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Abstract 

 

BACKGROUND: Leaf shape among Passiflora species is spectacularly diverse. 

Underlying this diversity in leaf shape are profound changes in the patterning of the 

primary vasculature and laminar outgrowth. Each of these aspects of leaf 

morphology—vasculature and blade—provides different insights into leaf 

patterning. 

 

RESULTS: Here, we morphometrically analyze >3,300 leaves from 40 different 

Passiflora species collected sequentially across the vine. Each leaf is measured in 

two different ways: using 1) 15 homologous Procrustes-adjusted landmarks of the 

vasculature, sinuses, and lobes and 2) Elliptical Fourier Descriptors (EFDs), which 

quantify the outline of the leaf. The ability of landmarks, EFDs, and both datasets 

together are compared to determine their relative ability to predict species and 

node position within the vine. Pairwise correlation of x and y landmark coordinates 

and EFD harmonic coefficients reveals close associations between traits and insights 

into the relationship between vasculature and blade patterning. 

 

CONCLUSIONS: Landmarks, more reflective of the vasculature, and EFDs, more 

reflective of the blade contour, describe both similar and distinct features of leaf 

morphology. Landmarks and EFDs vary in ability to predict species identity and 

node position in the vine and exhibit a correlational structure (both within 

landmark or EFD traits and between the two data types) revealing constraints 

between vascular and blade patterning underlying natural variation in leaf 

morphology among Passiflora species. 

 

Keywords 

 

Passiflora, morphometrics, leaves, leaf shape, leaf morphology, heteroblasty, 

Procrustes analysis, landmarks, Elliptical Fourier Descriptors 
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Background 

 

The leaves of Passiflora species are remarkably diverse [1-3]. The underlying source 

of such diversity is ultimately speculative, but diversifying selective pressure from 

egg-laying Heliconius butterflies that use leaf shape as a visual cue has been 

proposed [4-6]. The leaves not only vary between species, but between successive 

nodes of a single vine, sometimes dramatically, reflecting both the heteroblastic 

development of the shoot apical meristem from which they are derived and the 

ontogeny of individual leaves as they allometrically expand [7-10]. Previous 

morphometric work using the multiscale Minkowski fractal dimension focused on 

vein patterning and the contour of the blade to predictively identify Passiflora 

species. Of the 10 species analyzed, some possessed similar leaf morphologies that 

could be correctly classified using only a small number of leaves per species as a 

training set [11]. 

 

To some degree, the patterning of the vein and blade follow each other, but to what 

degree they vary independently, or one is the consequence of the other, remains to 

be determined [12-15]. At a morphometric level, vascular patterning and the 

contour of the blade are studied separately, as one is a topology and the other a 

contour. Vasculature and blade can be separated and then analyzed with the same 

method, and was done using a Fractal-based approach in Passiflora previously [11].  

 

Alternatively, traditional morphometric approaches can be applied to vascular 

patterning and the outline of the blade [16]. Procrustes-adjusted landmarks are 

coordinate points that correspond between all measured samples, ideally through 

homology [17]. Homologous landmarks are ideally suited for measuring vein 

thickness, vascular branch points, and the relative positioning and depth of sinuses 

and lobes if these features can be found in every sample, as in many palmately-lobed 

species, such as Cucurbita, Acer, and Vitis. [10, 18-25].  
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The landmark concept can be applied to contours as well, placing numerous points 

along a curve and subsequently using a Procrustes superimposition to create a near-

continuous analysis of outlines [26]. The pseudo-landmark approach to quantifying 

contours has been used extensively to study leaf outlines, especially in species like 

Antirrhinum and Arabidopsis, where homologous points are lacking [27-29]. Another 

approach, Elliptical Fourier Descriptors (EFDs), treats an outline as a wave 

connecting back onto itself and subsequently performs a Fourier transform, 

decomposing the shape into a harmonic series [30-33]. EFDs have been applied to 

species from both Solanum and Vitis [23, 34-38] as well as the study of leaf 

asymmetry [25, 39, 40], leveraging the ability to separate symmetric from 

asymmetric sources of variance. 

 

Comparing landmark- and contour-based methods not only provides an integrated 

perspective on leaf morphology, but can also potentially reveal the extent that 

patterning of the vasculature and blade are correlated in a quantitative fashion. 

Understanding the complementary features different morphometric methods detect 

is relevant to a wide variety of fields that use different approaches to extract 

information content from leaf shapes, including paleobiology and paleoclimate 

studies [41], ecology [42], evolution [10, 24, 27, 34, 43], genetics [21, 23, 29, 35, 36, 

38], developmental biology [10, 18, 20, 24, 25, 34, 36, 39, 40], and plasticity [19, 20, 

24, 37]. Heliconius butterflies, too, can even distinguish the shapes of leaves from 

different Passiflora species, presumably using a learning method yet to be 

determined [6]. 

 

Here, we measure landmarks of the vasculature, sinuses, and lobes and EFDs of the 

blade for >3,300 leaves from 40 Passiflora species sampled from successive nodes 

across vines. Linear Discriminant Analyses (LDAs) are used to determine the 

capacity of landmarks, EFDs, or both datasets to predict species identity versus node 

position in the vine. A correlational analysis of landmark and EFD data determines 

which specific features of leaves change together versus vary independently from 

each other. Our data reveals the constraints between vascular and blade patterning 
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underlying natural variation in leaf morphology among Passiflora species and 

provides a critical comparison of complementary morphometric approaches used 

on the same leaves. 

 

Data Description 

 

The purpose of this manuscript is to compare and contrast landmark and Elliptical 

Fourier Descriptor (EFD) methods in the genetic and developmental analysis of leaf 

shape among Passiflora species across the sequential nodes of their vines. The 

dataset released with this manuscript [44] consists of 555 scans, as well as isolated 

binary outlines of individual leaves, from 40 different species of Passiflora in which 

the order of leaves arising from the vine is recorded, starting with “1” for the 

youngest leaf scanned from the growing tip of each vine. We importantly note: the 

numbering of nodes in the raw scans described above, starting at the tip of the 

shoot, is opposite from the numbering of nodes presented in the manuscript, in 

which numbering (starting with “1”) begins with the oldest leaf at the base of the 

shoot. The reason for this opposite numbering in the manuscript is that by 

beginning the counting of nodes with “1” at the shoot base the numbering aligns 

with the heteroblastic series (which begins with the first emerged leaf at the shoot 

base). >3,300 leaves are represented in this dataset. The number of vines sampled 

per a species and the number of nodes sampled for each vine are indicated in the 

raw data provided with this manuscript [45] and are visually depicted as well (Fig. 

S1). Both landmark data, measuring the vasculature, lobes, and sinuses, and 

Elliptical Fourier Descriptor (EFD) data, which quantify the leaf outline, can be 

derived from the provided datasets. EFDs (under 

PassifloraLeaves/Paper1/Figure1/0.passiflora_nef.txt) and landmarks (under 

PassifloraLeaves/Paper1/Figure2/0.procrustes_landmarks.txt) are provided with 

code in a GitHub repository [45]. It is hoped that the release of this data will assist 

others in developing novel morphometric approaches to better understand the 

genetic, developmental, and environmental basis of leaf shape.  
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Analyses 

 

Vascular landmarks and Elliptical Fourier Descriptors (EFDs) of the blade 

 

For the >3,300 leaves measured across the leaf series for 40 different Passiflora 

species, a comparison of homologous landmarks and Elliptical Fourier Descriptors 

(EFDs) was made (see Fig. S1 and raw data [45] for the replication associated with 

each species and the number of nodes for each vine) These two methods globally 

capture complementary aspects of leaf shape, sensitive to vascular patterning and 

the shape of the blade, respectively. 

 

15 landmarks were measured for each leaf (Fig. 1A). For the proximal veins (near 

the leaf base) landmarks on each side of the junction of the proximal vein with the 

petiolar junction (where the major veins meet) were placed (landmarks 1-2 and 5-

6), capturing the width of the proximal veins. Landmarks placed at the tip of the 

proximal vein (landmarks 7 and 15) capture the length and angle of the proximal 

lobe. On the distal vein (nearer the leaf tip), landmarks were placed only on the 

distal side of the junction with the midvein (landmarks 3 and 4) as the other side of 

the base of the distal vein variably intersects the midvein, petiolar junction, and 

proximal vein (see three examples in Fig. 1A, left to right). The landmarks at the tip 

of the distal veins (landmarks 13 and 9) measure the length and angle of the distal 

lobe. Additionally, landmarks describe the placement of the leaf tip (landmark 11), 

distal sinuses (landmarks 10 and 12), and the proximal sinuses (8 and 14). 

 

To determine the extent that landmarks capture qualitative variation in leaf shape 

among Passiflora species, representative leaves were compared to averaged 

Procrustes-adjusted landmark values (Fig. 2). The landmark analysis captures 

features such as the relative lengths and angular placement of the proximal and 

distal veins as well as the depth of the sinuses. Visualizing superimposed landmarks 

for all leaves measured in addition to the averaged landmark values demonstrates 

substantial sources of shape variance in some species, especially due to changes in 
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leaf shape across the leaf series, that usually relate to the depth of the sinuses or the 

number of lobes.  

 

Although landmarks accurately depict information related to vascular patterning 

and the relative placement of the lobes and sinuses of the blade, they fail to capture 

more subtle shape variation related to the curvature of the lamina. Elliptical Fourier 

Descriptors (EFDs) result from a harmonic decomposition of a shape outline. The 

harmonic contributions to leaf shape can be visualized (Fig. 1B), which in Passiflora 

correspond to features reflecting the leaf tip, distal lobes, and proximal lobes (the 

“trifoliate” features, especially in the lower harmonic ranks) or more local features 

(the “serrations” represented in the higher harmonic ranks) (Fig. 1B). The averaged 

outlines of leaves capture the curves and lobing of leaves from each species (Fig. 3). 

Species that display leaves with variable numbers of lobes (such as Passiflora 

caerulea, P. cincinnata, or P. suberosa) have average leaf outlines reflecting this 

source of shape variance.  

 

The morphospace reflects species and heteroblastic differences in leaf shape 

 

To analyze major sources of shape variance in Procrustes-adjusted landmark values 

and the harmonic series from the Elliptical Fourier Descriptor (EFD) analysis, a 

Principal Component Analysis (PCA) was performed to reduce the dimensionality of 

each dataset. Onto the resulting morphospaces were projected species identity and 

the node position in the leaf series (“heteroblasty”). Node position is referred to as 

“heteroblasty” as a shorthand indicating that numbering of nodes begins at the 

shoot base, with “1” indicating the first emerged leaf at the shoot base. This 

numbering scheme more closely aligns with the heteroblastic series of leaves 

compared to the reverse numbering that begins at the growing shoot tip and is more 

sensitive to the allometric changes in rapidly expanding leaves. 

 

Eigenleaves (theoretical leaf shapes representing the eigenvectors from a Principal 

Component Analysis) from each PCA reveal the shape features contributing to shape 
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variance along each Principal Component (PC). The first four landmark PCs (Fig. 

4A) explain 83.2% of shape variance for the landmark dataset. PC1 reflects shape 

variance related to long, lance-like leaves versus wider leaves with short midveins 

and long, extended distal lobes. Both PC2 and PC3 explain shape variance related to 

leaves with pronounced distal lobes versus more rounder (PC2) or deltoid (PC3) 

leaves with less lobing. PC4 also explains shape variance related to lobing. A 

comparison of the landmark eigenleaves (Fig. 4A) with the EFD eigenleaves (Fig. 

4B) shows that the shape variance explained by each respective PC is strikingly 

similar, especially with respect to lobing and the length-to-width ratio of leaves. 

This demonstrates a qualitative correspondence between the orthogonal axes of 

each dataset, including their directionality, which will be subsequently explored in 

further detail. 

 

Projecting species identity and heteroblastic node onto the landmark and EFD 

morphospaces reveals that each method separates the shape variance attributable 

to these variables, but in different ways (Fig.  5). Because visualizing 40 distinct 

species is a challenge, species were assigned to 7 different classes (consistently 

colored throughout the manuscript) based on a) occupying similar spaces within 

morphospace and b) qualitative differences in leaf shape (Fig. 5A). Species classes 

show pronounced separation from each other by PC1 and PC2 in both the landmark 

(Fig. 5B) and EFD (Fig. 5C) morphospaces. Less separation is observed by species 

class for PC3 and PC4. When heteroblastic node is projected onto the morphospaces, 

there is a trend for the leaves originating from high heteroblastic nodes (young 

leaves towards the growing tip) to occupy the lower PC2 values within each species 

class. This is especially true for the landmark morphospace (Fig. 5B). There is also a 

trend for leaves originating from high heteroblastic nodes to have low PC3 values, 

regardless of species class. Both low PC2 and PC3 values correspond to more 

pronounced distal lobing (Fig. 4), a shape feature commonly found in young leaves 

near the growing tip of the plant, compared to older leaves near the base of the vine 

that tend to have less lobing. That shape variance attributable to species class and 

heteroblastic node traverse the morphospace in different ways suggests to some 
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extent the shape variance for each of these factors is separable, as is discussed in the 

next section. 

 

Discriminating species vs. node identity 

 

That species class and node identity traverse the morphospace differently (Fig, 5A-

B) is consistent with previous work demonstrating that shape features can be used 

to discriminate species independently from node position in grapevine [10, 24]. A 

Linear Discriminant Analysis (LDA) is used here to determine the extent these two 

variables can be predicted independently of the other in Passiflora using landmark 

data, Elliptical Fourier Descriptors (EFDs), and both landmark and EFDs together. 

We stress that the LDA approach taken in this work is fundamentally different from 

modeling species, node, and interaction effects using linear modeling. Such an 

approach (which we undertook but the data is not shown here, because it is outside 

the scope of this manuscript) reveals that for each morphometric trait considered 

independently, the species and interaction effects are the strongest and the node 

effect is weak. Rather, an LDA allows explicit questions to be asked regarding all the 

measured traits together. Can all the traits be used together to discriminate species 

regardless of node? Using all traits can node be distinguished separately from 

species? Such a framework is consistent with developmental genetic theory that 

differences in leaf shape between species versus more conserved heteroblastic 

changes in leaf shape within individual plants are regulated by distinct genetic 

pathways [16] that lead to separable morphological effects within single leaves (so 

called “cryptotypes” [46]). We also note that the LDAs performed use the “leave one 

out” approach of cross-validation, in which a separate LDA for each leaf, minus the 

leaf in question, is used to predict the identity of that leaf. Such an approach is 

designed to compensate for differences in species replication and nodes sampled 

per a vine in our dataset (see raw data [45] and Fig. S1). 

 

An LDA is first performed on species identity, regardless of node position. The 

resulting discriminants are then used to predict the identity of the species. 
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Regardless of whether landmarks (Fig. 6A), EFDs (Fig. 6C), or both landmarks and 

EFDs are used (Fig. 6E) a high proportion of leaves can be correctly reassigned to 

the correct species. When there is confusion between species, it tends to be within 

the same species class. This result demonstrates that regardless of the position of a 

leaf within the heteroblastic series, its species identity can be predicted. For most 

species classes (all except C and D) the maximum correct prediction is most often 

achieved with both landmark and EFD data together compared to each data type 

alone (Table 1). For species classes C and D, however, landmark data alone tends to 

outperform EFD and both data types together. This indicates that for some species, 

especially those that are highly lobed as in species classes C and D, landmark data is 

a better indicator of species identity (perhaps because it is more explicitly related to 

lobing). 

 

Conversely, heteroblastic node position can be predicted independently of species 

identity, but to a much lesser degree and not equally across the leaf series. The 

leaves occupying lower node positions (older leaves at the base of the vine) tend to 

be successfully predicted at a higher rate than the younger leaves of the tip, 

regardless of whether landmarks (Fig. 6B), EFDs (Fig. 6D), or both landmarks and 

EFDS are used (Fig. 6F). EFDs, however, overall under-perform landmarks or 

landmarks and EFDs used together (Table 2). This indicates that landmarks are a 

superior discriminant of node position compared to EFDs. Previous work in 

grapevine indicates that vein thickness is altered by shoot position [10, 24]. That 

landmarks measure vein thickness, but not EFDs, may explain the differing abilities 

of these two shape features to correctly discriminate leaves by heteroblastic node 

position. That the juvenile leaves at the lower heteroblastic node positions are 

correctly predicted at higher rates suggests that these leaves are more similar 

across species (or correspondingly, that leaves at high heteroblastic node positions 

are more divergent between species).  

 

Correlational matrix between landmarks and Elliptical Fourier Descirptors (EFDs) 
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Until now, landmarks and Elliptical Fourier Descriptors (EFDs) have either been 

considered separately or in conjunction together but not compared against each 

other. The landmarks used in this study tend to represent vascular features of the 

leaf, the lobes, and the sinuses. The EFDs represent the blade and the continuous 

contour and curves of lamina. Further, landmark data is represented as (x, y) 

coordinates, whereas EFD data is a Fourier-based harmonic series. A correlational 

matrix is used to find strong associations between the components of each dataset 

and to interpret the features each dataset uniquely quantifies against the other. 

 

The input for the correlation matrix, using Spearman’s rho, is each of the fifteen x 

and y coordinates of the landmark dataset and each of the four harmonic 

coefficients (A, B, C, D) of the first 20 harmonic ranks from the EFD data, correlated 

across the >3,300 leaves for all species and heteroblastic node positions used in this 

study. This correlation matrix was used as a distance matrix to hierarchically cluster 

these traits and the rho and p values subsequently visualized (Fig. 7). 

 

A large set of uncorrelated traits, consisting of the B and C harmonic coefficients and 

the x11 landmark, end up clustered together (Fig. 7). The B and C harmonic 

coefficients represent asymmetric sources of shape variance [31] and the x11 

landmark represents the left-right variance of the leaf tip (Fig. 1A), which will 

mostly be affected by leaf asymmetry. That these shape features are weakly 

correlated with each other and other traits only implies that they are regulated by 

an unaccounted source of variance for this particular analysis. In the future, a more 

in-depth analysis will likely reveal phyllotaxy as modulating leaf asymmetry [39, 

40], specifically alternating asymmetry at consecutive nodes, as recently shown in 

other vines, such as ivy and grapevine [25]. 

 

The remaining landmarks and the A and D coefficients of the harmonic series 

(representing symmetrical shape variation) show various correlational associations 

with each other (Figs. 7-8). Harmonic contributions to leaf shape (Fig. 1B) are more 

abstract and difficult to interpret than the contributions of landmarks to leaf shape, 
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as the landmarks represent homologous points found in every leaf (Fig. 1A). Strong 

correlations between harmonic coefficients with landmarks can help interpret the 

context of the harmonic coefficient to leaf shape. Most the harmonic coefficients 

cluster exclusively together except for landmarks y9 and y13, which represent the 

proximal-distal displacement of the distal lobes along the leaf length (Fig. 8). This 

suggests that large amounts of the shape variance associated with the contour of the 

blade are influenced by the relative placement of the distal lobes along the leaf 

length. The remaining harmonic coefficients that cluster outside most the other 

coefficients also associate with features of the distal part of the leaf. A1, A3, D2, and 

D6 associate with the x and y coordinates of the distal sinus (x10, x12, y10, and y12) 

and D1 and D3 associate with the left-right displacement of the distal lobe (x9 and 

x13) and the vertical displacement of the leaf tip (y11) (Fig. 8). Although difficult to 

interpret, the correlations of harmonic coefficients suggest that the overall leaf 

contour is influenced by the placement of the distal lobe and sinus. 

 

The remaining correlations between landmarks reveal interesting constraints 

governing the shape of Passiflora leaves (Fig. 8). As mentioned previously, the left-

right displacement of the distal lobes (x9 and x13) strongly correlates with the 

vertical proximal-distal displacement of the leaf tip (y11). The x and y coordinates of 

the distal lobes (landmarks 10 and 12) are the only features for which the x and y 

displacement are correlated, suggesting that the distal sinus varies in a diagonal 

direction. The proximal sinus and lobe (landmarks 7, 8, 14, and 15) and the 

landmarks at the base of the veins of the petiolar junction (landmarks 1, 2, 3, 4, 5, 

and 6) form additional groups of associated landmarks, although interestingly the x 

and y displacement of each of these two groups is distinct in each case (Fig. 8) 

 

Discussion 

 

Leaf morphology refers to the totality of leaf architecture, at the cellular, tissue, and 

organ levels, and distinct attributes of the leaf, both the vasculature and lamina. The 

topology of the vasculature and contour of the leaf blade are distinct geometric 
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phenomena that require different morphometric approaches to quantify. 

Landmarks and Elliptical Fourier Descriptors (EFDs) are ideal methods to analyze 

the distinct features of leaves contributing to their shape (Fig. 1), but rarely are they 

measured and compared on the same leaves. Our analysis of disparate leaf shapes 

among Passiflora species with landmarks (Fig. 2) and EFDs (Fig. 3) reveals that 

both methods capture similar orthogonal axes of shape variation (Fig. 4), and 

separate both species and heteroblastic node identity, but in distinct ways (Fig. 5). 

Landmarks are superior to EFDs in predicting node position compared to species 

identity, most likely because they describe vascular patterning, which is relatively 

sensitive to heteroblasty compared to species differences in leaf shape (Fig. 6; 

Tables 1-2). Although most elements of the EFD harmonic series cluster together in 

a pairwise correlational analysis, a few are closely associated with landmarks (Fig. 

7). Landmarks exhibit a correlational structure revealing developmental constraints 

in how leaves vary across Passiflora species and the heteroblastic series (Fig. 8). 

Together, our data quantify the relationship between blade and vasculature, 

revealing that one does not drive the patterning of the other, and although each 

distinctly varies, many shape features of the leaf change in concert across evolution 

and development. 

 

Methods 

 

Plant materials and growth conditions 

 

Passiflora germplasm was kindly provided by R. Silva (Viveiros Flora Brasil, 

Araguari, MG, Brazil), Dr. F.G. Faleiro (EMBRAPA Cerrados, Planaltina, DF, Brazil), 

Prof. M.M. Souza (Universidade Estadual de Santa Cruz - UESC, Ilhéus, BA, Brazil), M. 

Peixoto (Mogi das Cruzes, SP, Brazil), Prof. M.L. Silva (Universidade do Estado de 

Mato Grosso, Tangará da Serra, MT, Brazil), and Prof. C.H. Bruckner (Universidade 

Federal de Viçosa, Viçosa, MG, Brazil). 
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The plants were germinated from seed, planted between late October 2015 and 

early March 2016, in Viçosa, at the Federal University of Viçosa, MG, Brazil. The 

populations were raised and maintained under polycarbonate-covered greenhouse 

conditions, equipped with automatic environmental control using exhaust fans and 

evaporative cooling panels (with expanded clay wettable pads). Seeds for each 

Passiflora species were sown in 128 cell propagation plastic trays (GPlan Comércio 

de Produtos Agrícola s EIRELI – ME, São Paulo, SP, Brazil) filled with horticultural 

organic Tropstrato HT Hortaliças substrate (Vida Verde Indústria e Comércio de 

Insumos Orgânicos Ltda, Mogi Mirim, SP, Brazil). After germination (30-40 days), 

plantlets were individually transplanted to 5 L capacity plastic pots (EME-A-EME  

Ind. Com. Ltda., Petrópolis, RJ, Brazil) filled with horticultural substrate. Each pot 

received 5 g of Osmocote® Plus NPK 15-09-12 3-4 month controlled release 

fertilizer (Scotts, USA). Plants were irrigated on a daily-basis with tap water, and no 

phytosanitary control was applied. The germination and growth rates of plants 

varied widely. The number of replicates for each species and the number of nodes 

per vine are indicated in the raw data [45] and depicted visually (Fig. S1). 

 

For scanning, a multifunction printer (Canon PIXMA MX340 Wireless Office All-in-

One Printer, model 4204B019, USA) was used. A 20 cm metallic ruler was 

positioned at the bottom of each scanned sheet as a size marker. Leaves were 

carefully detached, from the base to the tip of the shoot, and affixed to an A4 paper 

sheet, adaxial face down, using 12 mm-double sided tape (Scotch Model 9400, 3M 

do Brasil, SP, Brazil). The numbers written near each leaf indicate position in the 

shoot, in a tip-to-base direction, starting with the youngest leaf at the tip of the 

shoot. It should be noted that the numbering in the scans is opposite from the 

numbering used in the analysis and figures for this manuscript, in which leaves are 

numbered with “1” starting at the shoot base. This numbering system more closely 

aligns with the heteroblastic series than the reverse numbering scheme originally 

used in the scans. 

 

Morphometric and statistical analyses 
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All morphometric data and code used for statistical analysis is available on GitHub 

[45]. All original data is available at GigaDB [44]. 

 

Landmarks, as described in the text, were placed on leaves in ImageJ [47]. 

Procrustes superimposition was performed using the shapes package [48] in R [49] 

with the procGPA function using reflect=TRUE. Resulting Procrustes-adjusted 

coordinates and principal component scores (PCs) were written out for subsequent 

analyses and eigenleaf representations visualized using the shapepca function. 

 

To isolate outlines for Elliptical Fourier Descriptor (EFD) analysis, the “Make 

Binary” function in ImageJ [47] was found to be sufficient to segment leaves. The 

wand tool was used to select individual binary leaf outlines, which were pasted into 

a new canvas, which was subsequently saved as an individual image, which was 

named by vine and node position from which the leaf was derived. The binary 

images were batch converted into RGB .bmp files and read into SHAPE, which was 

used to perform chain-code analysis [31, 32]. The resulting chain-code .chc file was 

then used to calculate normalized EFDs. The resulting normalized EFD .nef file was 

then read into Momocs (version 0.2-6) [33] in R. The harmonic contributions to 

shape were visualized using the hcontrib function. Averaged leaf outlines were 

calculated using the meanShapes function and Principal Component Analysis (PCA) 

performed using the pca function and eigenleaves visualized using the PC.contrib 

function. 

 

Unless otherwise noted, all visualization was performed using ggplot2 in R [50]. 

Linear Discriminant Analysis (LDA) was performed using the lda function and 

subsequent prediction of species identity or heteroblastic node position performed 

using the predict function with MASS [51]. When LDAs were used for prediction, the 

parameter CV was set to “TRUE”, for the “leave one out” cross-validation approach, 

to help make analyses more robust to differences in replication and node numbers 
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between species and vines. Hierarchical clustering was performed using the hclust 

function. 

 

Availability and requirements 

 

Project name: PassifloraLeaves 

Project home page: https://github.com/DanChitwood/PassifloraLeaves 

Operating system(s): Platform independent 

Programming language: R 

Other requirements: Not applicable 

License: MIT license 

Any restriction to use by non-academics: none 

 

Availability of supporting data and materials 

 

The data sets supporting the results of this article are available in the GigaDB 

repository [44]. 
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Figure Legends 

 

Figure 1: Landmarks and harmonic contributions to shape. A) The 15 

landmarks used for analysis. Left to right, landmark placement when the distal and 

proximal veins l) pinnately emerge from the midvein, m) both originate from the 

petiolar junction, or r) the proximal vein branches from the distal. B) Harmonic 

contributions to shape resulting from Elliptical Fourier Descriptor (EFD) analysis. 

The harmonic rank is arranged horizontally and the amplification factor (which 

multiplies the harmonic contributions to shape by the indicated amount) vertically. 

Note: for convenience to the reader, these panels are recapitulated in the companion 

manuscript [52]. 

 

Figure 2: The shapes of Passiflora leaves measured using landmarks. For the 

40 species analyzed in this study, both a representative leaf and landmark data are 

shown. For the landmark data, the mean leaf for the species in shown in black, 

whereas all data for the species is depicted in semi-transparent blue. 

 

Figure 3: The shapes of Passiflora leaves measured using Elliptical Fourier 

Descriptors (EFDs). Mean leaves calculated for each of 40 species analyzed in this 

study from the harmonic series resulting from an Elliptical Fourier Descriptor (EFD) 

analysis of the leaf contours. A-G) Classes of species are indicated by their 
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respective panels. Species classes were determined by neighboring position in the 

Principal Component Analysis (PCA) morphospace, described in Figs. 4-5. Color 

indicates class: class A, teal; class B, orange; class C, lavender; class D, magenta; class 

E, green; class F, yellow; class G, brown. 

 

Figure 4: Principal Components (PCs) and eigenleaves. A) Principal components 

(PCs) representing shape variance in landmark data. Eigenleaf representations 

(theoretical leaf shapes representing the eigenvectors from a Principal Component 

Analysis) at +/- 1.5 standard deviations (s.d.) are shown for the first four PCs. 

Percent variance explained by each PC indicated. B) PCs representing shape 

variance in Elliptical Fourier Descriptor (EFD) data. Eigenleaf representations at +/- 

1 s.d. are shown for the first four PCs. Percent variance explained by each PC 

indicated. 

 

Figure 5: Morphospace by species and heteroblastic node. A) Key, showing 

species classes and averaged leaf contours for each species. Color indicates class, 

which is used in other panels. B) Principal Component Analysis (PCA) of landmark 

data. Graphs for PC2 vs. PC1 and PC4 vs. PC3 are colored by species class and by 

heteroblastic node. Percent variance explained by each PC indicated. C) PCA of 

Elliptical Fourier Descriptor (EFD) data. Graphs for PC2 vs. PC1 and PC4 vs. PC3 are 

colored by species class and by heteroblastic node. Percent variance explained by 

each PC indicated. Heteroblastic node position is numbered “1” starting from the 

shoot base. Class color scheme: class A, teal; class B, orange; class C, lavender; class 

D, magenta; class E, green; class F, yellow; class G, brown. Heteroblastic node color 

scheme: shoot base, black; middle shoot, blue; shoot tip, yellow. 

 

Figure 6: Linear Discriminant Analysis (LDA). Linear Discriminant Analysis 

(LDA) using A-B) landmark data, C-D) Elliptical Fourier Descriptor (EFD) data, and 

E-F) both datasets. For each set of LDAs, analysis was performed to discriminate 

species (ignoring heteroblastic node information) or to discriminate heteroblastic 

node (ignoring species information). Subsequent prediction of species or 
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heteroblastic node identity is then visualized using confusion matrices, where actual 

identity is oriented vertically, predicted identity horizontally, and the proportion 

assigned indicated as fill. Species LDAs are broken up by species class. For 

heteroblastic node LDAs, Spearman’s rho and associated p values calculated from 

correlating actual and predicted node identities are provided. Predictions carried 

out using LDA use the “leave one out” approach cross-validation approach. 

Heteroblastic node position is numbered “1” starting from the shoot base. Color 

scheme: low assigned proportion, white; high assigned proportion, black. 

 

Figure 7: Correlational matrix of landmark and Elliptical Fourier Descriptor 

(EFD) traits. Spearman’s correlation matrix for morphometric features analyzed in 

this study. Upper half indicates –log10 p value and lower half Spearman’s rho 

between indicated traits. Morphometric traits, both landmark and the harmonic 

series, are indicated along the sides, arranged using hierarchical clustering, the 

topology of which is depicted as a dendrogram. Key groupings of landmarks 

indicating correlational associations with each other or EFD harmonics are 

indicated. Spearman’s rho: low values, green; middle values, white; high values, 

magenta. -log10 p values: low values, purple; high values, yellow; p < 0.05, no color.  

 

Figure 8: Correlational relationships between vascular landmarks and leaf 

contours. Correlational relationships between x and y components of landmarks 

and Elliptical Fourier Descriptor (EFD) harmonics are indicated by dendrogram 

(left) and landmarks qualitatively on a representation of a leaf (right). x and y 

landmark components are independently depicted by arrows and colored as 

indicated to show major correlational sources of shape variance within Passiflora 

leaves. 

 

Supplemental Information 

 

Figure S1: Species replication and number of nodes sampled. A) Dotplot 

showing the number of vines sampled for each species. B) Boxplot showing the 
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number of nodes sampled for vines from each species. The largest red line is the 

median nodes sampled (14 nodes), the medium sized redlines the 25th and 75th 

quantiles (12 and 16 nodes, respectively), and the thin red lines the minimum and 

maximum (7 and 28 nodes, respectively). 

 
Table 1: Predictive power of different morphometric methods to discriminate 
Passiflora species.  
 

Species Class Landmark EFD Both Max 

P. coriacea A 83.2% 81.7% 88.1% Both 

P. misera A 77.0% 71.6% 76.9% Landmark 
P. biflora B 84.1% 75.4% 92.1% Both 

P. capsularis B 77.2% 72.0% 77.3% Both 
P. micropetala B 69.1% 81.8% 92.4% Both 
P. organensis B 89.4% 70.7% 96.6% Both 

P. pohlii B 54.5% 77.8% 77.8% EFD 
P. rubra B 60.3% 59.7% 71.6% Both 

P. tricuspis B 49.0% 67.8% 69.2% Both 
P. caerulea C 0.0% 15.1% 9.4% EFD 

P. cincinnata C 71.4% 59.3% 59.3% Landmark 
P. edmundoi C 72.8% 78.8% 83.8% Both 

P. gibertii C 84.0% 72.2% 81.9% Landmark 
P. hatschbachii C 72.0% 65.4% 67.9% Landmark 
P. kermesina C 71.0% 43.6% 70.9% Landmark 
P. mollissima C 53.6% 35.5% 67.7% Both 

P. setacea C 81.9% 64.4% 77.8% Landmark 
P. suberosa C 52.3% 63.4% 66.9% Both 
P. tenuifila C 68.8% 65.1% 79.4% Both 

P. amethystina D 69.2% 53.8% 66.7% Landmark 
P. foetida D 88.6% 71.2% 90.1% Both 
P. gracilis D 67.6% 88.9% 86.1% EFD 

P. morifolia D 92.6% 77.8% 81.5% Landmark 
P. actinia E 81.1% 44.1% 86.0% Both 

P. miersii E 59.4% 77.5% 79.8% Both 
P. sidifolia E 68.1% 69.7% 77.1% Both 
P. triloba E 34.1% 70.3% 59.5% EFD 
P. alata F 58.5% 73.3% 80.0% Both 
P. edulis F 72.7% 15.9% 75.0% Both 

P. ligularis F 84.0% 62.9% 85.7% Both 
P. nitida F 60.0% 27.5% 67.5% Both 

P. racemosa F 40.6% 60.6% 55.1% EFD 
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P. villosa F 82.8% 59.6% 84.2% Both 

P. coccinea G 46.2% 51.1% 56.5% Both 
P. cristalina G 75.0% 65.4% 79.8% Both 
P. galbana G 17.4% 65.1% 33.9% EFD 

P. 
malacophylla G 70.1% 67.4% 83.7% Both 
P. maliformis G 36.0% 36.0% 60.0% Both 

P. miniata G 71.0% 22.0% 72.5% Both 
P. mucronata G 88.6% 41.4% 90.8% Both 

 
For each species its class and percent correct prediction using the indicated 
morphometric features (landmarks, EFDs, or both) with linear discriminants is 
provided. “Max” indicates the set of morphometric features providing the maximum 
discrimination of species identity. 
 
Table 2: Predictive power of different morphometric methods to discriminate 
heteroblastic node.  
 
Heteroblasty Landmark EFD Both Max 

1 49.1% 33.2% 47.9% Landmark 
2 22.9% 19.5% 27.0% Both 
3 12.3% 16.7% 15.3% EFD 
4 13.3% 8.2% 12.7% Landmark 

5 6.2% 12.2% 9.0% EFD 
6 7.0% 9.0% 9.9% Both 
7 15.9% 10.2% 10.7% Landmark 
8 5.9% 13.6% 14.2% Both 
9 10.9% 7.8% 12.0% Both 

10 12.8% 11.1% 11.6% Landmark 
 
 
For each heteroblastic node its percent correct prediction using the indicated 
morphometric features (landmarks, EFDs, or both) with linear discriminants is 
provided. “Max” indicates the set of morphometric features providing the maximum 
discrimination of heteroblastic node identity. 
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Abstract 

 

BACKGROUND: Leaf shape among Passiflora species is spectacularly diverse. 

Underlying this diversity in leaf shape are profound changes in the patterning of the 

primary vasculature and laminar outgrowth. Each of these aspects of leaf 

morphology—vasculature and blade—provides different insights into leaf 

patterning. 

 

RESULTS: Here, we morphometrically analyze >3,300 leaves from 40 different 

Passiflora species collected sequentially across the vine. Each leaf is measured in 

two different ways: using 1) 15 homologous Procrustes-adjusted landmarks of the 

vasculature, sinuses, and lobes and 2) Elliptical Fourier Descriptors (EFDs), which 

quantify the outline of the leaf. The ability of landmarks, EFDs, and both datasets 

together are compared to determine their relative ability to predict species and 

node position within the vine. Pairwise correlation of x and y landmark coordinates 

and EFD harmonic coefficients reveals close associations between traits and insights 

into the relationship between vasculature and blade patterning. 

 

CONCLUSIONS: Landmarks, more reflective of the vasculature, and EFDs, more 

reflective of the blade contour, describe both similar and distinct features of leaf 

morphology. Landmarks and EFDs vary in ability to predict species identity and 

node position in the vine and exhibit a correlational structure (both within 

landmark or EFD traits and between the two data types) revealing constraints 

between vascular and blade patterning underlying natural variation in leaf 

morphology among Passiflora species. 

 

This manuscript is the first of two companion pieces, the second describing 

divergent heteroblastic trajectories underlying the disparate leaf shapes among 

Passiflora species.  

 

Keywords 
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Passiflora, morphometrics, leaves, leaf shape, leaf morphology, heteroblasty, 

Procrustes analysis, landmarks, Elliptical Fourier Descriptors 

 

Background 

 

The leaves of Passiflora species are remarkably diverse [1-3]. The underlying source 

of such diversity is ultimately speculative, but diversifying selective pressure from 

egg-laying Heliconius butterflies that use leaf shape as a visual cue has been 

proposed [4-6, 5]. The leaves not only vary between species, but between successive 

nodes of a single vine, sometimes dramatically, reflecting both the heteroblastic 

development of the shoot apical meristem from which they are derived and the 

ontogeny of individual leaves as they allometrically expand [67-10]. Previous 

morphometric work using the multiscale Minkowski fractal dimension focused on 

vein patterning and the contour of the blade to predictively identify Passiflora 

species. Of the 10 species analyzed, some possessed similar leaf morphologies that 

could be correctly classified using only a small number of leaves per species as a 

training set [117]. 

 

To some degree, the patterning of the vein and blade follow each other, but to what 

degree they vary independently, or one is the consequence of the other, remains to 

be determined [8-1112-15]. At a morphometric level, vascular patterning and the 

contour of the blade are studied separately, as one is a topology and the other a 

contour. Vasculature and blade can be separated and then analyzed with the same 

method, and was done using a Fractal-based approach in Passiflora previously 

[711].  

 

Alternatively, traditional morphometric approaches can be applied to vascular 

patterning and the outline of the blade [162]. Procrustes-adjusted landmarks are 

coordinate points that correspond between all measured samples, ideally through 

homology [173]. Homologous landmarks are ideally suited for measuring vein 
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thickness, vascular branch points, and the relative positioning and depth of sinuses 

and lobes if these features can be found in every sample, as in many palmately-lobed 

species, such as Cucurbita, Acer, and Vitis. [14-2210, 18-25].  

 

The landmark concept can be applied to contours as well, placing numerous points 

along a curve and subsequently using a Procrustes superimposition to create a near-

continuous analysis of outlines [2623]. The pseudo-landmark approach to 

quantifying contours has been used extensively to study leaf outlines, especially in 

species like Antirrhinum and Arabidopsis, where homologous points are lacking [24-

2627-29]. Another approach, Elliptical Fourier Descriptors (EFDs), treats an outline 

as a wave connecting back onto itself and subsequently performs a Fourier 

transform, decomposing the shape into a harmonic series [27-3030-33]. EFDs have 

been applied to species from both Solanum and Vitis [19, 31-3323, 34-38] as well as 

the study of leaf asymmetry [22, 34, 3525, 39, 40], leveraging the ability to separate 

symmetric from asymmetric sources of variance. 

 

Comparing landmark- and contour-based methods not only provides an integrated 

perspective on leaf morphology, but also cancan also potentially reveal the extent 

that patterning of the vasculature and blade are correlated in a quantitative fashion. 

Understanding the complementary features different morphometric methods detect 

is relevant to a wide variety of fields that use different approaches to extract 

information content from leaf shapes, including paleobiology and paleoclimate 

studies [41], ecology [42], evolution [10, 24, 27, 34, 43], genetics [21, 23, 29, 35, 36, 

38], developmental biology [10, 18, 20, 24, 25, 34, 36, 39, 40], and plasticity [19, 20, 

24, 37]. Heliconius butterflies, too, can even distinguish the shapes of leaves from 

different Passiflora species, presumably using a learning method yet to be 

determined [6]. 

 

 Here, we measure landmarks of the vasculature, sinuses, and lobes and EFDs of the 

blade for >3,300 leaves from 40 Passiflora species sampled from successive nodes 

across vines. Linear Discriminant Analyses (LDAs) are used to determine the 
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capacity of landmarks, EFDs, or both datasets to predict species identity versus node 

position in the vine. A correlational analysis of landmark and EFD data determines 

which specific features of leaves change together versus vary independently from 

each other. Our data reveals the constraints between vascular and blade patterning 

underlying natural variation in leaf morphology among Passiflora species and 

provides a critical comparison of complementary morphometric approaches used 

on the same leaves. 

 

Data Description 

 

The purpose of this manuscript is to compare and contrast landmark and Elliptical 

Fourier Descriptor (EFD) methods in the genetic and developmental analysis of leaf 

shape among Passiflora species across the sequential nodes of their vines. The 

dataset released with this manuscript [4436] consists of 555 scans, as well as 

isolated binary outlines of individual leaves,  of leaves from 40 different species of 

Passiflora in which the order of leaves arising from the vine is recorded,  (starting 

with “1” for the youngest leaf scanned from the growing tip of each vine). We 

importantly note: the numbering of nodes in the raw scans described above, starting 

at the tip of the shoot, is opposite from the numbering of nodes presented in the 

manuscript, in which numbering (starting with “1”) begins with the oldest leaf at the 

base of the shoot. The reason for this opposite numbering in the manuscript is that 

by beginning the counting of nodes with “1” at the shoot base the numbering aligns 

with the heteroblastic series (which begins with the first emerged leaf at the shoot 

base). >3,300 leaves are represented in this dataset. The number of vines sampled 

per a species and the number of nodes sampled for each vine are indicated in the 

raw data provided with this manuscript [45] and are visually depicted as well (Fig. 

S1). Both landmark data, measuring the vasculature, lobes, and sinuses, and 

Elliptical Fourier Descriptor (EFD) data, which quantify the leaf outline, can be 

derived from the providedis datasets. EFDs (under 

PassifloraLeaves/Paper1/Figure1/0.passiflora_nef.txt) and landmarks (under 

PassifloraLeaves/Paper1/Figure2/0.procrustes_landmarks.txt) Isolated outlines of 
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leaves used to calculate EFD data are also released with this dataset. Code used in 

the statistical analysis of data is also provided are provided with code in a GitHub 

repository [4537]. It is hoped that the release of this data will assist others in 

developing novel morphometric approaches to better understand the genetic, 

developmental, and environmental basis of leaf shape. This dataset is also used in 

the companion piece to this manuscript [38]. 

 

Analyses 

 

Vascular landmarks and Elliptical Fourier Descriptors (EFDs) of the blade 

 

For the >3,300 leaves measured across the leaf series for 40 different Passiflora 

species, a comparison of homologous landmarks and Elliptical Fourier Descriptors 

(EFDs) was made (see Fig. S1 and raw data [45] for the replication associated with 

each species and the number of nodes for each vine). These two methods globally 

capture complementary aspects of leaf shape, sensitive to vascular patterning and 

the shape of the blade, respectively. 

 

15 landmarks were measured for each leaf (Fig. 1A). For the proximal veins (near 

the leaf base) landmarks on each side of the junction of the proximal vein with the 

petiolar junction (where the major veins meet) were placed (landmarks 1-2 and 5-

6), capturing the width of the proximal veins. Landmarks placed at the tip of the 

proximal vein (landmarks 7 and 15) capture the length and angle of the proximal 

lobe. On the distal vein (nearer the leaf tip), landmarks were placed only on the 

distal side of the junction with the midvein (landmarks 3 and 4) as the other side of 

the base of the distal vein variably intersects the midvein, petiolar junction, and 

proximal vein (see three examples in Fig. 1A, left to right). The landmarks at the tip 

of the distal veins (landmarks 13 and 9) measure the length and angle of the distal 

lobe. Additionally, landmarks describe the placement of the leaf tip (landmark 11), 

distal sinuses (landmarks 10 and 12), and the proximal sinuses (8 and 14). 
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To determine the extent that landmarks capture qualitative variation in leaf shape 

among Passiflora species, representative leaves were compared to averaged 

Procrustes-adjusted landmark values (Fig. 2). The landmark analysis captures 

features such as the relative lengths and angular placement of the proximal and 

distal veins as well as the depth of the sinuses. Visualizing superimposed landmarks 

for all leaves measured in addition to the averaged landmark values demonstrates 

substantial sources of shape variance in some species, especially due to changes in 

leaf shape across the leaf series, that usually relate to the depth of the sinuses or the 

number of lobes.  

 

Although landmarks accurately depict information related to vascular patterning 

and the relative placement of the lobes and sinuses of the blade, they fail to capture 

more subtle shape variation related to the curvature of the lamina. Elliptical Fourier 

Descriptors (EFDs) result from a harmonic decomposition of a shape outline. The 

harmonic contributions to leaf shape can be visualized (Fig. 1B), which in Passiflora 

correspond to features reflecting the leaf tip, distal lobes, and proximal lobes (the 

“trifoliate” features, especially in the lower harmonic ranks) or more local features 

(the “serrations” represented in the higher harmonic ranks) (Fig. 1B). The averaged 

outlines of leaves capture the curves and lobing of leaves from each species (Fig. 3). 

Species that display leaves with variable numbers of lobes (such as Passiflora 

caerulea, P. cincinnata, or P. suberosa) have average leaf outlines reflecting this 

source of shape variance.  

 

The morphospace reflects species and heteroblastic differences in leaf shape 

 

To analyze major sources of shape variance in Procrustes-adjusted landmark values 

and the harmonic series from the Elliptical Fourier Descriptor (EFD) analysis, a 

Principal Component Analysis (PCA) was performed to reduce the dimensionality of 

each dataset. Onto the resulting morphospaces were projected species identity and 

the node position in the leaf series (“heteroblasttsy”). Node position is referred to as 

“heteroblasty” as a shorthand indicating that numbering of nodes begins at the 
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shoot base, with “1” indicating the first emerged leaf at the shoot base. This 

numbering scheme more closely aligns with the heteroblastic series of leaves 

compared to the reverse numbering that begins at the growing shoot tip and is more 

sensitive to the allometric changes in rapidly expanding leaves. 

 

Eigenleaves (theoretical leaf shapes representing the eigenvectors from a Principal 

Component Analysis) from each PCA reveal the shape features contributing to shape 

variance along each Principal Component (PC). The first four landmark PCs (Fig. 

4A) explain 83.2% of shape variance for the landmark dataset. PC1 reflects shape 

variance related to long, lance-like leaves versus wider leaves with short midveins 

and long, extended distal lobes. Both PC2 and PC3 explain shape variance related to 

leaves with pronounced distal lobes versus more rounder (PC2) or deltoid (PC3) 

leaves with less lobing. PC4 also explains shape variance related to lobing. A 

comparison of the landmark eigenleaves (Fig. 4A) with the EFD eigenleaves (Fig. 

4B) shows that the shape variance explained by each respective PC is strikingly 

similar, especially with respect to lobing and the length-to-width ratio of leaves. 

This demonstrates a qualitative correspondence between the orthogonal axes of 

each dataset, including their directionality, which will be subsequently explored in 

further detail. 

 

Projecting species identity and heteroblastic node onto the landmark and EFD 

morphospaces reveals that each method separates the shape variance attributable 

to these variables, but in different ways (Fig.  5). Because visualizing 40 distinct 

species is a challenge, species were assigned to 7 different classes (consistently 

colored throughout the manuscript) based on a) occupying similar spaces within 

morphospace and b) qualitative differences in leaf shape (Fig. 5A). Species classes 

show pronounced separation from each other by PC1 and PC2 in both the landmark 

(Fig. 5B) and EFD (Fig. 5C) morphospaces. Less separation is observed by species 

class for PC3 and PC4. When heteroblastic node is projected onto the morphospaces, 

there is a trend for the leaves originating from high heteroblastic nodes (young 

leaves towards the growing tip) to occupy the lower PC2 values within each species 
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class. This is especially true for the landmark morphospace (Fig. 5B). There is also a 

trend for leaves originating from high heteroblastic nodes to have low PC3 values, 

regardless of species class. Both low PC2 and PC3 values correspond to more 

pronounced distal lobing (Fig. 4), a shape feature commonly found in young leaves 

near the growing tip of the plant, compared to older leaves near the base of the vine 

that tend to have less lobing. That shape variance attributable to species class and 

heteroblastic node traverse the morphospace in different ways suggests to some 

extent the shape variance for each of these factors is separable, as is discussed in the 

next section. 

 

Discriminating species vs. heteroblastic node identity 

 

That species class and heteroblastic node identity traverse the morphospace 

differently (Fig, 5A-B) is consistent with previous work demonstrating that shape 

features can be used to discriminate species independently from node position in 

grapevine [20, 2110, 24]. A Linear Discriminant Analysis (LDA) is used here to 

determine the extent these two variables can be predicted independently of the 

other in Passiflora using landmark data, Elliptical Fourier Descriptors (EFDs), and 

both landmark and EFDs together. We stress that the LDA approach taken in this 

work is fundamentally different from modeling species, node, and interaction effects 

using linear modeling. Such an approach (which we undertook but the data is not 

shown here, because it is outside the scope of this manuscript) reveals that for each 

morphometric trait considered independently, the species and interaction effects 

are the strongest and the node effect is weak. Rather, an LDA allows explicit 

questions to be asked regarding all the measured traits together. Can all the traits be 

used together to discriminate species regardless of node? Using all traits can node 

be distinguished separately from species? Such a framework is consistent with 

developmental genetic theory that differences in leaf shape between species versus 

more conserved heteroblastic changes in leaf shape within individual plants are 

regulated by distinct genetic pathways [16] that lead to separable morphological 

effects within single leaves (so called “cryptotypes” [46]). We also note that the 
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LDAs performed use the “leave one out” approach of cross-validation, in which a 

separate LDA for each leaf, minus the leaf in question, is used to predict the identity 

of that leaf. Such an approach is designed to compensate for differences in species 

replication and nodes sampled per a vine in our dataset (see raw data [45] and Fig. 

S1). 

 

An LDA is first performed on species identity, regardless of node position. The 

resulting discriminants are then used to predict the identity of the species. 

Regardless of whether landmarks (Fig. 6A), EFDs (Fig. 6C), or both landmarks and 

EFDs are used (Fig. 6E) a high proportion of leaves can be correctly reassigned to 

the correct species. When there is confusion between species, it tends to be within 

the same species class. This result demonstrates that regardless of the position of a 

leaf within the heteroblastic series, its species identity can be predicted. For most 

species classes (all except C and D) the maximum correct prediction is most often 

achieved with both landmark and EFD data together compared to each data type 

alone (Table 1). For species classes C and D, however, landmark data alone tends to 

outperform EFD and both data types together. This indicates that for some species, 

especially those that are highly lobed as in species classes C and D, landmark data is 

a better indicator of species identity (perhaps because it is more explicitly related to 

lobing). 

 

Conversely, heteroblastic node position can be predicted independently of species 

identity, but to a much lesser degree and not equally across the leaf series. The 

leaves occupying lower node positions (older leaves at the base of the vine) tend to 

be successfully predicted at a higher rate than the younger leaves of the tip, 

regardless of whether landmarks (Fig. 6B), EFDs (Fig. 6D), or both landmarks and 

EFDS are used (Fig. 6F). EFDs, however, overall under-perform landmarks or 

landmarks and EFDs used together (Table 2). This indicates that landmarks are a 

superior discriminant of node position compared to EFDs. Previous work in 

grapevine indicates that vein thickness is altered by shoot position [10, 2420]. That 

landmarks measure vein thickness, but not EFDs, may explain the differing abilities 
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of these two shape features to correctly discriminate leaves by heteroblastic node 

position. That the juvenile leaves at the lower heteroblastic node positions are 

correctly predicted at higher rates suggests that these leaves are more similar 

across species (or correspondingly, that leaves at high heteroblastic node positions 

are more divergent between species)., a hypothesis that we explore more fully in the 

companion manuscript [38].  

 

Correlational matrix between landmarks and Elliptical Fourier Descirptors (EFDs) 

 

Until now, landmarks and Elliptical Fourier Descriptors (EFDs) have either been 

considered separately or in conjunction together but not compared against each 

other. The landmarks used in this study tend to represent vascular features of the 

leaf, the lobes, and the sinuses. The EFDs represent the blade and the continuous 

contour and curves of lamina. Further, landmark data is represented as (x, y) 

coordinates, whereas EFD data is a Fourier-based harmonic series. A correlational 

matrix is used to find strong associations between the components of each dataset 

and to interpret the features each dataset uniquely quantifies against the other. 

 

The input for the correlation matrix, using Spearman’s rho, is each of the fifteen x 

and y coordinates of the landmark dataset and each of the four harmonic 

coefficients (A, B, C, D) of the first 20 harmonic ranks from the EFD data, correlated 

across the >3,300 leaves for all species and heteroblastic node positions used in this 

study. This correlation matrix was used as a distance matrix to hierarchically cluster 

these traits and the rho and p values subsequently visualized (Fig. 7). 

 

A large set of uncorrelated traits, consisting of the B and C harmonic coefficients and 

the x11 landmark, end up clustered together (Fig. 7). The B and C harmonic 

coefficients represent asymmetric sources of shape variance [3128] and the x11 

landmark represents the left-right variance of the leaf tip (Fig. 1A), which will 

mostly be affected by leaf asymmetry. That these shape features are weakly 

correlated with each other and other traits only implies that they are regulated by 
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an unaccounted source of variance for this particular analysis. In the future, a more 

in-depth analysis will likely reveal phyllotaxy as modulating leaf asymmetry [34, 

3539, 40], specifically alternating asymmetry at consecutive nodes, as recently 

shown in other vines, such as ivy and grapevine [252]. 

 

The remaining landmarks and the A and D coefficients of the harmonic series 

(representing symmetrical shape variation) show various correlational associations 

with each other (Figs. 7-8). Harmonic contributions to leaf shape (Fig. 1B) are more 

abstract and difficult to interpret than the contributions of landmarks to leaf shape, 

as the landmarks represent homologous points found in every leaf (Fig. 1A). Strong 

correlations between harmonic coefficients with landmarks can help interpret the 

context of the harmonic coefficient to leaf shape. Most the harmonic coefficients 

cluster exclusively together except for landmarks y9 and y13, which represent the 

proximal-distal displacement of the distal lobes along the leaf length (Fig. 8). This 

suggests that large amounts of the shape variance associated with the contour of the 

blade are influenced by the relative placement of the distal lobes along the leaf 

length. The remaining harmonic coefficients that cluster outside most the other 

coefficients also associate with features of the distal part of the leaf. A1, A3, D2, and 

D6 associate with the x and y coordinates of the distal sinus (x10, x12, y10, and y12) 

and D1 and D3 associate with the left-right displacement of the distal lobe (x9 and 

x13) and the vertical displacement of the leaf tip (y11) (Fig. 8). Although difficult to 

interpret, the correlations of harmonic coefficients suggest that the overall leaf 

contour is influenced by the placement of the distal lobe and sinus. 

 

The remaining correlations between landmarks reveal interesting constraints 

governing the shape of Passiflora leaves (Fig. 8). As mentioned previously, the left-

right displacement of the distal lobes (x9 and x13) strongly correlates with the 

vertical proximal-distal displacement of the leaf tip (y11). The x and y coordinates of 

the distal lobes (landmarks 10 and 12) are the only features for which the x and y 

displacement are correlated, suggesting that the distal sinus varies in a diagonal 

direction. The proximal sinus and lobe (landmarks 7, 8, 14, and 15) and the 
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landmarks at the base of the veins of the petiolar junction (landmarks 1, 2, 3, 4, 5, 

and 6) form additional groups of associated landmarks, although interestingly the x 

and y displacement of each of these two groups is distinct in each case (Fig. 8) 

 

Discussion 

 

Leaf morphology refers to the totality of leaf architecture, at the cellular, tissue, and 

organ levels, and distinct attributes of the leaf, both the vasculature and lamina. The 

topology of the vasculature and contour of the leaf blade are distinct geometric 

phenomena that require different morphometric approaches to quantify. 

Landmarks and Elliptical Fourier Descriptors (EFDs) are ideal methods to analyze 

the distinct features of leaves contributing to their shape (Fig. 1), but rarely are they 

measured and compared on the same leaves. Our analysis of disparate leaf shapes 

among Passiflora species with landmarks (Fig. 2) and EFDs (Fig. 3) reveals that 

both methods capture similar orthogonal axes of shape variation (Fig. 4), and 

separate both species and heteroblastic node identity, but in distinct ways (Fig. 5). 

Landmarks are superior to EFDs in predicting node position compared to species 

identity, most likely because they describe vascular patterning, which is relatively 

sensitive to heteroblastyic compared to species differences in leaf shape (Fig. 6; 

Tables 1-2). Although most elements of the EFD harmonic series cluster together in 

a pairwise correlational analysis, a few are closely associated with landmarks (Fig. 

7). Landmarks exhibit a correlational structure revealing developmental constraints 

in how leaves vary across Passiflora species and the heteroblastic series (Fig. 8). 

Together, our data quantify the relationship between blade and vasculature, 

revealing that one does not drive the patterning of the other, and although each 

distinctly varies, many shape features of the leaf change in concert across evolution 

and development. 

 

Methods 

 

Plant materials and growth conditions 
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Passiflora germplasm was kindly provided by R. Silva (Viveiros Flora Brasil, 

Araguari, MG, Brazil), Dr. F.G. Faleiro (EMBRAPA Cerrados, Planaltina, DF, Brazil), 

Prof. M.M. Souza (Universidade Estadual de Santa Cruz - UESC, Ilhéus, BA, Brazil), M. 

Peixoto (Mogi das Cruzes, SP, Brazil), Prof. M.L. Silva (Universidade do Estado de 

Mato Grosso, Tangará da Serra, MT, Brazil), and Prof. C.H. Bruckner (Universidade 

Federal de Viçosa, Viçosa, MG, Brazil). 

 

The plants were germinated from seed, planted between late October 2015 and 

early March 2016, in Viçosa, at the Federal University of Viçosa, MG, Brazil. The 

populations were raised and maintained under polycarbonate-covered greenhouse 

conditions, equipped with automatic environmental control using exhaust fans and 

evaporative cooling panels (with expanded clay wettable pads). Seeds for each 

Passiflora species were sown in 128 cell propagation plastic trays (GPlan Comércio 

de Produtos Agrícola s EIRELI – ME, São Paulo, SP, Brazil) filled with horticultural 

organic Tropstrato HT Hortaliças substrate (Vida Verde Indústria e Comércio de 

Insumos Orgânicos Ltda, Mogi Mirim, SP, Brazil). After germination (30-40 days), 

plantlets were individually transplanted to 5 L capacity plastic pots (EME-A-EME  

Ind. Com. Ltda., Petrópolis, RJ, Brazil) filled with horticultural substrate. Each pot 

received 5 g of Osmocote® Plus NPK 15-09-12 3-4 month controlled release 

fertilizer (Scotts, USA). Plants were irrigated on a daily-basis with tap water, and no 

phytosanitary control was applied. The germination and growth rates of plants 

varied widely. The number of replicates for each species and the number of nodes 

per vine are indicated in the raw data [45] and depicted visually (Fig. S1). 

 

For scanning, a multifunction printer (Canon PIXMA MX340 Wireless Office All-in-

One Printer, model 4204B019, USA) was used. A 20 cm metallic ruler was 

positioned at the bottom of each scanned sheet as a size marker. Leaves were 

carefully detached, from the base to the tip of the shoot, and affixed to an A4 paper 

sheet, adaxial face down, using 12 mm-double sided tape (Scotch Model 9400, 3M 

do Brasil, SP, Brazil). The numbers written near each leaf indicate position in the 
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shoot, in a tip-to-base direction, starting with the youngest leaf at the tip of the 

shoot. It should be noted that the numbering in the scans is opposite from the 

numbering used in the analysis and figures for this manuscript, in which leaves are 

numbered with “1” starting at the shoot base. This numbering system more closely 

aligns with the heteroblastic series than the reverse numbering scheme originally 

used in the scans. 

 

Morphometric and statistical analyses 

 

All morphometric data and code used for statistical analysis is available on GitHub 

[4537]. All original data is available at GigaDB [4436]. 

 

Landmarks, as described in the text, were placed on leaves in ImageJ [4739]. 

Procrustes superimposition was performed using the shapes package [480] in R 

[491] with the procGPA function using reflect=TRUE. Resulting Procrustes-adjusted 

coordinates and principal component scores (PCs) were written out for subsequent 

analyses and eigenleaf representations visualized using the shapepca function. 

 

To isolate outlines for Elliptical Fourier Descriptor (EFD) analysis, the “Make 

Binary” function in ImageJ [4739] was found to be sufficient to segment leaves. The 

wand tool was used to select individual binary leaf outlines, which were pasted into 

a new canvas, which was subsequently saved as an individual image, which was 

named by vine and node position from which the leaf was derived. The binary 

images were batch converted into RGB .bmp files and read into SHAPE, which was 

used to perform chain-code analysis [28, 2931, 32]. The resulting chain-code .chc 

file was then used to calculate normalized EFDs. The resulting normalized EFD .nef 

file was then read into Momocs (version 0.2-6) [330] in R. The harmonic 

contributions to shape were visualized using the hcontrib function. Averaged leaf 

outlines were calculated using the meanShapes function and Principal Component 

Analysis (PCA) performed using the pca function and eigenleaves visualized using 

the PC.contrib function. 
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Unless otherwise noted, all visualization was performed using ggplot2 in R [5042]. 

Linear Discriminant Analysis (LDA) was performed using the lda function and 

subsequent prediction of species identity or heteroblastic node position performed 

using the predict function with MASS [5143]. When LDAs were used for prediction, 

the parameter CV was set to “TRUE”, for the “leave one out” cross-validation 

approach, to help make analyses more robust to differences in replication and node 

numbers between species and vines. Hierarchical clustering was performed using 

the hclust function. 

 

Availability and requirements 

 

Project name: PassifloraLeaves 

Project home page: https://github.com/DanChitwood/PassifloraLeaves 

Operating system(s): Platform independent 

Programming language: R 

Other requirements: Not applicable 

License: MIT license 

Any restriction to use by non-academics: none 

 

Availability of supporting data and materials 

 

The data sets supporting the results of this article are available in the GigaDB 

repository [4436]. 
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Figure 1: Landmarks and harmonic contributions to shape. A) The 15 

landmarks used for analysis. Left to right, landmark placement when the distal and 

proximal veins l) pinnately emerge from the midvein, m) both originate from the 

petiolar junction, or r) the proximal vein branches from the distal. B) Harmonic 

contributions to shape resulting from Elliptical Fourier Descriptor (EFD) analysis. 

The harmonic rank is arranged horizontally and the amplification factor (which 

multiplies the harmonic contributions to shape by the indicated amount) vertically. 

Note: for convenience to the reader, these panels are recapitulated in the companion 

manuscript [52]. 

 

Figure 2: The shapes of Passiflora leaves measured using landmarks. For the 

40 species analyzed in this study, both a representative leaf and landmark data are 

shown. For the landmark data, the mean leaf for the species in shown in black, 

whereas all data for the species is depicted in semi-transparent blue. 

 

Figure 3: The shapes of Passiflora leaves measured using Elliptical Fourier 

Descriptors (EFDs). Mean leaves calculated for each of 40 species analyzed in this 

study from the harmonic series resulting from an Elliptical Fourier Descriptor (EFD) 

analysis of the leaf contours. A-G) Classes of species are indicated by their 

respective panels. Species classes were determined by neighboring position in the 

Principal Component Analysis (PCA) morphospace, described in Figs. 4-5. Color 

indicates class: class A, teal; class B, orange; class C, lavender; class D, magenta; class 

E, green; class F, yellow; class G, brown. 

 

Figure 4: Principal Components (PCs) and eigenleaves. A) Principal components 

(PCs) representing shape variance in landmark data. Eigenleaf representations 

(theoretical leaf shapes representing the eigenvectors from a Principal Component 

Analysis) at +/- 1.5 standard deviations (s.d.) are shown for the first four PCs. 

Percent variance explained by each PC indicated. B) PCs representing shape 

variance in Elliptical Fourier Descriptor (EFD) data. Eigenleaf representations at +/- 
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1 s.d. are shown for the first four PCs. Percent variance explained by each PC 

indicated. 

 

Figure 5: Morphospace by species and heteroblastic node. A) Key, showing 

species classes and averaged leaf contours for each species. Color indicates class, 

which is used in other panels. B) Principal Component Analysis (PCA) of landmark 

data. Graphs for PC2 vs. PC1 and PC4 vs. PC3 are colored by species class and by 

heteroblastic node. Percent variance explained by each PC indicated. C) PCA of 

Elliptical Fourier Descriptor (EFD) data. Graphs for PC2 vs. PC1 and PC4 vs. PC3 are 

colored by species class and by heteroblastic node. Percent variance explained by 

each PC indicated. Heteroblastic node position is numbered “1” starting from the 

shoot base. Class color scheme: class A, teal; class B, orange; class C, lavender; class 

D, magenta; class E, green; class F, yellow; class G, brown. Heteroblastic node color 

scheme: shoot base, black; middle shoot, blue; shoot tip, yellow. 

 

Figure 6: Linear Discriminant Analysis (LDA). Linear Discriminant Analysis 

(LDA) using A-B) landmark data, C-D) Elliptical Fourier Descriptor (EFD) data, and 

E-F) both datasets. For each set of LDAs, analysis was performed to discriminate 

species (ignoring heteroblastic node information) or to discriminate heteroblastic 

node (ignoring species information). Subsequent prediction of species or 

heteroblastic node identity is then visualized using confusion matrices, where actual 

identity is oriented vertically, predicted identity horizontally, and the proportion 

assigned indicated as fill. Species LDAs are broken up by species class. For 

heteroblastic node LDAs, Spearman’s rho and associated p values calculated from 

correlating actual and predicted node identities are provided. Predictions carried 

out using LDA use the “leave one out” approach cross-validation approach.  

Heteroblastic node position is numbered “1” starting from the shoot base. Color 

scheme: low assigned proportion, white; high assigned proportion, black. 

 

Figure 7: Correlational matrix of landmark and Elliptical Fourier Descriptor 

(EFD) traits. Spearman’s correlation matrix for morphometric features analyzed in 
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this study. Upper half indicates –log10 p value and lower half Spearman’s rho 

between indicated traits. Morphometric traits, both landmark and the harmonic 

series, are indicated along the sides, arranged using hierarchical clustering, the 

topology of which is depicted as a dendrogram. Key groupings of landmarks 

indicating correlational associations with each other or EFD harmonics are 

indicated. Spearman’s rho: low values, green; middle values, white; high values, 

magenta. -log10 p values: low values, purple; high values, yellow; p < 0.05, no color.  

 

Figure 8: Correlational relationships between vascular landmarks and leaf 

contours. Correlational relationships between x and y components of landmarks 

and Elliptical Fourier Descriptor (EFD) harmonics are indicated by dendrogram 

(left) and landmarks qualitatively on a representation of a leaf (right). x and y 

landmark components are independently depicted by arrows and colored as 

indicated to show major correlational sources of shape variance within Passiflora 

leaves. 

 

Supplemental Information 

 

Figure S1: Species replication and number of nodes sampled. A) Dotplot 

showing the number of vines sampled for each species. B) Boxplot showing the 

number of nodes sampled for vines from each species. The largest red line is the 

median nodes sampled (14 nodes), the medium sized redlines the 25th and 75th 

quantiles (12 and 16 nodes, respectively), and the thin red lines the minimum and 

maximum (7 and 28 nodes, respectively). 

 
Table 1: Predictive power of different morphometric methods to discriminate 
Passiflora species.  
 

Species Class Landmark EFD Both Max 

P. coriacea A 83.2% 81.7% 88.1% Both 
P. misera A 77.0% 71.6% 76.9% Landmark 

P. biflora B 84.1% 75.4% 92.1% Both 

P. capsularis B 77.2% 72.0% 77.3% Both 
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P. micropetala B 69.1% 81.8% 92.4% Both 

P. organensis B 89.4% 70.7% 96.6% Both 

P. pohlii B 54.5% 77.8% 77.8% EFD 

P. rubra B 60.3% 59.7% 71.6% Both 
P. tricuspis B 49.0% 67.8% 69.2% Both 

P. caerulea C 0.0% 15.1% 9.4% EFD 
P. cincinnata C 71.4% 59.3% 59.3% Landmark 

P. edmundoi C 72.8% 78.8% 83.8% Both 

P. gibertii C 84.0% 72.2% 81.9% Landmark 

P. hatschbachii C 72.0% 65.4% 67.9% Landmark 

P. kermesina C 71.0% 43.6% 70.9% Landmark 

P. mollissima C 53.6% 35.5% 67.7% Both 

P. setacea C 81.9% 64.4% 77.8% Landmark 

P. suberosa C 52.3% 63.4% 66.9% Both 

P. tenuifila C 68.8% 65.1% 79.4% Both 

P. amethystina D 69.2% 53.8% 66.7% Landmark 
P. foetida D 88.6% 71.2% 90.1% Both 

P. gracilis D 67.6% 88.9% 86.1% EFD 
P. morifolia D 92.6% 77.8% 81.5% Landmark 

P. actinia E 81.1% 44.1% 86.0% Both 

P. miersii E 59.4% 77.5% 79.8% Both 

P. sidifolia E 68.1% 69.7% 77.1% Both 

P. triloba E 34.1% 70.3% 59.5% EFD 

P. alata F 58.5% 73.3% 80.0% Both 
P. edulis F 72.7% 15.9% 75.0% Both 

P. ligularis F 84.0% 62.9% 85.7% Both 
P. nitida F 60.0% 27.5% 67.5% Both 

P. racemosa F 40.6% 60.6% 55.1% EFD 

P. villosa F 82.8% 59.6% 84.2% Both 

P. coccinea G 46.2% 51.1% 56.5% Both 
P. cristalina G 75.0% 65.4% 79.8% Both 

P. galbana G 17.4% 65.1% 33.9% EFD 
P. 

malacophylla G 70.1% 67.4% 83.7% Both 

P. maliformis G 36.0% 36.0% 60.0% Both 

P. miniata G 71.0% 22.0% 72.5% Both 

P. mucronata G 88.6% 41.4% 90.8% Both 
 
For each species its class and percent correct prediction using the indicated 
morphometric features (landmarks, EFDs, or both) with linear discriminants is 
provided. “Max” indicates the set of morphometric features providing the maximum 
discrimination of species identity. 
 



 26 

Table 2: Predictive power of different morphometric methods to discriminate 
heteroblastic node.  
 
Heteroblasty Landmark EFD Both Max 

1 49.1% 33.2% 47.9% Landmark 

2 22.9% 19.5% 27.0% Both 

3 12.3% 16.7% 15.3% EFD 
4 13.3% 8.2% 12.7% Landmark 

5 6.2% 12.2% 9.0% EFD 
6 7.0% 9.0% 9.9% Both 

7 15.9% 10.2% 10.7% Landmark 
8 5.9% 13.6% 14.2% Both 

9 10.9% 7.8% 12.0% Both 

10 12.8% 11.1% 11.6% Landmark 
 
 
For each heteroblastic node its percent correct prediction using the indicated 
morphometric features (landmarks, EFDs, or both) with linear discriminants is 
provided. “Max” indicates the set of morphometric features providing the maximum 
discrimination of heteroblastic node identity. 
 


