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Supplementary Information

To accompany Jakobson, Slininger, Tullman-Ercek, and Mangan; A Systems-Level
Model Reveals That 1,2-Propanediol Utilization Microcompartments Enhance Pathway
Flux Through Intermediate Sequestration.

The following describes the equations used in the numerical and analytical code used
to generate the plots and other figures in the text. The codebase will be made available
on GitHub following publication under a GNU General Public License.

Analytical solutions

We can find the following complete analytical solutions in the cytosol as a function of
the concentrations in the MCP:
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Where X = (Rzkc + R TR

We can then use the solution in the cytosol to generate the following boundary
condition at the MCP membrane:
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First, consider the mass balance on Ay/cp :
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And similarly for Pyop:
Re. R,

/ kL (Peyt — Pyop)dA — ReppdV =0 (7)
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We now assume that the concentrations in the MCP are constant since £ >> 1.
First we solve for Py;cp, as this does not depend on Ay;cp due to the irreversibility of
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PduCDE. We simplify the solution by defining the following important timescales,
assuming that k. = k% = kP and k,,, = k% = kP, (Table 2):

2 2
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Ten! = o TP = o Teell” = g (9)
m
R, Kyepr Kuyp
it = A irops = SHCLE, 7,  Barr (10
C
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Letting p = 2495, A=1+ res P =R and p* = T, the solution for p is
therefore as follows:

dif f trans trans
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I'epe = P ( airr t Zairr T 3p+ 3) ()
Teell TMCP
Ap* —Tepe — 14 /(1 = Ap* + Topr)? + 4\p*
e . (12)

Furthermore, if PAduCDE is saturated,
p=Xp" —Tcpr (13)

We can estimate the magnitudes of these various timescales based on the baseline
model parameters (Table 2) and thence analyze the magnitude of the various terms in
Fepe-

dif f -5
TIV;CP _ 10

TCDE - 32103

trans —1
Teol . 4210

diff =~ —4
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trans —1
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diff =~ -5
TMZCP 10

= 3.3321073 (14)

= 1.6210° (15)

= 3z10* (16)

Therefore, for the baseline model parameter values in Table 1,

Tilp (THER ) _ ThES 2
CDE TvioP TCDE
\p* &~ p* =107 (18)

Suggesting that in the vicinity of the baseline parameter values, the solution for P in
the MCP is governed by the relative timescales of the transport of 1,2-PD in and out of
the MCP and the reaction of 1,2-PD to propionaldehyde by PduCDE, as well as by the
external 1,2-PD concentration.

Now we can find Ay;cp similarly, given the solution for Py;cp. Letting a = Amce

Kyupqg?
* _ _Aout _ Vepe
= Fout gnd () =
a Knmpq and 2Vpq "’

dif f trans trans
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If PAuCDE is saturated and A, is negligible, then

CTpo(—1)—1+/(1+Tpq(l —0)%+40Tpq

21

a (21)

And if both PduCDE and PduPQ are saturated and A,,; is negligible, then
CL:FPQ(Q— 1) (22)

We can analyze the relative magnitudes of the timescales in I'pg as above, assuming
the baseline parameter values in Table 1, and we find that

dif f 10—5

Tmcp -5
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Tpo | 3z10-1 v 23)
leff trans ,Ttrans
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re \ Tt e
( ) (25)
=0 (26)

Suggesting that in the vicinity of the baseline parameter values, the solution for A in
the MCP is governed by the relative timescales of the transport of propionaldehyde in
and out of the MCP and the reaction of propionaldehyde by PduP/Q, as well as by the
relative rates of PAduCDE and PduP/Q.

Again, the solutions in the cytosol follow directly from these MCP solutions.

Governing equations for computation
As described in the Models section, the equations describing the concentrations of P
and A in the MCP are as follows:
DV?P(r) — Repe =0 (27)
DV?A(r) + Repe — Rpg =0 (28)

And the concentrations in the cytosol are described by the following;:

kPPMC’P(r:RC)_Pout(jc+kp) (1 D 1 )
P(r)= -2 (s ——a—— |+ P r=R.) (29
") D kX F TR R TPuerlr =R (29)
AMCP(T:RC)_Aout (1 D 1 )
A(r) = -—— |+ A r=~R.) (30
( ) kéDRg + X r kfR% R, MCP( ) ( )
Where X = (R2k +——Rib)
The following boundary conditions hold at the cell and MCP membranes,
respectively:
aP
|r Ry, — JePout + km ( out — Pcytosol(r = Rb)) (31)
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or e T T\ R D+ kX
b
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37|T:RC - _ (2) MCP( - ) t (34)
r R mam X
Non-dimensional equations
We then recast the system in terms of the following non-dimensional variables:
r
= — 35
P= % (35)
A
a = —— 36
o (36)
P
= 37
Kepre 37)
Applying the non-dimensionalization and letting xk = %}fj, we obtain the following
governing equation for A in the MCP:
KpoD 1 0 ( 40a\ _ 2Vpga  Vepep (38)
RZ  p20p p@p  14a 1+p
Now let v = ‘2/‘0/;'2 and £ = Vfgiigg’ yielding:
1 0 ( 50a 9 a D
— = — | =¢&(Via= - — 39
5p28p<p 8p) tVia 11 1+p (39)
Similarly for P in the MCP,
10 2 0p 9 D
— = L) = keVip= 40
Kp?ﬁp(p@)) nEVE 1+p (40)
We can then nondimensionalize the boundary conditions as follows:
da
87p|p:1 = €q T ﬁaa (41)
AOU
€0 = : (42)
-1
Po=——F——— (43)
Re (g + X)
Similarly for P,
Ip
87p|p:1 =€y + Bpp (44)
Pou 'c + kylyjl
& = ot ) (45)
KcpeR. (R% + k‘f;X)
— ki
5}) = - (46)
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These nondimensional equations can then be solved numerically by a finite-difference
approach to find the steady-state concentrations in the MCP, and the solutions in the
cytosol follow directly. We solve the spherical finite-difference equations using the
ODEL15s solver in MATLAB.

Analytical solution

For ease of computation, we cast the analytical solution (assuming constant
concentrations in the MCP) differently than in the Models section.
First, consider the mass balance on Ay/cp :

4 VepePucop 2VpoAmcr
0 =47 R2k}N(Aeyr — A + 7R3 - 47
(Acye MOP) 3 (KCDE‘ + Prvcer  Kpg+ Amcp 47
And similarly for Py;cop:
4 VepePucp
0 = 47 R2kF P.:— P — —pR3_SEE MO 48
s c'Ve ( yt MCP) 371— CKCDE + PMCP ( )

First we solve for Py;cp, as this does not depend on Ay;cp due to the irreversibility

of PduCDE:
1 VepePucp
kP (P, — P — R, GPEZMCP 49
e (Fey = Paccr) 3 "Kcpe + Pucp (49)
SDKCDE Pout(]- + ]i%) p (50)
—p|l=
VCDERZ’(%"‘X) Kepe 1+p
Vepp R (772 +X) Pout (145
Let Y = D K’f};}j and let Z = —— ;};
1 p
v(Z=p)=— 51
yZ-r=1, (51)
Let E=Y —Z+ 1.
—E+VE?2+4Z
p= 5 (52)
Now we can find A;cp similarly, given the solution for Pycp.
3D 2VpoA Ve Py,
BD—(Aout — Apep) = pPQAMCP CDELX'MCP (53)
RC(W+X) Kpg +Amcp  Kcepe + Puce
3DKPQ ( Aout . a) EVCDE P _ a (54)
2VpoR3 (7 + X) KpQ 2 Vpg 1+4p 1+4a
m*Tb
2VpQRY (1o +X)
Let U = 3D+Eg§’ let V = I‘é;“(;, and let W = %VSPDQE,
Ly _agysw Pt -2 (55)
“(V—a _
U 1+p 1+a
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Let F=14+U-V.

1+ 1+ 1+
o= é — - (56)

—(F-UW-)+ \/(F —UW )2+ 4(UW L + V)

Again, the solutions in the cytosol follow directly from these MCP solutions.

Equations for no MCP case

In the case when there is no Pdu MCP, we assume that the same number of enzymes
are now distributed throughout the cell. The equations in the cell are therefore now as
follows:

0= DV?A+ Rcpe — Rpg (57)
0= DV?P — Repr (58)

These can be non-dimensionalized as follows (c.f. with above for MCP case):

10 ( ,0a 9 a D
— — | = = - — 59
5/)28p<p 8p> tVia 114 1+p (59)
Similarly for P,
10 ( ,0p\ A
"0 (p 3p>_l€£vp_1+p (60
Now considering the boundary conditions,
0A
5‘?“:1% = kﬁz(Aout —4) (61)
da
67p|p:1 =€q + Baa (62)
o RbAoutkﬁl
€4 = 7DKPQ (63)
_ —Ryk3
o= —5 (64)
Similarly for P,
Ip
aﬁpb}:l — €p + /Bpp (65)
RbPout . P
€&p = ———(Je + Ky, 66
_ —Rykf,

These equations can once again be solved numerically by the same finite difference
approach described above.
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