Supplementary Material for:

Seasonal patterns in Arctic prasinophytes and inferred ecology of *Bathycoccus* unveiled in an Arctic

winter metagenome

Nathalie Joli¹, Adam Monier², Ramiro Logares³, Connie Lovejoy¹

¹ Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Québec Océan,

Université Laval, Québec, QC, Canada and Takuvik Joint International Laboratory, Centre National de la

Recherche Scientifique (France, CNRS UMI 3376);

²Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK.;

³Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), Barcelona, Spain.

Table S1 Sample characteristics and environmental parameters.

Table S2: Proportion of each size fraction that was pooled for amplicon sequencing

Table S3: Arctic metagenome coverage by contigs and reads of reference genomes

Table S4: Original source and sizes in megabases (Mb) of the *Bathycoccus* reference Ban7 genome and metagenome assembled genomes (MAGs) referred to in the main text.

<u>**Table S5A**</u>: Relative abundance of the total chlorophytes reads as a percentage of microbial eukaryote reads.

<u>**Table S5B</u>**: Proportion of individual chlorophytes taxa (all prasinophytes) out of total eukaryotic reads. <u>**Table S6**</u>: Assembly statistics of the Arctic metagenome.</u>

<u>Table S7</u>: Meiosis related genes targeted by BLASTn against the *Bathycoccus*-like contigs from the metagenomic data.

Table S8: List of *Bathycoccus*-specified KEGG pathway variant genes

Table S1: Sample characteristics and environmental parameters. Station name (STN); latitude (Lat); longitude (Long); sample water mass origin (WM), Polar Mixed Layer (PML), halocline (HC); sample collection depth (Z) in meters (m); percent (%) of regional ice (Ice) cover; day length (DL) in hours (h) when the sun was above the horizon; temperature (T); salinity (S); chlorophyll *a* (Chl) from calibrated relative fluorescence units; nitrate + nitrite (N); and phosphate (P); data not available (NA). November and December samples were collected in 2007 and January to July samples in 2008.

Date	STN	Lat ⁰N	Long °E	WM	Z m	lce %	DL h	T ∘C	S	ChI mg m ⁻³	Ν μΜ	Ρ μΜ.
19 Nov	405	70.62	236.99	PML	10	95	1	-1.7	30.1	0.08	0.7	0.7
				HC	80			-1.4	32.3	0.05	5.4	1.2
07 Dec	5D	71.31	235.21	PML	10	95	0	-1.7	30.6	0.04	1.1	0.8
				HC	50			-0.9	31.4	0.03	5.2	1.1
03 Jan	14D	71.23	235.55	PML	10	95	0	-1.7	31.1	0.02	1.4	0.8
				HC	75			-1.6	32.0	0.02	5.0	0.9
18 Feb	22D	71.31	235.50	PML	12	96	8	-1.7	31.7	0.02	4.1	0.9
				HC	50			-1.7	32.0	0.02	7.8	1.2
10 Mar	29D	71.04	236.09	PML	12	97	11	-1.7	31.8	0.05	4.3	0.7
				HC	65			-1.5	32.5	0.01	11.0	0.9
17 Mar	D29	70.91	236.52	PML	10	97	12	-1.7	31.9	0.07	5.1	1.5
				HC	50			-1.6	32.2	0.00	10.6	2.0
09 Apr	D36	71.31	235.43	PML	10	90	16	-1.7	31.9	0.60	3.2	1.4
				HC	50			-1.7	32.0	0.36	5.0	1.5
30 Apr	D43	70.77	236.10	PML	11	80	19	-1.7	32.0	0.76	3.1	1.4
				HC	55			-1.7	32.0	0.78	11.1	2.1
19 May	405b	70.66	237.12	PML	12	30	24	-1.4	31.9	10.62	1.0	1.2
				HC	30			-1.3	32.3	3.12	4.4	1.6
14 Jun	FB01	69.99	234.45	PML	0	0	24	-1.3	31.8	0.58	1.5	N/A
				HC	22			-1.4	32.1	0.49	2.5	N/A
24 Jun	F7b	69.82	236.35	PML	5	0	24	2.1	31.3	0.70	1.3	N/A
				HC	33			-1.1	32.1	0.25	2.3	N/A
21 Jul	405- 10a	70.70	237.07	PML	4	0	24	8.4	30.5	0.29	0.8	0.7
				HC	42			-1	32.2	4.64	14.6	1.5
Metagenome												
13 Dec	7D	71.62	233.93	PML	10	95	0	-1.6	30.56	NA	NA	NA

<u>Table S2:</u> Proportion of each size fraction that was pooled for amplicon sequencing. November and December samples collected in 2007 and January to July samples collected in 2008.

	19	07	03	18	10	17	09	30	19	14	24	21
	Nov	Dec	Jan	Feb	Mar	Mar	Apr	Apr	May	Jun	Jun	Jul
Small	41%	41%	50%	44%	50%	72%	62%	15%	10%	51%	65%	85%
Large	59%	59%	50%	56%	50%	28%	38%	85%	90%	49%	35%	15%

Table S3: Arctic metagenome coverage by contigs and reads of reference genomes: *Bathycoccus* Ban7 (RCC1105, isolated from Mediterranean, Genbank FO082278), *Micromonas* RCC299 (isolated from Equatorial Pacific, <u>GCF 000090985.2</u>), *Micromonas* CCMP1545 (isolated from English Channel, GCA_000151265.1). Also shown is the Arctic metagenome coverage by contigs of transcriptomes available from the MMETSP (see Keeling et al. 2014): *Bathycoccus* RCC716 (isolated from Indian Ocean; CAM_SMPL_003310) and *Micromonas* CCMP2099 (isolated from Arctic Ocean; CAM_SMPL_003148 and CAM_SMPL_002821). Note that genome size of *Micromonas* RCC299 is 20Mb and *Bathycoccus* Ban7 is 15Mb.

	Target	% Coverage by contigs	% Coverage by reads
Bathycoccus Ban7	Genome	88.8	95.4
Bathycoccus RCC716	Transcriptome	53.0	-
Micromonas RCC299	Genome	21.5	21.6
Micromonas CCMP1545	Genome	2.5	-
Micromonas CCMP2099	Transcriptome	3.8	-

	Isolated	Genome or MAG size	Accession number
<i>B. prasinos</i> Ban7	Mediterranean	15 Mb	FO082258, FO082259, FO082278-FO082260
B. prasinos Pacific 1	Chilean coast, Pacific	9 Mb	CAFX01000001- CAFX01015049
B. prasinos Pacific 2	Chilean coast, Pacific	13 Mb	CAFY01000001-CAFY01022174
B. prasinos Atlantic	Tropical Atlantic	7.1 Mb	AFUW01000001:AFUW01000185
B. prasinosArctic	Amundsen Gulf, Arctic	12.5 Mb	SAMN05514161 ^a

<u>Table S4</u>: Original source and sizes in megabases (Mb) of the *Bathycoccus* reference Ban7 genome and metagenome assembled genomes (MAGs) referred to in the main text.

^a NCBI Biosample number which contains all the metagenomic contigs. A note saying « Bathycoccus-like » had been added to each contig taxonomically binned as Bathycoccus using Metawatt.

<u>**Table S5A</u>**: Relative abundance of the total chlorophytes reads as a percentage of microbial eukaryote reads (excluding Fungi and Metazoa) in the separate samples. The proportions of chlorophyte reads among Eukaryote detected over the study are given in Table S5B. Sample water mass origin (WM), Polar Mixed Layer (PML), halocline (HC) as defined in the main text.</u>

Template	WM	11 Nov	07 Dec	03 Jan	18 Feb	10 Mar	17 Mar	9 Apr	30 Apr	19 May	14 Jun	24 Jun	21 Jul
	PML	4.50%	1.60%	0.50%	1.00%	0.70%	0.80%	4.80%	6.70%	2.60%	16.90%	13.20%	2.70%
DNA	HC	1.20%	0.70%	0.30%	0.30%	0.20%	0.50%	3.60%	5.10%	3.50%	6.20%	2.80%	4.10%
	PML	3.40%	1.50%	0.80%	2.20%	5.20%	7.20%	8.50%	8.50%	1.30%	41.90%	14.00%	1.70%
RNA	HC	2.20%	1.30%	2.20%	2.00%	1.00%	0.80%	11.10%	13.40%	0.30%	7.40%	0.40%	3.90%

Table S5B: Proportion of individual chlorophytes taxa (all prasinophytes) out of total eukaryotic reads from DNA or RNA templates. Water mass (WM), Polar Mixed Layer (PML), halocline (HC).

	Template	WM	19 Nov	07 Dec	03 Jan	18 Feb	10 Mar	17 Mar	09 Apr	30 Apr	19 May	14 Jun	24 Jun	21 Jul
Micromonas CCMP2099	DNA	PML	0.30%	0.20%	0.00%	0.20%	0.20%	0.20%	2.60%	3.50%	0.10%	14.10%	12.80%	0.70%
		нс	0.10%	0.10%	0.00%	0.10%	0.10%	0.40%	2.40%	3.70%	0.80%	5.30%	2.50%	0.80%
	RNA	PML	1.20%	0.30%	0.40%	0.80%	2.60%	3.50%	6.00%	3.80%	0.30%	39.40%	13.70%	0.30%
		HC	0.40%	0.60%	1.60%	0.90%	0.70%	0.60%	9.80%	11.10%	0.30%	6.50%	0.30%	1.60%
Bathycoccus Ban7	DNA	PML	3.20%	0.90%	0.30%	0.20%	0.30%	0.30%	0.50%	0.40%	0.00%	0.10%	0.10%	1.10%
		HC	0.90%	0.30%	0.10%	0.00%	0.00%	0.00%	0.80%	0.50%	0.20%	0.20%	0.10%	0.00%
	RNA	PML	1.00%	0.50%	0.20%	0.20%	0.60%	0.40%	0.10%	0.10%	0.00%	0.10%	0.00%	0.20%
		HC	0.70%	0.10%	0.10%	0.40%	0.10%	0.10%	0.20%	0.40%	0.00%	0.10%	0.00%	0.00%
Mantoniella	DNA	PML	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.10%	0.20%	0.00%	0.00%	0.00%	0.00%
		нс	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.20%	0.20%	0.00%	0.00%	0.00%	0.00%
	RNA	PML	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
		нс	0.00%	0.00%	0.10%	0.00%	0.00%	0.00%	0.10%	0.10%	0.00%	0.00%	0.00%	0.00%
Micromonas CCMP1195	DNA	PML	0.60%	0.20%	0.10%	0.10%	0.00%	0.00%	0.10%	0.00%	0.00%	0.00%	0.00%	0.10%
		нс	0.10%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
	RNA	PML	0.70%	0.50%	0.10%	0.10%	0.10%	0.10%	0.10%	0.10%	0.00%	0.00%	0.00%	0.10%
		нс	0.50%	0.00%	0.10%	0.00%	0.00%	0.00%	0.50%	0.20%	0.00%	0.00%	0.00%	0.00%
Pterosperma	DNA	PML	0.00%	0.10%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.40%
		нс	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.20%
	RNA	PML	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.10%
		нс	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.20%
Pyramimonas	DNA	PML	0.20%	0.30%	0.10%	0.30%	0.30%	0.20%	1.40%	2.50%	2.40%	2.50%	0.10%	0.20%
		HC	0.10%	0.20%	0.20%	0.20%	0.00%	0.10%	0.20%	0.70%	2.40%	0.70%	0.20%	3.00%
	RNA	PML	0.40%	0.10%	0.10%	0.90%	1.50%	3.20%	2.30%	4.50%	0.90%	2.40%	0.20%	0.40%
		HC	0.30%	0.40%	0.20%	0.50%	0.10%	0.00%	0.50%	1.50%	0.00%	0.60%	0.10%	2.00%

<u>**Table S6:**</u> Assembly statistics of the Arctic metagenome from metaQUAST (<u>http://bioinf.spbau.ru/quast</u>)

contigs (>= 0 bp) 130257 # contigs (>= 1000 bp) 130257 Total length (>= 0 bp) 881683496 Total length (>= 1000 bp) 333707177 Largest contig 200608 Total length 881683496 GC (%) 42.81 N50 615 N25 215
contigs (>= 1000 bp) 130257 Total length (>= 0 bp) 881683496 Total length (>= 1000 bp) 333707177 Largest contig 200608 Total length 881683496 GC (%) 42.81 N50 615 N25 215
Total length (>= 0 bp) 881683496 Total length (>= 1000 bp) 333707177 Largest contig 200608 Total length 881683496 GC (%) 42.81 N50 615 NZ5 215
Total length (>= 1000 bp) 333707177 Largest contig 200608 Total length 881683496 GC (%) 42.81 N50 615 N25 215
Largest contig 200608 Total length 881683496 GC (%) 42.81 N50 615 N75 215
Total length 881683496 GC (%) 42.81 N50 615 N75 215
GC (%) 42.81 N50 615 N75 215
N50 615
N75 215
N75 515

Table S7: Meiosis related genes targeted by BLASTn against the *Bathycoccus*-like contigs from the metagenomic data. References genes based on Derelle et al. 2006 and Worden et al. 2009. Function are genes or gene families; Query column lists Genbank gi numbers. Meiotic recombination protein (DMC1), DNA mismatch repair and recombination (MLH1), DNA repair/recombination protein (Mre11), DNA repair/recombination protein (RAD), DNA recombinate (RECA), DNA topoisomerase VI, subunit A (SPO11), chloroplast envelope protein translocase family (TOC) and DNA topoisomerase VI (TOP).

Function	Query	Bathycoccus-like contigs	% Identity	Evalue	Coverage
DMC1	gi 255086168	contig_41_26911450_length_1761_multi_4_in_0_out_0	69.7%	1.02e-50	42.13%
DMC1	gi 303284846	contig_55_6029503_length_522_multi_4_in_0_out_0	73.4%	1.47e-23	17.11%
DMC1	gi 303284846	contig_41_26911450_length_1761_multi_4_in_0_out_0	72.3%	1.79e-60	39.7%
MLH1	gi 303283871	contig_57_2795483_length_2883_multi_4_in_0_out_0	67.4%	5.73e-26	20.21%
Mre11	gi 255083255	contig_69_494867_length_2019_multi_4_in_0_out_0	66.1%	2.94e-43	27.11%
MRE11	gi 303288633	contig_69_494867_length_2019_multi_4_in_0_out_0	65.9%	2.21e-38	27.33%
MRE11	gi 693499007	contig_69_494867_length_2019_multi_4_in_0_out_0	68.9%	1.01e-35	19.97%
RAD50	gi 255071308	contig_51_8008664_length_2279_multi_4_in_0_out_0	75.4%	2.61e-90	12.36%
RAD50	gi 255071308	contig_41_2430054_length_3324_multi_4_in_0_out_0	69.5%	7.99e-59	14.83%
RAD50	gi 693501461	contig_41_2430054_length_3324_multi_4_in_0_out_0	73.6%	1.21e-94	13.8%
RAD50	gi 693501461	contig_51_8008664_length_2279_multi_4_in_0_out_0	69.5%	7.14e-66	13.95%
RAD51	gi 255075466	contig_41_26911450_length_1761_multi_4_in_0_out_0	67.2%	1.45e-10	19.71%
RAD51	gi 255075466	contig_47_6166815_length_1105_multi_4_in_0_out_0	68.2%	8.58e-39	41.93%
RAD51	gi 255081794	contig_41_26911450_length_1761_multi_4_in_0_out_0	67.2%	1.75e-10	16.43%
RAD51	gi 255081794	contig_47_6166815_length_1105_multi_4_in_0_out_0	68.2%	1.03e-38	34.94%
RAD51	gi 303279525	contig_41_26911450_length_1761_multi_4_in_0_out_0	66.1%	2.83e-09	14.62%
RAD51	gi 303279525	contig_47_6166815_length_1105_multi_4_in_0_out_0	71.4%	7.10e-55	26.07%
RAD51A	gi 303279167	contig_41_26911450_length_1761_multi_4_in_0_out_0	66.1%	2.47e-09	16.69%
RAD51A	gi 303279167	contig_47_6166815_length_1105_multi_4_in_0_out_0	71.4%	6.20e-55	29.76%
RAD51C	gi 303272032	contig_49_9069687_length_1612_multi_4_in_0_out_0	64.5%	5.58e-16	38.03%
RAD51C	gi 303273073	contig_41_2430054_length_3324_multi_4_in_0_out_0	72.8%	1.06e-83	11.13%
RAD51D	gi 255079113	contig_47_7431291_length_1342_multi_4_in_0_out_0	68.6%	2.22e-07	17.97%
RAD54	gi 255082184	contig_55_5843141_length_2538_multi_5_in_0_out_0	73.5%	3.46e-56	10.91%
RAD54	gi 255082184	contig_37_4621688_length_1168_multi_4_in_0_out_0	65.2%	5.87e-28	16.47%
RAD54	gi 303279421	contig_37_4621688_length_1168_multi_4_in_0_out_0	68.1%	9.97e-57	19.85%
RAD54	gi 303279421	contig_55_5843141_length_2538_multi_5_in_0_out_0	68.5%	1.48e-73	23.17%
RECA	gi 255080473	contig_29_66625928_length_996_multi_4_in_0_out_0	72.7%	2.68e-130	46.26%
RECA	gi 303271542	contig_29_66625928_length_996_multi_4_in_0_out_0	75.0%	9.12e-173	66.59%
SPO11	gi 693499744	contig_73_1282211_length_1398_multi_4_in_0_out_0	76.3%	0	73.05%
тос	gi 303289255	contig_59_5833480_length_3632_multi_4_in_0_out_0	70.7%	9.09e-51	13.06%
тос	gi 303289255	contig_71_1892218_length_2815_multi_5_in_0_out_0	63.3%	1.11e-11	17.59%
тос	gi 693498025	contig_59_4385194_length_1832_multi_4_in_0_out_0	72.4%	2.65e-82	18.83%
TOP6A	gi 255070110	contig_73_1282211_length_1398_multi_4_in_0_out_0	71.0%	1.45e-112	71.68%
TOP6B	gi 255073850	contig_33_18016919_length_864_multi_4_in_0_out_0	68.7%	1.51e-64	31.34%
TOP6B	gi 303276025	contig_33_18016919_length_864_multi_4_in_0_out_0	71.1%	2.73e-93	29.25%

<u>**Table S8**</u>: List of *Bathycoccus*-specified KEGG pathway variant genes (Gene affected). The type of variant refers to specific variation that would have a high effect on the final putative protein. The search was carried out was against *Bathycoccus prasinos* pathways implemented in KEGG.

Bathycoccus- specific KEGG pathway	Gene affected	Type of variant
bpg01110	K00611 OTC; ornithine carbamoyltransferase [EC:2.1.3.3]	frameshift
Biosynthesis of	K00640 cysE; serine O-acetyltransferase [EC:2.3.1.30]	start loss, stop gain
secondary	K01899 LSC1; succinyl-CoA synthetase alpha subunit [EC:6.2.1.4 6.2.1.5]	stop gain
metabolites	K01918 panC; pantoatebeta-alanine ligase [EC:6.3.2.1]	stop gain
	K11778 DHDDS; ditrans, polycis-polyprenyl diphosphate synthase [EC:2.5.1.87]	start loss, stop gain
	K13789 GGPS; geranylgeranyl diphosphate synthase, type II [EC:2.5.1.1 2.5.1.10 2.5.1.29]	stop gain
	K15634 gpmB; probable phosphoglycerate mutase [EC:5.4.2.12]	stop gain
bpg00480 Glutathione metabolism	K00799 GST; glutathione S-transferase [EC:2.5.1.18]	stop gain
bpg03010	K02875 RP-L14e; large subunit ribosomal protein L14e	stop gain
Ribosome	K02925 RP-L3e; large subunit ribosomal protein L3e	frameshift
	K02927 RP-L40e; large subunit ribosomal protein L40e	start loss, stop gain
	K02929 RP-L44e; large subunit ribosomal protein L44e	stop gain
	K02964 RP-S18e; small subunit ribosomal protein S18e	stop gain
	K02997 RP-S9e; small subunit ribosomal protein S9e	stop gain
bpg01200 Carbon	K00640 cysE; serine O-acetyltransferase [EC:2.3.1.30]	start loss, stop gain
metabolism	K01899 LSC1; succinyl-CoA synthetase alpha subunit [EC:6.2.1.4 6.2.1.5]	stop gain
	K15634 gpmB; probable phosphoglycerate mutase [EC:5.4.2.12]	stop gain
bpg01230	K00611 OTC; ornithine carbamoyltransferase [EC:2.1.3.3]	frameshift
Biosynthesis of	K00640 cysE; serine O-acetyltransferase [EC:2.3.1.30]	start loss, stop gain
amino acids	K15634 gpmB; probable phosphoglycerate mutase [EC:5.4.2.12]	stop gain
bpg04141 Protein	K10597 UBE4B; ubiquitin conjugation factor E4 B [EC:2.3.2.27]	stop gain
processing in	K13993 HSP20; HSP20 family protein	stop gain
reticulum	K14004 SEC13; protein transport protein SEC13	start loss, stop gain
bpg03015 mRNA surveillance	K14404 CPSF4; cleavage and polyadenylation specificity factor subunit 4	frameshift, splice region
pathway	K14408 CSTF3; cleavage stimulation factor subunit 3	splice region, stop loss
	K15542 PFS2; polyadenylation factor subunit 2	stop gain
bpg03018 RNA	K12580 CNOT3; CCR4-NOT transcription complex subunit 3	start loss, stop gain
degradation	K12598 MTR4; ATP-dependent RNA helicase DOB1 [EC:3.6.4.13]	stop gain
h ====0.44.00	K12623 LSM4; U6 snRNA-associated Sm-like protein LSm4	stop gain
Ubiquitin mediated	K10566 BIRC6; baculoviral IAP repeat-containing protein 6 (apolion) [EC:2.3.2.23]	loss
proteorysis	K10597 UBE4B; ubiquitin conjugation factor E4 B [EC:2.3.2.27]	stop gain
here02012 DNA	K 10598 PPIL2; peptidyi-prolyi cis-trans isomerase-like 2 [EC:5.2.1.8]	stop gain
transport	KU3243 EIF3D, Italislation initiation factor 3D	stop gain
transport	K14004 SEC13: protein transport protein SEC13	start loss ston gain
bpg00190	K02126 ATPeF0A: E-type H+-transporting ATPase subunit a	ston gain
Oxidative	K02151 ATPeV1F: V-type H+-transporting ATPase subunit E	stop gain
phosphorylation	K02267 COX6B: cytochrome c oxidase subunit 6b	stop gain
bpq03040	K12623 LSM4: U6 snRNA-associated Sm-like protein LSm4	stop gain
Spliceosome	K12822 RBM25; RNA-binding protein 25	frameshift
	K12850 PRPF38B; pre-mRNA-splicing factor 38B	stop gain
bpg00564	K14676 NTE; lysophospholipid hydrolase [EC:3.1.1.5]	stop gain
Glycerophospholip id metabolism		
bpg03030 DNA	K01972 E6.5.1.2; DNA ligase (NAD+) [EC:6.5.1.2]	stop gain
replication	K02212 MCM4; DNA replication licensing factor MCM4 [EC:3.6.4.12]	stop gain
bpg03420	K01972 E6.5.1.2; DNA ligase (NAD+) [EC:6.5.1.2]	stop gain
Nucleotide excision repair	K10842 MNAT1; CDK-activating kinase assembly factor MAT1	stop gain
bpg00900	K11778 DHDDS; ditrans, polycis-polyprenyl diphosphate synthase [EC:2.5.1.87]	start loss, stop gain
Terpenoid	K13789 GGPS; geranylgeranyl diphosphate synthase, type II [EC:2.5.1.1 2.5.1.10 2.5.1.29]	stop gain

backbone		
biosynthesis		
bpg00270 Cysteine	K00640 cysE; serine O-acetyltransferase [EC:2.3.1.30]	start loss, stop gain
and methionine		
metabolism	K07027 ADE4: ADD ribooutation factor 1	oton agin
50004144 Endocutosis	K07937 ARE I, ADP-IIDOSVIAIION IACION I	stop gain
bng00020 Sulfur	K 11624 APZA, AP-2 complex suburil alpha	stop gain
metabolism	R00040 CysE, senne O-acetyniansierase [EC.2.3.1.30]	start loss, stop gain
hng03440	K08991 MUS81: crossover junction endonuclease MUS81 [EC:3.1.22]	ston gain
Homologous	K10875 RAD54L: DNA repair and recombination protein RAD54 and RAD54-like	stop gain
recombination	protein [EC:3.6.4]	otop gani
bpq00260 Glycine,	K15634 gpmB; probable phosphoglycerate mutase [EC:5.4.2.12]	stop gain
serine and		501 50
threonine		
metabolism		
bpg00010	K15634 gpmB; probable phosphoglycerate mutase [EC:5.4.2.12]	stop gain
Glycolysis /		
Gluconeogenesis		
ppg03008	K14572 MUN1; midasin	stop gain
hiorenesis in		
eukarvotes		
bpg00590	K15730 PTGES3: cytosolic prostaglandin-E synthase [EC:5.3.99.3]	stop gain
Arachidonic acid		otop gant
metabolism		
bpg04145	K02151 ATPeV1F; V-type H+-transporting ATPase subunit F	stop gain
Phagosome		
bpg03430	K01972 E6.5.1.2; DNA ligase (NAD+) [EC:6.5.1.2]	stop gain
Mismatch repair		
	KU3341 SEPSECS; O-phospho-L-seryi-tRNASec:L-selenocysteinyi-tRNA synthase	stop gain
hiosynthesis	[EC.2.9.1.2]	
bng00640	K01899 LSC1: succinvl-CoA synthetase alpha subunit [EC:6.2.1.4.6.2.1.5]	stop gain
Propanoate		otop gant
metabolism		
bpg00450	K03341 SEPSECS; O-phospho-L-seryl-tRNASec:L-selenocysteinyl-tRNA synthase	stop gain
Selenocompound	[EC:2.9.1.2]	
metabolism		
bpg04140	K08333 PIK3R4; phosphoinositide-3-kinase, regulatory subunit 4 [EC:2.7.11.1]	stop gain
Regulation of		
bng00410 beta-	K01918 papC: paptoste-peta-alapine ligase [EC:6.3.2.1]	ston agin
Alanine		stop gan
metabolism		
bpg00770	K01918 panC; pantoatebeta-alanine ligase [EC:6.3.2.1]	splice region, stop
Pantothenate and		gain
CoA biosynthesis		
bpg04070	K13024 PPIP5K; inositol-hexakisphosphate/diphosphoinositol-pentakisphosphate 1-	stop gain
Phosphatidylinosit	kinase [EC:2.7.4.24]	
of signaling		
bpg03022 Basal	K10842 MNAT1: CDK-activating kinase assembly factor MAT1	stop gain
transcription		otop gann
factors		
bpg00195	K03541 psbR; photosystem II 10kDa protein	frameshift
Photosynthesis		
bpg00561	K00679 E2.3.1.158; phospholipid:diacylglycerol acyltransferase [EC:2.3.1.158]	start loss, stop gain
Glycerolipid		
metabolism		stop goin
excision repair	NUTAZ ED.D.T.Z, DINA IIGASE (INAD+) [EU.D.D.T.Z]	stop gain
bpg00220 Arginine	K00611 OTC: ornithine carbamovltransferase [FC:2.1.3.3]	frameshift
biosynthesis		
bpg00020 Citrate	K01899 LSC1; succinyl-CoA synthetase alpha subunit [EC:6.2.1.4 6.2.1.5]	stop gain
cycle (TCA cycle)		