
Supplementary Information

To accompany Jakobson, Slininger, Tullman-Ercek, and Mangan; A Systems-Level
Model Reveals That 1,2-Propanediol Utilization Microcompartments Enhance Pathway
Flux Through Intermediate Sequestration.

The following describes the equations used in the numerical and analytical code used
to generate the plots and other figures in the text. The codebase will be made available
on GitHub following publication under a GNU General Public License.

Analytical solutions

We can find the following complete analytical solutions in the cytosol as a function of
the concentrations in the MCP:
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We can then use the solution in the cytosol to generate the following boundary

condition at the MCP membrane:
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First, consider the mass balance on AMCP :
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RCDE −RPQdV = 0 (5)
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And similarly for PMCP :∫ Rc
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We now assume that the concentrations in the MCP are constant since ξ >> 1.
First we solve for PMCP , as this does not depend on AMCP due to the irreversibility of
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PduCDE. We simplify the solution by defining the following important timescales,
assuming that kc = kac = kpc and km = kam = kpm (Table 2):
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R2
b

D
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R2
c

D
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; (9)
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Letting p = PMCP

KMCDE
, λ = 1 + jc

km
, ρ = Rc

Rb
, and p∗ = Pout

KMCDE
, the solution for p is

therefore as follows:
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Furthermore, if PduCDE is saturated,

p = λp∗ − ΓCDE (13)

We can estimate the magnitudes of these various timescales based on the baseline
model parameters (Table 2) and thence analyze the magnitude of the various terms in
ΓCDE .

τdiffMCP

τCDE
≈ 10−5

3x10−3
= 3.33x10−3 (14)
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≈ 4x10−1

2.5x10−4
= 1.6x103 (15)
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≈ 3x10−1
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= 3x104 (16)

Therefore, for the baseline model parameter values in Table 1,
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)
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= O(102) (17)

λp∗ ≈ p∗ = 102 (18)

Suggesting that in the vicinity of the baseline parameter values, the solution for P in
the MCP is governed by the relative timescales of the transport of 1,2-PD in and out of
the MCP and the reaction of 1,2-PD to propionaldehyde by PduCDE, as well as by the
external 1,2-PD concentration.

Now we can find AMCP similarly, given the solution for PMCP . Letting a = AMCP

KMPQ
,

a∗ = Aout
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and Ω = VCDE
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,
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If PduCDE is saturated and Aout is negligible, then

a =
ΓPQ(Ω− 1)− 1±

√
(1 + ΓPQ(1− Ω))2 + 4ΩΓPQ

2
(21)

And if both PduCDE and PduPQ are saturated and Aout is negligible, then

a = ΓPQ(Ω− 1) (22)

We can analyze the relative magnitudes of the timescales in ΓPQ as above, assuming
the baseline parameter values in Table 1, and we find that

τdiffMCP
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= 3.33x10−5 (23)
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τPQ

(
τ transMCP
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τ transMCP
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= O(1) (24)

Ω = O(1) (25)

a∗ = 0 (26)

Suggesting that in the vicinity of the baseline parameter values, the solution for A in
the MCP is governed by the relative timescales of the transport of propionaldehyde in
and out of the MCP and the reaction of propionaldehyde by PduP/Q, as well as by the
relative rates of PduCDE and PduP/Q.

Again, the solutions in the cytosol follow directly from these MCP solutions.

Governing equations for computation

As described in the Models section, the equations describing the concentrations of P
and A in the MCP are as follows:

D∇2P (r)−RCDE = 0 (27)

D∇2A(r) +RCDE −RPQ = 0 (28)

And the concentrations in the cytosol are described by the following:

P (r) =
kPmPMCP (r = Rc)− Pout(jc + kPm)
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Where X =
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)
The following boundary conditions hold at the cell and MCP membranes,

respectively:

D
∂P

∂r
|r=Rb

= jcPout + kPm (Pout − Pcytosol(r = Rb)) (31)
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Non-dimensional equations

We then recast the system in terms of the following non-dimensional variables:

ρ =
r

Rc
(35)

a =
A

KPQ
(36)

p =
P

KCDE
(37)

Applying the non-dimensionalization and letting κ = KCDE

KPQ
, we obtain the following

governing equation for A in the MCP:
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Similarly for P in the MCP,
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We can then nondimensionalize the boundary conditions as follows:
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Similarly for P,

∂p

∂ρ
|ρ=1 = εp + βpp (44)

εp =
Pout

(
jc + kPm

)
KCDERc

(
D
R2

b
+ kPmX

) (45)

βp =
−kPm

Rc

(
D
R2

b
+ kPmX

) (46)

PLOS 4/6



These nondimensional equations can then be solved numerically by a finite-difference
approach to find the steady-state concentrations in the MCP, and the solutions in the
cytosol follow directly. We solve the spherical finite-difference equations using the
ODE15s solver in MATLAB.

Analytical solution

For ease of computation, we cast the analytical solution (assuming constant
concentrations in the MCP) differently than in the Models section.

First, consider the mass balance on AMCP :
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And similarly for PMCP :
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First we solve for PMCP , as this does not depend on AMCP due to the irreversibility
of PduCDE:
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Let E = Y − Z + 1.
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Now we can find AMCP similarly, given the solution for PMCP .

3D

R3
c(

D
kAmR

2
b

+X)
(Aout −AMCP ) =

2VPQAMCP

KPQ +AMCP
− VCDEPMCP

KCDE + PMCP
(53)

3DKPQ

2VPQR3
c(

D
kAmR

2
b

+X)
(
Aout
KPQ

− a) +
1

2

VCDE
VPQ

p

1 + p
=

a

1 + a
(54)
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Let F = 1 + U − V .

a =
−(F − UW p

1+p )±
√

(F − UW p
1+p )2 + 4(UW p

1+p + V )

2
(56)

Again, the solutions in the cytosol follow directly from these MCP solutions.

Equations for no MCP case

In the case when there is no Pdu MCP, we assume that the same number of enzymes
are now distributed throughout the cell. The equations in the cell are therefore now as
follows:

0 = D∇2A+RCDE −RPQ (57)

0 = D∇2P −RCDE (58)

These can be non-dimensionalized as follows (c.f. with above for MCP case):
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Similarly for P,
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Now considering the boundary conditions,
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Similarly for P,
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D
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These equations can once again be solved numerically by the same finite difference
approach described above.

PLOS 6/6


