Additional file 1: Derivation of the equation for predicting the reliability of genomic estimated breeding values without availability of data.

Based on the mixed model theory, a derivation of the equation for predicting the reliability of genomic estimated breeding values is detailed hereafter, assuming that effects of all independent loci are estimated simultaneously, and assuming a single population. Consider N unrelated reference animals genotyped for Me independent loci and associated with one record. It is assumed that the effect β_k^* of each k^{th} independent locus explains an equal amount of the additive genetic variance σ_a^2 , i.e. $\sigma_a^2 = Me\sigma_{\beta^*}^2$ with $\sigma_{\beta^*}^2$ being the variance at one locus. It is also assumed that reliability of the estimated effect is the same for each locus $(r_{\beta^*}^2)$. The matrix \mathbf{Z}^* contains the standardized genotypes as $\mathbf{Z}_{lk}^* = \frac{\mathbf{M}_{lk} - 2p_k}{\sqrt{2p_k(1-p_k)}}$ with \mathbf{M}_{lk} being the genotype (coded as 0 for homozygous genotypes, 1 for heterozygous genotypes, or 2 for alternate homozygous genotypes) of the l^{th} individual for the k^{th} locus, and p_k being the allele frequency of the k^{th} locus.

The genomic breeding value (a_i) for the i^{th} selection candidate can be predicted as:

$$\hat{\mathbf{a}}_i = \mathbf{z}_i^* \ \widehat{\boldsymbol{\beta}^*},$$

where \mathbf{z}'_i is a row vector for the Me independent loci of the i^{th} selection candidate, and the vector $\widehat{\boldsymbol{\beta}^*}$ is the vector of the predictions of $\boldsymbol{\beta}^*$.

Following the mixed model theory [17, 19], the reliability of \hat{a}_i , $r_{a_i}^2$, is equal to:

$$r_{a_i}^2 = 1 - \frac{Var(\hat{\mathbf{a}}_i - \mathbf{a}_i)}{Var(\mathbf{a}_i)} = \frac{Var(\hat{\mathbf{a}}_i)}{Var(\mathbf{a}_i)} = \frac{Var(\mathbf{z}_i^* \widehat{\boldsymbol{\beta}^*})}{Var(\mathbf{z}_i^* \boldsymbol{\beta}^*)}$$

$$= \frac{\mathbf{z}_{i}^{*} Var(\widehat{\boldsymbol{\beta}^{*}}) \mathbf{z}_{i}^{*'}}{\mathbf{z}_{i}^{*} Var(\widehat{\boldsymbol{\beta}^{*}}) \mathbf{z}_{i}^{*'}} = \frac{Var(\widehat{\boldsymbol{\beta}_{k}^{*}})}{Var(\widehat{\boldsymbol{\beta}_{k}^{*}})}$$

$$=\frac{Var(\beta_k^*)-Var(\beta_k^*-\widehat{\beta_k^*})}{Var(\beta_k^*)}=r_{\beta^*}^2,$$

because it was assumed that the effect β_k^* of each k^{th} independent locus explains an equal amount of the additive genetic variance, and that the reliability of the predicted effect, $r_{\beta^*}^2$, is the same for each locus.

The reliability $r_{\beta^*}^2$ can be approximated as follows. The prediction of β_k^* for the k^{th} locus can be performed from the phenotypes, \mathbf{y} , corrected for all other fixed and random effects (e.g., $\widehat{\boldsymbol{\beta}_{\neq k}^*}$), $\widehat{\mathbf{y}}$, using the model:

$$\hat{\mathbf{y}} = \mathbf{y} - \mathbf{Z}_{\neq k}^* \widehat{\mathbf{\beta}_{\neq k}^*} =$$

$$\mathbf{z}_k^* \boldsymbol{\beta}_k^* + \mathbf{Z}_{\neq k}^* \boldsymbol{\beta}_{\neq k}^* + \mathbf{e} - \mathbf{Z}_{\neq k}^* \widehat{\boldsymbol{\beta}_{\neq k}^*} = \mathbf{z}_k^* \boldsymbol{\beta}_k^* + \boldsymbol{\varepsilon}_k,$$

with $\mathbf{Z}^* = [\mathbf{z}_k^* \quad \mathbf{Z}_{\neq k}^*], \, \mathbf{\beta}' = [\mathbf{\beta}_k^* \quad \mathbf{\beta}_{\neq k}^{*\prime}], \, \text{and} \, \mathbf{\varepsilon}_k \, \text{is a residual vector.}$

It follows that $\mathbf{\varepsilon}_k = \mathbf{Z}_{\neq k}^* \mathbf{\beta}_{\neq k}^* - \mathbf{Z}_{\neq k}^* \widehat{\mathbf{\beta}_{\neq k}^*}^* + \mathbf{e}$. The variance of \mathbf{y} is equal to $Var(\mathbf{y}) = Var(\mathbf{z}_k^* \mathbf{\beta}_k^* + \mathbf{Z}_{\neq k}^* \mathbf{\beta}_{\neq k}^* + \mathbf{e}) = \mathbf{z}_k^* \mathbf{z}_k^{*'} \sigma_{\beta^*}^2 + Var(\mathbf{Z}_{\neq k}^* \mathbf{\beta}_{\neq k}^*) + Var(\mathbf{e})$, and similarly, the variance of $\hat{\mathbf{y}}$ is equal to $Var(\hat{\mathbf{y}}) = \mathbf{z}_k^* \mathbf{z}_k^{*'} \sigma_{\beta^*}^2 + Var(\mathbf{\varepsilon}_k)$. The variance of $\mathbf{\varepsilon}_k$ is unknown and can be derived as follows:

$$Var(\mathbf{\varepsilon}_k) = Var(\mathbf{Z}_{\neq k}^* \mathbf{\beta}_{\neq k}^* - \mathbf{Z}_{\neq k}^* \widehat{\mathbf{\beta}_{\neq k}^*} + \mathbf{e})$$

$$=\mathbf{Z}_{\neq k}^{*}\mathbf{Z}_{\neq k}^{*\prime}Var\big(\boldsymbol{\beta}_{\neq k}^{*}-\widehat{\boldsymbol{\beta}_{\neq k}^{*}}\big)+Var(\mathbf{e})$$

$$= \mathbf{Z}_{\neq k}^* \mathbf{Z}_{\neq k}^{*\prime} \sigma_{\beta^*}^2 \left(1 - r_{\beta^*}^2\right) + \mathbf{I} \sigma_e^2$$

$$\approx \mathbf{I}(\sigma_a^2(1-r_{\beta^*}^2)+\sigma_e^2)=\mathbf{I}\sigma_{\varepsilon}^2,$$

where σ_e^2 is the residual variance; null covariances between random effects are assumed due to independent loci; and $Cov(\mathbf{Z}_{\neq k}^*\widehat{\boldsymbol{\beta}_{\neq k}^*},\mathbf{e})=\mathbf{0}$.

The approximation $\mathbf{Z}_{\neq k}^* \mathbf{Z}_{\neq k}^{*\prime} \sigma_{\beta^*}^2 \approx \mathbf{I} \sigma_a^2$ is performed because unrelated animals were assumed and because a single independent locus explains a small amount of σ_a^2 .

It is worth noting that $\sigma_{\varepsilon}^2 = \sigma_a^2 (1 - r_{\beta^*}^2) + \sigma_e^2$ is equivalent to the correction developed by Daetwyler et al. [12] in their Appendix, assuming that the phenotypic variance $\sigma_p^2 = 1$.

Therefore, the prediction of β_k^* , $\widehat{\beta_k^*}$, is equal to, following the mixed model theory [17]:

$$\widehat{\boldsymbol{\beta}_k^*} = \left(\mathbf{z}_k^{*\prime}\mathbf{z}_k^*\sigma_{\varepsilon}^{-2} + \sigma_{\boldsymbol{\beta}^*}^{-2}\right)^{-1}\sigma_{\varepsilon}^{-2}\mathbf{z}_k^{*\prime}\hat{\mathbf{y}},$$

and, the reliability of $\widehat{\beta_k^*}$ is equal to:

$$r_{\beta^*}^2 = \frac{Var(\beta_k^*) - Var(\widehat{\beta_k^*} - \beta_k^*)}{Var(\beta_k^*)}$$

$$=\frac{\sigma_{\beta^*}^2-\left(\mathbf{z}_k^{*'}\mathbf{z}_k^*\sigma_{\varepsilon}^{-2}+\sigma_{\beta^*}^{-2}\right)^{-1}}{\sigma_{\beta^*}^2}$$

$$=\frac{\sigma_{\beta^*}^2-\left(S_{zz,k}\sigma_{\varepsilon}^{-2}+\sigma_{\beta^*}^{-2}\right)^{-1}}{\sigma_{\beta^*}^2}$$

$$=\frac{\sigma_{\beta^*}^2-\left(N\sigma_{\varepsilon}^{-2}+\sigma_{\beta^*}^{-2}\right)^{-1}}{\sigma_{\beta^*}^2}$$

$$= \frac{\left(N\sigma_{\varepsilon}^{-2} + \sigma_{\beta^{*}}^{-2}\right)\sigma_{\beta^{*}}^{2} - 1}{\left(N\sigma_{\varepsilon}^{-2} + \sigma_{\beta^{*}}^{-2}\right)\sigma_{\beta^{*}}^{2}} = \frac{N\sigma_{\beta^{*}}^{2}}{N\sigma_{\beta^{*}}^{2} + \sigma_{\varepsilon}^{2}},$$

with $S_{zz,k} = N$ being the adjusted sum of squares for the k^{th} locus [12, 14].

Because $r_{a_i}^2 = r_{\beta^*}^2$, $\sigma_a^2 = M_e \sigma_{\beta^*}^2$, and $\sigma_{\varepsilon}^2 = (\sigma_a^2 (1 - r_{\beta^*}^2) + \sigma_e^2)$, the reliability of \hat{a}_i , $r_{a_i}^2$, is equal to:

$$r_{a_i}^2 = r_{\beta^*}^2 = \frac{N \sigma_{\beta^*}^2}{N \sigma_{\beta^*}^2 + \sigma_{\varepsilon}^2}$$

$$=\frac{\mathit{N}\sigma_a^2}{\mathit{N}\sigma_a^2+\mathit{Me}\left(\sigma_a^2\left(1-r_{a_i}^2\right)+\sigma_e^2\right)}=\frac{\mathit{N}h_a^2}{\mathit{N}h_a^2+\mathit{Me}\left(1-h_a^2r_{a_i}^2\right)}.$$

The equation for $r_{a_i}^2 = \frac{Nh_a^2}{Nh_a^2 + Me\left(1 - h_a^2 r_{a_i}^2\right)}$ is equivalent to the equation developed by Daetwyler et al. [12] in the Appendix of their paper. However, similarly to these authors, and because h^2 is considered as small for most traits of interest, the prediction equation reported in the main text of Daetwyler et al. [12] will be used in the main text of this manuscript, i.e. $r_{a_i}^2 = \frac{Nh_a^2}{Nh_a^2 + Me}$. As explained by Daetwyler et al. [12], this approximation has the consequence that the predicted reliabilities are slightly underestimated.