Multi-targeting therapeutic mechanisms of the Chinese herbal medicine QHD in the treatment of non-alcoholic fatty liver disease

Supplementary Materials

Supplementary Table 1: Pathways enriched with DEGs with elevated expression in NAFLD model compared to control (*P* value < 0.05). see Supplementary_Table_1

Supplementary Table 2: Pathways enriched with DEGs with decreased expression in NAFLD model compared to control (P value < 0.05)^a

Ingenuity Canonical Pathways ^b	<i>P</i> value ^c	Molecules ^d
Adipogenesis pathway	0.0069	HDAC4,FZD3,SMO,FBXW7,RPS6KC1
Factors Promoting Cardiogenesis in Vertebrates	0.0110	FZD3,SMO,NPPA,TCF7L2
Oxidative Ethanol Degradation III	0.0120	ACSS2,ALDH3A1
Ethanol Degradation IV	0.0178	ACSS2,ALDH3A1
Tetrahydrobiopterin Biosynthesis I	0.0275	PTS
1D-myo-inositol Hexakisphosphate Biosynthesis V (from Ins(1,3,4)P3)	0.0275	ITPK1
Tetrahydrobiopterin Biosynthesis II	0.0275	PTS
Basal Cell Carcinoma Signaling	0.0302	FZD3,SMO,TCF7L2
Ovarian Cancer Signaling	0.0347	BRAF,FZD3,SMO,TCF7L2
Role of Wnt/GSK-3βSignaling in the Pathogenesis of Influenza	0.0355	FZD3,SMO,TCF7L2
Acetate Conversion to Acetyl-CoA	0.0372	ACSS2
Ethanol Degradation II	0.0427	ACSS2,ALDH3A1
HIPPO signaling	0.0468	TJP2,AJUBA,PARD3
Epithelial Adherens Junction Signaling	0.0490	MYH2,Actn3,PARD3,TCF7L2

^aPathway analysis was performed with Ingenuity Pathways Analysis (IPA; Ingenuity Systems, Inc., Redwood City, CA, www. ingenuity.com) tool. Canonical pathways with significant p values (p value < 0.05) are listed.

^bEnriched canonical pathways associated with the input gene list.

^c*P* values calculated by Fisher's exact test right-tailed for gene enrichment analysis, It ranges from 0 to 1.

Fisher's exact P Value = 0 represents perfect enrichment. P values smaller than 0.05 are considered strongly enriched in the canonical pathways.

^dMolecules in the pathway overlapping with the input gene list.

Supplementary Table 3: Pathways enriched with DEGs with elevated expression in QHD compared to NAFLD model (*P* value < 0.05). see Supplementary_Table_3

Supplementary Table 4: Pathways enriched with DEGs with decreased expression in QHD compared to NAFLD model (*P* value < 0.05). see Supplementary_Table_4

Supplementary Table 5: Pathways enriched with DEGs with elevated expression in GC compared to NAFLD model (*P* value < 0.05). see Supplementary_Table_5

Supplementary Table 6: Pathways enriched with DEGs with decreased expression in GC compared to NAFLD model (*P* value < 0.05). see Supplementary_Table_6

Supplementary Table 7: Primers for qRT-PCR. see Supplementary_Table_7