1	Supporting Information
2	Globally Optimized Targeted Mass Spectrometry (GOT-MS):
3	Reliable Metabolomics Analysis with Broad Coverage
4	Haiwei Gu ^{1, 2+*} , Ping Zhang ^{1, 3+} , Jiangjiang Zhu ¹ , and Daniel Raftery ^{1, 4*}
5	¹ Northwest Metabolomics Research Center, Department of Anesthesiology and Pain
6	Medicine, University of Washington, 850 Republican St., Seattle, WA 98109, USA
7	² Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China Institute
8	of Technology, Nanchang, Jiangxi Province 330013, P. R. China
9	³ Department of Applied Chemistry, China Agricultural University, Beijing 100193, P.R.
10	China
11	⁴ Public Health Sciences Division, Fred Hutchinson Cancer Research Center, 1100
12	Fairview Ave. N., Seattle, WA 98109, USA
13	
14	A Separate Excel Table: Table S1. The list of GOT-MS MRMs. A few precursor and
15	product ion pairs had similar molecular weight, but they were kept in the table because
16	they had different optimized MS parameters (data not shown).
17	Page S-3: Table S2. Demographic and clinical information for the patients and healthy
18	controls included in the CRC study.
19	Page S-4: Table S3. The concentrations of spiked $U^{-13}C^{15}N$ -amino acids in the 1:4
20	dilution sample.
21	Page S-5: Figure S1. The general HILIC/RP-LC strategy for GOT-MS.
22	Page S-6: Figure S2. Typical RP C18-SIMs in the m/z range of 100-190 from a pooled
23	serum sample under a) positive and b) negative ion detection modes in GOT-MS.
24	Page S-7: Figure S3. a) The intraday (n=3) and interday (n=3x3 consecutive days) CVs
25	for amino acids detected by GOT-MS, b) the intraday (n=3) and interday (n=3x3
26	consecutive days) CVs of amino acids detected by GOT-MS, after normalization to the
27	corresponding isotope labeled (U- $^{13}C^{15}N$ -) internal standards, and c) the linearity (R ²) of
28	amino acids from the 5 dilution samples in GOT-MS.

- Page S-8: Figure S4. a) The intraday (n=3) and interday (n=3x3 consecutive days) CVs of amino acids detected by Q-TOF-MS, b) the intraday (n=3) and interday (n=3x3 consecutive days) CVs of amino acids detected by Q-TOF-MS, after normalization to the corresponding isotope labeled (U- $^{13}C^{15}N$ -) internal standards, and c) the linearity (R²) of amino acids detected by Q-TOF-MS using the 5 dilution samples.
- Page S-9: Figure S5. The flow chart of GOT-MS-based metabolomics for CRC
 diagnosis in this study.
- Page S-10: Figure S6. The PCA score plot (PC1 vs. PC2) for the 155 GOT-MS MRMs
 collected from CRC and healthy control samples.
- **Page S-11: Figure S7.** a) SIM scan of m/z 147 in GOT-MS, b) the MS/MS spectrum
- targeting the ions with m/z 147 at 4.4 min in a), c) MRM scan (147->130.1) of glutamine
- 40 standard, and d) MRM scan (147->130.1) of lysine standard.
- 41 Page S-12: Figure S8. a) The MS/MS spectrum of lysine standard, and b) the MS/MS
- 42 spectrum of glutamine standard.
- 43

Table S2. Demographic and clinical information for the patients and healthy controls

	Healthy Controls	CRC Patients		
Subjects	20	18		
Age, median (range)	58 (21-78)	52 (27-76)		
BMI ^a , median (range)	27.4 (20.1-40.0)	27.0 (20.9-32.3)		
Gender				
Male	11	12		
Female	9	6		
Stage				
- 1/11	-	8		
III	-	7		
IV	-	3		
Ethnicity				
Caucasian	18	8		
African American	-	1		
NA	2	9		

included in the CRC study.

⁴⁷ ^a1 control and 9 CRC samples do not have BMI data.

S-3

U- ¹³ C ¹⁵ N-Amino Acids	Concentration (µM)
U- ¹³ C ¹⁵ N-Gly	87.6
U- ¹³ C ¹⁵ N-Ala	93.2
U- ¹³ C ¹⁵ N-Ser	39.2
U- ¹³ C ¹⁵ N-Pro	58.6
U- ¹³ C ¹⁵ N-Val	28.8
U- ¹³ C ¹⁵ N-Thr	32.5
U- ¹³ C ¹⁵ N-Leu	82.3
U- ¹³ C ¹⁵ N-IIe	16.0
U- ¹³ C ¹⁵ N-Asn	67.3
U- ¹³ C ¹⁵ N-Asp	68.2
U- ¹³ C ¹⁵ N-GIn	60.7
U- ¹³ C ¹⁵ N-Lys	93.5
U- ¹³ C ¹⁵ N-Glu	64.7
U- ¹³ C ¹⁵ N-Met	14.2
U- ¹³ C ¹⁵ N-His	6.7
U- ¹³ C ¹⁵ N-Phe	11.2
U- ¹³ C ¹⁵ N-Arg	56.4
U- ¹³ C ¹⁵ N-Tyr	7.1
U- ¹³ C ¹⁵ N-Trp	16.3
U- ¹³ C ¹⁵ N-Cys	5.4

50	Table S3.	The concentrations	of spiked U- ¹³ C	¹⁵ N-amino	acids in the	1:4 dilution	sample.
----	-----------	--------------------	------------------------------	-----------------------	--------------	--------------	---------

Figure S1. The general HILIC/RP-LC strategy for GOT-MS.

Figure S2. Typical RP C18-SIMs in the m/z range of 100-190 from a pooled serum
sample under a) positive and b) negative ion detection modes in GOT-MS.

⁶¹ * Each SIM data was first linearly scaled, so that the minimum is 0 and the maximum is

1. An increment of 0.04 was then added to each SIM across different retention time.

63

64

S-6

66

Figure S3. a) The intraday (n=3) and interday (n=3x3 consecutive days) CVs for amino acids detected by GOT-MS, b) the intraday (n=3) and interday (n=3x3 consecutive days) CVs of amino acids detected by GOT-MS, after normalization to the corresponding isotope labeled (U- $^{13}C^{15}N$ -) internal standards, and c) the linearity (R²) of amino acids from the 5 dilution samples in GOT-MS.

* Ile and Leu were integrated together since they had the same MRMs and baseline
separation between them was not observed.

Figure S4. a) The intraday (n=3) and interday (n=3x3 consecutive days) CVs of amino acids detected by Q-TOF-MS, b) the intraday (n=3) and interday (n=3x3 consecutive days) CVs of amino acids detected by Q-TOF-MS, after normalization to the corresponding isotope labeled (U- $^{13}C^{15}N$ -) internal standards, and c) the linearity (R²) of amino acids detected by Q-TOF-MS using the 5 dilution samples.

* Ile and Leu were integrated together since they had the same MRMs and baseline
separation between them was not observed.

⁸³ ** Cysteine was not detectable in these samples using Q-TOF.

*** $U^{-13}C^{15}N$ -cysteine, $U^{-13}C^{15}N$ -serine, and $U^{-13}C^{15}N$ -histidine were not detectable in these samples using Q-TOF.

86 **** R² for Arginine was very small.

- 89 Figure S5. The flow chart of GOT-MS-based metabolomics for CRC diagnosis used in
- 90 this study.
- 91
- 92

- 93
- 94 Figure S6. The PCA score plot (PC1 vs. PC2) for the 155 GOT-MS MRMs collected
- 95 from CRC and healthy control samples.
- 96

Figure S7. a) SIM scan of m/z 147 in GOT-MS, b) the MS/MS spectrum targeting the
ions with m/z 147 at 4.4 min in a), c) MRM scan (147->130.1) of glutamine standard, and
d) MRM scan (147->130.1) of lysine standard.

105

106 Figure S8. a) The MS/MS spectrum of lysine standard, and b) the MS/MS spectrum of

107 glutamine standard.