) prove, the tuning speed is faster, the tuning 

range is wider while the tuning accuracy is lower for 50 ns pulse width. Considering all 

these above, the pulse condition must be chosen carefully. 

 

Supplementary Note 2 

 

Bi-directional continuous conductance tuning performance of RRAM without 

laminate structure 

To improve the bidirectional analog switching performance, the HfOx/AlOy laminate 

structure is leveraged to control the generation of oxygen vacancies in 

TiN/TaOx/HfAlyOx/TiN stack structure. Supplementary Fig. 7 shows an example of the 
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typical continuous conductance tuning performance of a RRAM cell without HfOx/AlOy 

laminate structure, i.e. TiN/TaOx/HfO2/TiN stacks, under an identical pulse train 

condition during SET and RESET process. Compared with Fig. 3b and Fig. 3c in the 

main text, this structure without optimization presents a greater changing step regardless 

of whether the conductance is increasing or decreasing. 

 

Supplementary Note 3 

 

Conductance evolution trace during training iteration 

During the training process of the experimental demonstration, there are 19.3% of 

the devices experience SET transition under the write-verify scheme and 14.6% of the 

devices experience SET transition under the without write-verify scheme. 20 RRAM 

devices under the two proposed programming schemes are selected to show their 

conductance evolution trace in Supplementary Fig. 13 and Supplementary Fig. 14. Half 

of the 20 devices experience SET transitions and the other merely experience RESET 

transitions.  

 

Supplementary Note 4 

 

The system converges from different initial conductance distribution states 

In the main text, the perceptron is trained from a tight high-conductance distribution 

around 40 μS. Furthermore, another two demonstrations are carried out, one starting from 

a tight low conductance distribution around 4 μS and another proceeding from a wide 

conductance distribution state. Since the device has bi-directional analog switching 

behavior, it does not matter what the initial conductance distribution is and both succeed 

to converge. The initial and final conductance distribution comparison are presented in 

Supplementary Fig. 17 and Supplementary Fig. 18. 

 

Supplementary Note 5 

 

Recognition rate on Yale Face Database during training process 

The test process convinces the generalization ability of the perceptron by employing 

a test image set. Supplementary Fig. 20 shows the generalization performance of such a 

neuromorphic network, i.e. the real time change of misrecognition rate when identifying 

the training images and test images during training process. The conductance weights are 

recorded after each iteration and used to compute misrecognition rate by computer. 

 

Supplementary Note 6 

 

Estimation of Intel Xeon Phi hardware for comparison 

We pay attention to the energy consumption on operation of the 1T1R array which 

includes the multiply operation and weight updating process. For a fair comparison with 

the same task implemented in this work, we estimate the energy consumption of the same 

operations within Intel Xeon Phi processor with off-chip storage as well as Intel Xeon Phi 

processor with on-chip integrated RRAM. The energy for the operations beyond the 

multiply operation and weight updating process is not taken into consideration for 
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comparison, such as activation function tanh, transferring the input image data, 

aggregating and storing the weight updates during batch-based programming. 

The task implemented within analog RRAM in the experiment reported in this paper 

is equivalent to these tasks: 1) Reading the synaptic weights, 2) Vector-matrix 

multiplication of synaptic weights with input images 3) Updating the synaptic weights 4) 

Writing back the synaptic weights. Estimation of these tasks on Intel Xeon Phi is done by 

using the energy model of Intel Xeon Phi processor reported in (36) in the main text. 

According to (36), a register-to-register vector operation with 512 bit wide registers 

consume ~ 1 nJ. We assume 16 bit synapses, which makes a vector operation an 

operation on 32 numbers each of which are 16 bits. Tasks 2 and 3 above are done within 

the processor: task 2 is equivalent to 60 vector operations for each image within an epoch, 

corresponding to 540 vector operations for 9 images within 1 epoch. Task 3 corresponds 

to the sum of two weight matrices, which in Intel Xeon Phi is equivalent to 30 vector 

sums; consuming 30 nJ. Hence, task 2 and 3 consume 570 nJ and use processor and 

registers only. Tasks 1 and 4 involve memory/storage access. Since the update can be 

expected to be performed relatively less often in a real life scenario, the weights can be 

expected to stay on an off-chip storage. In case of NAND, off-chip storage access for 2 

KB page (around the same as the size of weight matrix in our case) consumes ~ 38 µJ, 

which dominates all other numbers estimated above. When the storage is assumed to be 

an on-chip monolithically integrated RRAM and when only the energy within digital 

RRAM is taken into account (not the wires, periphery, etc), task 1 and 4 consume 0.4 nJ 

and 132 nJ, respectively. Task 4 is estimated as follows: 
2

averageEnergy 320 3 16 bits (2.8 V) 50 nsG       

where 320 3  is the size of weight matrix, Gaverage is the mean of LRS and HRS 

conductance values (25 kΩ and 250 kΩ, respectively). Then energy consumption is 132 

nJ. Energy for task 1 is estimated similarly, except that instead of 2.8 V pulse, 0.15 V 

reading voltage is used. 


